Buildings.Fluid.Movers

Package with fan and pump models

Package Content

NameDescription
Buildings.Fluid.Movers.Examples Examples Collection of models that illustrate model use and test models
Buildings.Fluid.Movers.FlowMachinePolynomial FlowMachinePolynomial Pump or fan with head and efficiency declared by a non-dimensional polynomial


Buildings.Fluid.Movers.FlowMachinePolynomial Buildings.Fluid.Movers.FlowMachinePolynomial

Pump or fan with head and efficiency declared by a non-dimensional polynomial

Buildings.Fluid.Movers.FlowMachinePolynomial

Information


This is a model of a flow machine (pump or fan).

The normalized pressure difference is computed using a function of the normalized mass flow rate. The function is a polynomial for which a user needs to supply the coefficients and two values that determine for what flow rate the polynomial is linearly extended.


Extends from Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface (Partial model transporting fluid between two ports without storing mass or energy).

Parameters

TypeNameDefaultDescription
replaceable package MediumPartialMediumMedium in the component
LengthD Diameter [m]
Reala[:] Polynomial coefficients for pressure=p(mNor_flow)
Realb[:] Polynomial coefficients for etaSha=p(mNor_flow)
RealmNorMin_flow Lowest valid normalized mass flow rate
RealmNorMax_flow Highest valid normalized mass flow rate
RealscaM_flow1Factor used to scale the mass flow rate of the fan (used for quickly adjusting fan size)
RealscaDp1Factor used to scale the pressure increase of the fan (used for quickly adjusting fan size)
Nominal condition
MassFlowRatem_flow_nominal Nominal mass flow rate [kg/s]
Initialization
MassFlowRatem_flow.start0Mass flow rate from port_a to port_b (m_flow > 0 is design flow direction) [kg/s]
Pressuredp.start0Pressure difference between port_a and port_b [Pa]
Assumptions
BooleanallowFlowReversalsystem.allowFlowReversal= true to allow flow reversal, false restricts to design direction (port_a -> port_b)
Advanced
MassFlowRatem_flow_small1E-4*m_flow_nominalSmall mass flow rate for regularization of zero flow [kg/s]
Diagnostics
Booleanshow_V_flowtrue= true, if volume flow rate at inflowing port is computed
Initialization
AbsolutePressurep_a_startsystem.p_startGuess value for inlet pressure [Pa]
AbsolutePressurep_b_startp_a_startGuess value for outlet pressure [Pa]

Connectors

TypeNameDescription
FluidPort_aport_aFluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_bport_bFluid connector b (positive design flow direction is from port_a to port_b)
input RealInputN_inPrescribed rotational speed

Modelica definition

model FlowMachinePolynomial 
  "Pump or fan with head and efficiency declared by a non-dimensional polynomial"
  extends Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface;


  Modelica.Blocks.Interfaces.RealInput N_in "Prescribed rotational speed";

  parameter Modelica.SIunits.Length D "Diameter";
  parameter Real[:] a "Polynomial coefficients for pressure=p(mNor_flow)";
  parameter Real[:] b "Polynomial coefficients for etaSha=p(mNor_flow)";
  parameter Real mNorMin_flow "Lowest valid normalized mass flow rate";
  parameter Real mNorMax_flow "Highest valid normalized mass flow rate";
  parameter Real scaM_flow = 1 
    "Factor used to scale the mass flow rate of the fan (used for quickly adjusting fan size)";
  parameter Real scaDp = 1 
    "Factor used to scale the pressure increase of the fan (used for quickly adjusting fan size)";

  Real pNor(min=0) "Normalized pressure";
  Real mNor_flow(start=mNorMax_flow) "Normalized mass flow rate";
  Real etaSha(min=0, max=1) "Efficiency, flow work divided by shaft power";
  Modelica.SIunits.Power PSha "Power input at shaft";

  Medium.Density den "Medium density";
protected 
  parameter Real pNorMin1(fixed=false) 
    "Normalized pressure, used to test slope of polynomial outside [xMin, xMax]";
  parameter Real pNorMin2(fixed=false) 
    "Normalized pressure, used to test slope of polynomial outside [xMin, xMax]";
  parameter Real pNorMax1(fixed=false) 
    "Normalized pressure, used to test slope of polynomial outside [xMin, xMax]";
  parameter Real pNorMax2(fixed=false) 
    "Normalized pressure, used to test slope of polynomial outside [xMin, xMax]";

initial equation 
 // check slope of polynomial outside the domain [mNorMin_flow, mNorMax_flow]
 pNorMin1 = Buildings.Fluid.Utilities.extendedPolynomial(
                                        c=a, x=mNorMin_flow/2, xMin=mNorMin_flow, xMax=mNorMax_flow);
 pNorMin2 = Buildings.Fluid.Utilities.extendedPolynomial(
                                        c=a, x=mNorMin_flow, xMin=mNorMin_flow, xMax=mNorMax_flow);
 pNorMax1 = Buildings.Fluid.Utilities.extendedPolynomial(
                                        c=a, x=mNorMax_flow, xMin=mNorMin_flow, xMax=mNorMax_flow);
 pNorMax2 = Buildings.Fluid.Utilities.extendedPolynomial(
                                        c=a, x=mNorMax_flow*2, xMin=mNorMin_flow, xMax=mNorMax_flow);
 assert(pNorMin1>pNorMin2,
    "Slope of pump pressure polynomial is non-negative for mNor_flow < mNorMin_flow. Check parameter a.");
 assert(pNorMax1>pNorMax2,
    "Slope of pump pressure polynomial is non-negative for mNorMax_flow < mNor_flow. Check parameter a.");

equation 
  den = Medium.density(sta_a);
  -dp = scaDp     * pNor      * den * D*D   * N_in * N_in;
  m_flow = scaM_flow * mNor_flow * den * D*D*D * N_in;
  pNor = Buildings.Fluid.Utilities.extendedPolynomial(
                                        c=a, x=mNor_flow, xMin=mNorMin_flow, xMax=mNorMax_flow);
  etaSha = max(0.1, Buildings.Fluid.Utilities.polynomial(
                                                      c=b, x=mNor_flow));
  etaSha * PSha = -dp * m_flow / den; // dp<0 and m_flow>0 for normal operation

  // Energy balance (no storage, no heat loss/gain)
  PSha = -m_flow*(port_a.h_outflow-inStream(port_b.h_outflow));
  PSha = m_flow*(port_b.h_outflow-inStream(port_a.h_outflow));

  // Mass balance (no storage)
  port_a.m_flow + port_b.m_flow = 0;

  // Transport of substances
  port_a.Xi_outflow = inStream(port_b.Xi_outflow);
  port_b.Xi_outflow = inStream(port_a.Xi_outflow);

  port_a.C_outflow = inStream(port_b.C_outflow);
  port_b.C_outflow = inStream(port_a.C_outflow);

end FlowMachinePolynomial;

HTML-documentation generated by Dymola Tue Sep 29 08:09:03 2009.