Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid

Package with moist air model that decouples pressure and temperature and that has no liquid water

Information


This is a medium model that is identical to Buildings.Media.GasesPTDecoupled.MoistAir, except that the water vapor is not condensing to the liquid phase if Xi[Water] > X_sat. Instead, all water is assumed in vapor phase.

This new formulation often leads to smaller systems of nonlinear equations because it allows to invert the function T_phX analytically.

Extends from Modelica.Media.Interfaces.PartialCondensingGases (Base class for mixtures of condensing and non-condensing gases).

Package Content

NameDescription
Water=1Index of water (in substanceNames, massFractions X, etc.)
Air=2Index of air (in substanceNames, massFractions X, etc.)
k_mair=steam.MM/dryair.MMratio of molar weights
dryair=Buildings.Media.PerfectGases.Common.SingleGasData.Air 
steam=Buildings.Media.PerfectGases.Common.SingleGasData.H2O 
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.BaseProperties BaseProperties  
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.Xsaturation Xsaturation Steam water mass fraction of saturation boundary in kg_water/kg_moistair
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.setState_pTX setState_pTX Thermodynamic state as function of p, T and composition X
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.setState_phX setState_phX Thermodynamic state as function of p, h and composition X
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.setState_dTX setState_dTX Thermodynamic state as function of d, T and composition X
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.gasConstant gasConstant Gas constant (computation neglects liquid fraction)
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.saturationPressureLiquid saturationPressureLiquid Saturation curve valid for 273.16 <= T <= 373.16. Outside of these limits a (less accurate) result is returned
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.sublimationPressureIce sublimationPressureIce Saturation curve valid for 223.16 <= T <= 273.16. Outside of these limits a (less accurate) result is returned
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.saturationPressure saturationPressure Saturation curve valid for 223.16 <= T <= 373.16 (and slightly outside with less accuracy)
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.pressure pressure Gas pressure
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.temperature temperature Gas temperature
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.density density Gas density
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificEntropy specificEntropy Specific entropy (liquid part neglected, mixing entropy included)
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfVaporization enthalpyOfVaporization Enthalpy of vaporization of water
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.HeatCapacityOfWater HeatCapacityOfWater Specific heat capacity of water (liquid only) which is constant
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfLiquid enthalpyOfLiquid Enthalpy of liquid (per unit mass of liquid) which is linear in the temperature
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.der_enthalpyOfLiquid der_enthalpyOfLiquid Temperature derivative of enthalpy of liquid per unit mass of liquid
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfCondensingGas enthalpyOfCondensingGas Enthalpy of steam per unit mass of steam
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.der_enthalpyOfCondensingGas der_enthalpyOfCondensingGas Derivative of enthalpy of steam per unit mass of steam
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfGas enthalpyOfGas Enthalpy of gas mixture per unit mass of gas mixture
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfDryAir enthalpyOfDryAir Enthalpy of dry air per unit mass of dry air
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.der_enthalpyOfDryAir der_enthalpyOfDryAir Derivative of enthalpy of dry air per unit mass of dry air
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificHeatCapacityCp specificHeatCapacityCp Specific heat capacity of gas mixture at constant pressure
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificHeatCapacityCv specificHeatCapacityCv Specific heat capacity of gas mixture at constant volume
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.dynamicViscosity dynamicViscosity dynamic viscosity of dry air
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.thermalConductivity thermalConductivity Thermal conductivity of dry air as a polynomial in the temperature
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificEnthalpy specificEnthalpy Specific enthalpy
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificInternalEnergy specificInternalEnergy Specific internal energy
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificGibbsEnergy specificGibbsEnergy Specific Gibbs energy
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificHelmholtzEnergy specificHelmholtzEnergy Specific Helmholtz energy
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.h_pTX h_pTX Compute specific enthalpy from pressure, temperature and mass fraction
Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.T_phX T_phX Compute temperature from specific enthalpy and mass fraction
Inherited
Modelica.Media.Interfaces.PartialMixtureMedium.ThermodynamicState ThermodynamicStatethermodynamic state variables
Modelica.Media.Interfaces.PartialMixtureMedium.FluidConstants FluidConstantsextended fluid constants
fluidConstantsconstant data for the fluid
Modelica.Media.Interfaces.PartialMixtureMedium.moleToMassFractions moleToMassFractionsReturn mass fractions X from mole fractions
Modelica.Media.Interfaces.PartialMixtureMedium.massToMoleFractions massToMoleFractionsReturn mole fractions from mass fractions X
mediumName="unusablePartialMedium"Name of the medium
substanceNames={mediumName}Names of the mixture substances. Set substanceNames={mediumName} if only one substance.
extraPropertiesNames=fill("", 0)Names of the additional (extra) transported properties. Set extraPropertiesNames=fill("",0) if unused
singleState= true, if u and d are not a function of pressure
