Buildings.Utilities.Psychrometrics

Library with psychrometric functions

Package Content

NameDescription
Buildings.Utilities.Psychrometrics.DewPointTemperature DewPointTemperature Model to compute the dew point temperature of moist air
Buildings.Utilities.Psychrometrics.Examples Examples Collection of models that illustrate model use and test models
Buildings.Utilities.Psychrometrics.HumidityRatioPressure HumidityRatioPressure Relation between humidity ratio and water vapor pressure
Buildings.Utilities.Psychrometrics.WetBulbTemperature WetBulbTemperature Model to compute the wet bulb temperature


Buildings.Utilities.Psychrometrics.DewPointTemperature Buildings.Utilities.Psychrometrics.DewPointTemperature

Model to compute the dew point temperature of moist air

Buildings.Utilities.Psychrometrics.DewPointTemperature

Information


Dew point temperature calculation for moist air above freezing temperature.

The correlation used in this model is valid for dew point temperatures between 0 degC and 200 degC. It is the correlation from 2005 ASHRAE Handbook, p. 6.2. In an earlier version of this model, the equation from Peppers has been used, but this equation yielded about 15 Kelvin lower dew point temperatures.


Extends from Buildings.BaseClasses.BaseIcon (Base icon).

Connectors

TypeNameDescription
RealSignalp_wWater vapor partial pressure
RealSignalTDew point temperature [K]

Modelica definition

model DewPointTemperature 
  "Model to compute the dew point temperature of moist air"
 extends Buildings.BaseClasses.BaseIcon;
  ObsoleteModelica3.Blocks.Interfaces.RealSignal p_w 
    "Water vapor partial pressure";
  ObsoleteModelica3.Blocks.Interfaces.RealSignal T(start=278.15,
                                           final quantity="ThermodynamicTemperature",
                                           final unit="K",
                                           min = 0,
                                           displayUnit="degC") 
    "Dew point temperature";
protected 
  constant Real C8 = -5.800226E3;
  constant Real C9 =  1.3914993E0;
  constant Real C10= -4.8640239E-2;
  constant Real C11 = 4.1764768E-5;
  constant Real C12= -1.4452093E-8;
  constant Real C13 = 6.5459673E0;
equation 
 p_w = Modelica.Math.exp(C8/T + C9 + T * ( C10
           + T * ( C11 + T * C12))  + C13 * Modelica.Math.log(T));
end DewPointTemperature;

Buildings.Utilities.Psychrometrics.HumidityRatioPressure Buildings.Utilities.Psychrometrics.HumidityRatioPressure

Relation between humidity ratio and water vapor pressure

Buildings.Utilities.Psychrometrics.HumidityRatioPressure

Information


Model to compute the relation between humidity ratio and water vapor partial pressure of moist air.


Extends from Buildings.BaseClasses.BaseIcon (Base icon).

Parameters

TypeNameDefaultDescription
PressurepAtm101325Fixed value of pressure [Pa]

Connectors

TypeNameDescription
RealSignalpPressure [Pa]
RealSignalXWatSpecies concentration at dry bulb temperature
RealSignalp_wWater vapor pressure [Pa]

Modelica definition

model HumidityRatioPressure 
  "Relation between humidity ratio and water vapor pressure"
  extends Buildings.BaseClasses.BaseIcon;
  parameter Modelica.SIunits.Pressure pAtm = 101325 "Fixed value of pressure";
  ObsoleteModelica3.Blocks.Interfaces.RealSignal p(
                                           final quantity="Pressure",
                                           final unit="Pa",
                                           min = 0) "Pressure";
  ObsoleteModelica3.Blocks.Interfaces.RealSignal XWat(
                                                    nominal=0.01) 
    "Species concentration at dry bulb temperature";
  ObsoleteModelica3.Blocks.Interfaces.RealSignal p_w(
                                           final quantity="Pressure",
                                           final unit="Pa",
                                           displayUnit="Pa",
                                           min = 0) "Water vapor pressure";

  Modelica.SIunits.MassFraction X_dryAir(min=0, max=1, nominal=0.01, start=0.001) 
    "Water mass fraction per mass of dry air";
equation 
  if cardinality(p)==0 then
    p = pAtm;
  end if;
  X_dryAir * (1-XWat) = XWat;
 ( p - p_w)   * X_dryAir = 0.62198 * p_w;
end HumidityRatioPressure;

Buildings.Utilities.Psychrometrics.WetBulbTemperature Buildings.Utilities.Psychrometrics.WetBulbTemperature

Model to compute the wet bulb temperature

Buildings.Utilities.Psychrometrics.WetBulbTemperature

Information


Given a moist are medium model, this component computes the states of the medium at its wet bulb temperature.

For a use of this model, see for example Buildings.Fluids.Sensors.WetBulbTemperature


Extends from Buildings.BaseClasses.BaseIcon (Base icon).

Connectors

TypeNameDescription
RealSignalTDryBulDry bulb temperature [K]
RealSignalpPressure [Pa]
RealSignalTWetBulWet bulb temperature [K]
RealSignalXi[Medium.nXi]Species concentration at dry bulb temperature
RealSignalphiRelative humidity (at dry-bulb state) in [0, 1]

Modelica definition

model WetBulbTemperature "Model to compute the wet bulb temperature"
  extends Buildings.BaseClasses.BaseIcon;
  replaceable package Medium = 
    Modelica.Media.Interfaces.PartialCondensingGases "Medium model";
  Medium.BaseProperties dryBul "Medium state at dry bulb temperature";
  Medium.BaseProperties wetBul(Xi(nominal=0.01*ones(Medium.nXi))) 
    "Medium state at wet bulb temperature";
  ObsoleteModelica3.Blocks.Interfaces.RealSignal TDryBul(
                                           start=303,
                                           final quantity="ThermodynamicTemperature",
                                           final unit="K",
                                           min = 0) "Dry bulb temperature";
  ObsoleteModelica3.Blocks.Interfaces.RealSignal p(
                                           final quantity="Pressure",
                                           final unit="Pa",
                                           min = 0) "Pressure";
  ObsoleteModelica3.Blocks.Interfaces.RealSignal TWetBul(
                                           start=293,
                                           final quantity="ThermodynamicTemperature",
                                           final unit="K",
                                           min = 0) "Wet bulb temperature";
  ObsoleteModelica3.Blocks.Interfaces.RealSignal Xi[
                                          Medium.nXi] 
    "Species concentration at dry bulb temperature";
  ObsoleteModelica3.Blocks.Interfaces.RealSignal phi 
    "Relative humidity (at dry-bulb state) in [0, 1]";
protected 
  parameter Integer iWat(min=1, fixed=false) 
    "Index for water vapor concentration";
initial algorithm 
  iWat :=1;
  for i in 1:Medium.nC loop
    if ( Modelica.Utilities.Strings.isEqual(Medium.extraPropertiesNames[i], "Water")) then
      iWat := i;
    end if;
  end for;
equation 
  dryBul.p = p;
  dryBul.T = TDryBul;
  dryBul.Xi = Xi;
  wetBul.phi = 1;
  wetBul.p = dryBul.p;
  wetBul.h = dryBul.h + (wetBul.X[iWat] - dryBul.X[iWat])
         * Medium.enthalpyOfLiquid(dryBul.T);
  TWetBul = wetBul.T;
  phi     = dryBul.phi;
end WetBulbTemperature;

HTML-documentation generated by Dymola Thu Feb 19 16:53:27 2009.