Name | Description |
---|---|
Examples | Collection of models that illustrate model use and test models |
FlowMachinePolynomial | Pump or fan with head and efficiency declared by a non-dimensional polynomial |
This is a model of a flow machine (pump or fan).
The normalized pressure difference is computed using a function of the normalized mass flow rate. The function is a polynomial for which a user needs to supply the coefficients and two values that determine for what flow rate the polynomial is linearly extended.
Extends from Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface (Partial model transporting fluid between two ports without storing mass or energy).
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium | PartialMedium | Medium in the component | |
Length | D | Diameter [m] | |
Real | a[:] | Polynomial coefficients for pressure=p(mNor_flow) | |
Real | b[:] | Polynomial coefficients for etaSha=p(mNor_flow) | |
Real | mNorMin_flow | Lowest valid normalized mass flow rate | |
Real | mNorMax_flow | Highest valid normalized mass flow rate | |
Real | scaM_flow | 1 | Factor used to scale the mass flow rate of the fan (used for quickly adjusting fan size) |
Real | scaDp | 1 | Factor used to scale the pressure increase of the fan (used for quickly adjusting fan size) |
Nominal condition | |||
MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
Initialization | |||
MassFlowRate | m_flow.start | 0 | Mass flow rate from port_a to port_b (m_flow > 0 is design flow direction) [kg/s] |
Pressure | dp.start | 0 | Pressure difference between port_a and port_b [Pa] |
Assumptions | |||
Boolean | allowFlowReversal | system.allowFlowReversal | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) |
Advanced | |||
MassFlowRate | m_flow_small | 1E-4*m_flow_nominal | Small mass flow rate for regularization of zero flow [kg/s] |
Diagnostics | |||
Boolean | show_V_flow | true | = true, if volume flow rate at inflowing port is computed |
Initialization | |||
AbsolutePressure | p_a_start | system.p_start | Guess value for inlet pressure [Pa] |
AbsolutePressure | p_b_start | p_a_start | Guess value for outlet pressure [Pa] |
Type | Name | Description |
---|---|---|
FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) |
FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) |
input RealInput | N_in | Prescribed rotational speed |
model FlowMachinePolynomial "Pump or fan with head and efficiency declared by a non-dimensional polynomial" extends Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface; Modelica.Blocks.Interfaces.RealInput N_in "Prescribed rotational speed"; parameter Modelica.SIunits.Length D "Diameter"; parameter Real[:] a "Polynomial coefficients for pressure=p(mNor_flow)"; parameter Real[:] b "Polynomial coefficients for etaSha=p(mNor_flow)"; parameter Real mNorMin_flow "Lowest valid normalized mass flow rate"; parameter Real mNorMax_flow "Highest valid normalized mass flow rate"; parameter Real scaM_flow = 1 "Factor used to scale the mass flow rate of the fan (used for quickly adjusting fan size)"; parameter Real scaDp = 1 "Factor used to scale the pressure increase of the fan (used for quickly adjusting fan size)"; Real pNor(min=0) "Normalized pressure"; Real mNor_flow(start=mNorMax_flow) "Normalized mass flow rate"; Real etaSha(min=0, max=1) "Efficiency, flow work divided by shaft power"; Modelica.SIunits.Power PSha "Power input at shaft"; Medium.Density den "Medium density"; protected parameter Real pNorMin1(fixed=false) "Normalized pressure, used to test slope of polynomial outside [xMin, xMax]"; parameter Real pNorMin2(fixed=false) "Normalized pressure, used to test slope of polynomial outside [xMin, xMax]"; parameter Real pNorMax1(fixed=false) "Normalized pressure, used to test slope of polynomial outside [xMin, xMax]"; parameter Real pNorMax2(fixed=false) "Normalized pressure, used to test slope of polynomial outside [xMin, xMax]"; initial equation // check slope of polynomial outside the domain [mNorMin_flow, mNorMax_flow] pNorMin1 = Buildings.Fluid.Utilities.extendedPolynomial( c=a, x=mNorMin_flow/2, xMin=mNorMin_flow, xMax=mNorMax_flow); pNorMin2 = Buildings.Fluid.Utilities.extendedPolynomial( c=a, x=mNorMin_flow, xMin=mNorMin_flow, xMax=mNorMax_flow); pNorMax1 = Buildings.Fluid.Utilities.extendedPolynomial( c=a, x=mNorMax_flow, xMin=mNorMin_flow, xMax=mNorMax_flow); pNorMax2 = Buildings.Fluid.Utilities.extendedPolynomial( c=a, x=mNorMax_flow*2, xMin=mNorMin_flow, xMax=mNorMax_flow); assert(pNorMin1>pNorMin2, "Slope of pump pressure polynomial is non-negative for mNor_flow < mNorMin_flow. Check parameter a."); assert(pNorMax1>pNorMax2, "Slope of pump pressure polynomial is non-negative for mNorMax_flow < mNor_flow. Check parameter a."); equation den = Medium.density(sta_a); -dp = scaDp * pNor * den * D*D * N_in * N_in; m_flow = scaM_flow * mNor_flow * den * D*D*D * N_in; pNor = Buildings.Fluid.Utilities.extendedPolynomial( c=a, x=mNor_flow, xMin=mNorMin_flow, xMax=mNorMax_flow); etaSha = max(0.1, Buildings.Fluid.Utilities.polynomial( c=b, x=mNor_flow)); etaSha * PSha = -dp * m_flow / den; // dp<0 and m_flow>0 for normal operation // Energy balance (no storage, no heat loss/gain) PSha = -m_flow*(port_a.h_outflow-inStream(port_b.h_outflow)); PSha = m_flow*(port_b.h_outflow-inStream(port_a.h_outflow)); // Mass balance (no storage) port_a.m_flow + port_b.m_flow = 0; // Transport of substances port_a.Xi_outflow = inStream(port_b.Xi_outflow); port_b.Xi_outflow = inStream(port_a.Xi_outflow); port_a.C_outflow = inStream(port_b.C_outflow); port_b.C_outflow = inStream(port_a.C_outflow); end FlowMachinePolynomial;