reducedX=true= true if medium contains the equation sum(X) = 1.0; set reducedX=true if only one substance (see docu for details)
fixedX=false= true if medium contains the equation X = reference_X
reference_p=101325Reference pressure of Medium: default 1 atmosphere
reference_T=298.15Reference temperature of Medium: default 25 deg Celsius
reference_X=fill(1/nX, nX)Default mass fractions of medium
p_default=101325Default value for pressure of medium (for initialization)
T_default=Modelica.SIunits.Conversions.from_degC(20)Default value for temperature of medium (for initialization)
h_default=specificEnthalpy_pTX(p_default, T_default, X_default)Default value for specific enthalpy of medium (for initialization)
X_default=reference_XDefault value for mass fractions of medium (for initialization)
nS=size(substanceNames, 1)Number of substances
nX=nSNumber of mass fractions
nXi=if fixedX then 0 else if reducedX then nS - 1 else nSNumber of structurally independent mass fractions (see docu for details)
nC=size(extraPropertiesNames, 1)Number of extra (outside of standard mass-balance) transported properties
Modelica.Media.Interfaces.PartialMedium.setState_psX setState_psXReturn thermodynamic state as function of p, s and composition X or Xi
Modelica.Media.Interfaces.PartialMedium.prandtlNumber prandtlNumberReturn the Prandtl number
Modelica.Media.Interfaces.PartialMedium.heatCapacity_cp heatCapacity_cpalias for deprecated name
Modelica.Media.Interfaces.PartialMedium.heatCapacity_cv heatCapacity_cvalias for deprecated name
Modelica.Media.Interfaces.PartialMedium.isentropicExponent isentropicExponentReturn isentropic exponent
Modelica.Media.Interfaces.PartialMedium.isentropicEnthalpy isentropicEnthalpyReturn isentropic enthalpy
Modelica.Media.Interfaces.PartialMedium.velocityOfSound velocityOfSoundReturn velocity of sound
Modelica.Media.Interfaces.PartialMedium.isobaricExpansionCoefficient isobaricExpansionCoefficientReturn overall the isobaric expansion coefficient beta
Modelica.Media.Interfaces.PartialMedium.beta betaalias for isobaricExpansionCoefficient for user convenience
Modelica.Media.Interfaces.PartialMedium.isothermalCompressibility isothermalCompressibilityReturn overall the isothermal compressibility factor
Modelica.Media.Interfaces.PartialMedium.kappa kappaalias of isothermalCompressibility for user convenience
Modelica.Media.Interfaces.PartialMedium.density_derp_h density_derp_hReturn density derivative wrt pressure at const specific enthalpy
Modelica.Media.Interfaces.PartialMedium.density_derh_p density_derh_pReturn density derivative wrt specific enthalpy at constant pressure
Modelica.Media.Interfaces.PartialMedium.density_derp_T density_derp_TReturn density derivative wrt pressure at const temperature
Modelica.Media.Interfaces.PartialMedium.density_derT_p density_derT_pReturn density derivative wrt temperature at constant pressure
Modelica.Media.Interfaces.PartialMedium.density_derX density_derXReturn density derivative wrt mass fraction
Modelica.Media.Interfaces.PartialMedium.molarMass molarMassReturn the molar mass of the medium
Modelica.Media.Interfaces.PartialMedium.specificEnthalpy_pTX specificEnthalpy_pTXReturn specific enthalpy from p, T, and X or Xi
Modelica.Media.Interfaces.PartialMedium.density_pTX density_pTXReturn density from p, T, and X or Xi
Modelica.Media.Interfaces.PartialMedium.temperature_phX temperature_phXReturn temperature from p, h, and X or Xi
Modelica.Media.Interfaces.PartialMedium.density_phX density_phXReturn density from p, h, and X or Xi
Modelica.Media.Interfaces.PartialMedium.temperature_psX temperature_psXReturn temperature from p,s, and X or Xi
Modelica.Media.Interfaces.PartialMedium.density_psX density_psXReturn density from p, s, and X or Xi
Modelica.Media.Interfaces.PartialMedium.specificEnthalpy_psX specificEnthalpy_psXReturn specific enthalpy from p, s, and X or Xi
AbsolutePressureType for absolute pressure with medium specific attributes
DensityType for density with medium specific attributes
DynamicViscosityType for dynamic viscosity with medium specific attributes
EnthalpyFlowRateType for enthalpy flow rate with medium specific attributes
MassFlowRateType for mass flow rate with medium specific attributes
MassFractionType for mass fraction with medium specific attributes
MoleFractionType for mole fraction with medium specific attributes
MolarMassType for molar mass with medium specific attributes
MolarVolumeType for molar volume with medium specific attributes
IsentropicExponentType for isentropic exponent with medium specific attributes
SpecificEnergyType for specific energy with medium specific attributes
SpecificInternalEnergyType for specific internal energy with medium specific attributes
SpecificEnthalpyType for specific enthalpy with medium specific attributes
SpecificEntropyType for specific entropy with medium specific attributes
SpecificHeatCapacityType for specific heat capacity with medium specific attributes
SurfaceTensionType for surface tension with medium specific attributes
TemperatureType for temperature with medium specific attributes
ThermalConductivityType for thermal conductivity with medium specific attributes
PrandtlNumberType for Prandtl number with medium specific attributes
VelocityOfSoundType for velocity of sound with medium specific attributes
ExtraPropertyType for unspecified, mass-specific property transported by flow
CumulativeExtraPropertyType for conserved integral of unspecified, mass specific property
ExtraPropertyFlowRateType for flow rate of unspecified, mass-specific property
IsobaricExpansionCoefficientType for isobaric expansion coefficient with medium specific attributes
DipoleMomentType for dipole moment with medium specific attributes
DerDensityByPressureType for partial derivative of density with resect to pressure with medium specific attributes
DerDensityByEnthalpyType for partial derivative of density with resect to enthalpy with medium specific attributes
DerEnthalpyByPressureType for partial derivative of enthalpy with resect to pressure with medium specific attributes
DerDensityByTemperatureType for partial derivative of density with resect to temperature with medium specific attributes
Modelica.Media.Interfaces.PartialMedium.Choices ChoicesTypes, constants to define menu choices

Types and constants

  constant Integer Water=1 
  "Index of water (in substanceNames, massFractions X, etc.)";

  constant Integer Air=2 
  "Index of air (in substanceNames, massFractions X, etc.)";

  constant Real k_mair =  steam.MM/dryair.MM "ratio of molar weights";

  constant Buildings.Media.PerfectGases.Common.DataRecord dryair=
        Buildings.Media.PerfectGases.Common.SingleGasData.Air;

  constant Buildings.Media.PerfectGases.Common.DataRecord steam=
        Buildings.Media.PerfectGases.Common.SingleGasData.H2O;


Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.BaseProperties Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.BaseProperties

Parameters

TypeNameDefaultDescription
BooleanstandardOrderComponentstrueif true, and reducedX = true, the last element of X will be computed from the other ones
Advanced
BooleanpreferredMediumStatesfalse= true if StateSelect.prefer shall be used for the independent property variables of the medium

Modelica definition

redeclare replaceable model extends BaseProperties(
  T(stateSelect=if preferredMediumStates then StateSelect.prefer else StateSelect.default),
  p(stateSelect=if preferredMediumStates then StateSelect.prefer else StateSelect.default),
  Xi(stateSelect=if preferredMediumStates then StateSelect.prefer else StateSelect.default))

  /* p, T, X = X[Water] are used as preferred states, since only then all
     other quantities can be computed in a recursive sequence. 
     If other variables are selected as states, static state selection
     is no longer possible and non-linear algebraic equations occur.
      */
  MassFraction x_water "Mass of total water/mass of dry air";
  Real phi "Relative humidity";

protected 
  constant SI.MolarMass[2] MMX = {steam.MM,dryair.MM} 
    "Molar masses of components";

  //    MassFraction X_liquid "Mass fraction of liquid water";
  //    MassFraction X_steam "Mass fraction of steam water";
  MassFraction X_air "Mass fraction of air";
  MassFraction X_sat 
    "Steam water mass fraction of saturation boundary in kg_water/kg_moistair";
  MassFraction x_sat 
    "Steam water mass content of saturation boundary in kg_water/kg_dryair";
  AbsolutePressure p_steam_sat "Partial saturation pressure of steam";
 constant AbsolutePressure pStp = 101325 "Pressure for which dStp is defined";
 constant Density dStp = 1.2 "Fluid density at pressure pStp";
equation 
  assert(T >= 200.0 and T <= 423.15, "
Temperature T is not in the allowed range
200.0 K <= (T ="
             + String(T) + " K) <= 423.15 K
required from medium model \""   + mediumName + "\".");
  MM = 1/(Xi[Water]/MMX[Water]+(1.0-Xi[Water])/MMX[Air]);

  p_steam_sat = min(saturationPressure(T),0.999*p);
  X_sat = min(p_steam_sat * k_mair/max(100*Modelica.Constants.eps, p - p_steam_sat)*(1 - Xi[Water]), 1.0) 
    "Water content at saturation with respect to actual water content";
  //    X_liquid = max(Xi[Water] - X_sat, 0.0);
  //    X_steam  = Xi[Water]-X_liquid;
  X_air    = 1-Xi[Water];

  h = specificEnthalpy_pTX(p,T,Xi);
  R = dryair.R*(1 - Xi[Water]) + steam.R*Xi[Water];
  //
  u = h - R*T;
  //    d = p/(R*T);
  d/dStp = p/pStp;
  /* Note, u and d are computed under the assumption that the volume of the liquid
         water is neglible with respect to the volume of air and of steam
      */
  state.p = p;
  state.T = T;
  state.X = X;

  // this x_steam is water load / dry air!!!!!!!!!!!
  x_sat    = k_mair*p_steam_sat/max(100*Modelica.Constants.eps,p - p_steam_sat);
  x_water = Xi[Water]/max(X_air,100*Modelica.Constants.eps);
  phi = p/p_steam_sat*Xi[Water]/(Xi[Water] + k_mair*X_air);
end BaseProperties;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.Xsaturation

Steam water mass fraction of saturation boundary in kg_water/kg_moistair

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate Thermodynamic state record

Outputs

TypeNameDescription
MassFractionX_satSteam mass fraction of sat. boundary [kg/kg]

Modelica definition

function Xsaturation = Buildings.Media.PerfectGases.MoistAir.Xsaturation 
  "Steam water mass fraction of saturation boundary in kg_water/kg_moistair";

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.setState_pTX Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.setState_pTX

Thermodynamic state as function of p, T and composition X

Inputs

TypeNameDefaultDescription
AbsolutePressurep Pressure [Pa]
TemperatureT Temperature [K]
MassFractionX[:]reference_XMass fractions [kg/kg]

Outputs

TypeNameDescription
ThermodynamicStatestateThermodynamic state

Modelica definition

redeclare function setState_pTX 
  "Thermodynamic state as function of p, T and composition X"
    extends Buildings.Media.PerfectGases.MoistAir.setState_pTX;
end setState_pTX;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.setState_phX Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.setState_phX

Thermodynamic state as function of p, h and composition X

Information


Function to set the state for given pressure, enthalpy and species concentration.
This function needed to be reimplemented in order for the medium model to use
the implementation of T_phX provided by this package as opposed to the 
implementation provided by its parent package.

Extends from Modelica.Icons.Function (Icon for a function).

Inputs

TypeNameDefaultDescription
AbsolutePressurep Pressure [Pa]
SpecificEnthalpyh Specific enthalpy [J/kg]
MassFractionX[:] Mass fractions [kg/kg]

Outputs

TypeNameDescription
ThermodynamicStatestate 

Modelica definition

redeclare function setState_phX 
  "Thermodynamic state as function of p, h and composition X"
extends Modelica.Icons.Function;
input AbsolutePressure p "Pressure";
input SpecificEnthalpy h "Specific enthalpy";
input MassFraction X[:] "Mass fractions";
output ThermodynamicState state;
algorithm 
state := if size(X,1) == nX then ThermodynamicState(p=p,T=T_phX(p,h,X),X=X) else 
       ThermodynamicState(p=p,T=T_phX(p,h,X), X=cat(1,X,{1-sum(X)}));
end setState_phX;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.setState_dTX Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.setState_dTX

Thermodynamic state as function of d, T and composition X

Inputs

TypeNameDefaultDescription
Densityd density [kg/m3]
TemperatureT Temperature [K]
MassFractionX[:]reference_XMass fractions [kg/kg]

Outputs

TypeNameDescription
ThermodynamicStatestateThermodynamic state

Modelica definition

redeclare function setState_dTX 
  "Thermodynamic state as function of d, T and composition X"
   extends Buildings.Media.PerfectGases.MoistAir.setState_dTX;
end setState_dTX;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.gasConstant Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.gasConstant

Gas constant (computation neglects liquid fraction)

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state

Outputs

TypeNameDescription
SpecificHeatCapacityRmixture gas constant [J/(kg.K)]

Modelica definition

redeclare function gasConstant 
  "Gas constant (computation neglects liquid fraction)"
   extends Buildings.Media.PerfectGases.MoistAir.gasConstant;
end gasConstant;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.saturationPressureLiquid Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.saturationPressureLiquid

Saturation curve valid for 273.16 <= T <= 373.16. Outside of these limits a (less accurate) result is returned

Inputs

TypeNameDefaultDescription
TemperatureTsat saturation temperature [K]

Outputs

TypeNameDescription
AbsolutePressurepsatsaturation pressure [Pa]

Modelica definition

function saturationPressureLiquid = 
    Buildings.Media.PerfectGases.MoistAir.saturationPressureLiquid 
  "Saturation curve valid for 273.16 <= T <= 373.16. Outside of these limits a (less accurate) result is returned";

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.sublimationPressureIce Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.sublimationPressureIce

Saturation curve valid for 223.16 <= T <= 273.16. Outside of these limits a (less accurate) result is returned

Inputs

TypeNameDefaultDescription
TemperatureTsat sublimation temperature [K]

Outputs

TypeNameDescription
AbsolutePressurepsatsublimation pressure [Pa]

Modelica definition

function sublimationPressureIce = 
    Buildings.Media.PerfectGases.MoistAir.sublimationPressureIce 
  "Saturation curve valid for 223.16 <= T <= 273.16. Outside of these limits a (less accurate) result is returned";

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.saturationPressure Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.saturationPressure

Saturation curve valid for 223.16 <= T <= 373.16 (and slightly outside with less accuracy)

Inputs

TypeNameDefaultDescription
TemperatureTsat saturation temperature [K]

Outputs

TypeNameDescription
AbsolutePressurepsatsaturation pressure [Pa]

Modelica definition

redeclare function extends saturationPressure 
  "Saturation curve valid for 223.16 <= T <= 373.16 (and slightly outside with less accuracy)"

algorithm 
  psat := Buildings.Utilities.Math.spliceFunction(saturationPressureLiquid(Tsat),sublimationPressureIce(Tsat),Tsat-273.16,1.0);
end saturationPressure;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.pressure Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.pressure

Gas pressure

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
AbsolutePressurepPressure [Pa]

Modelica definition

redeclare function pressure "Gas pressure"
   extends Buildings.Media.PerfectGases.MoistAir.pressure;
end pressure;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.temperature Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.temperature

Gas temperature

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
TemperatureTTemperature [K]

Modelica definition

redeclare function temperature "Gas temperature"
   extends Buildings.Media.PerfectGases.MoistAir.temperature;
end temperature;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.density Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.density

Gas density

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate  

Outputs

TypeNameDescription
DensitydDensity [kg/m3]

Modelica definition

redeclare function density "Gas density"
  extends Modelica.Icons.Function;
  input ThermodynamicState state;
  output Density d "Density";
algorithm 
 d :=state.p*1.2/101325;
end density;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificEntropy Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificEntropy

Specific entropy (liquid part neglected, mixing entropy included)

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
SpecificEntropysSpecific entropy [J/(kg.K)]

Modelica definition

redeclare function specificEntropy 
  "Specific entropy (liquid part neglected, mixing entropy included)"
   extends Buildings.Media.PerfectGases.MoistAir.specificEntropy;
end specificEntropy;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfVaporization Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfVaporization

Enthalpy of vaporization of water

Inputs

TypeNameDefaultDescription
TemperatureT temperature [K]

Outputs

TypeNameDescription
SpecificEnthalpyr0vaporization enthalpy [J/kg]

Modelica definition

redeclare function extends enthalpyOfVaporization 
  "Enthalpy of vaporization of water"
algorithm 
 r0 := 2501014.5;
end enthalpyOfVaporization;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.HeatCapacityOfWater Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.HeatCapacityOfWater

Specific heat capacity of water (liquid only) which is constant

Inputs

TypeNameDefaultDescription
TemperatureT [K]

Outputs

TypeNameDescription
SpecificHeatCapacitycp_fl[J/(kg.K)]

Modelica definition

function HeatCapacityOfWater 
  "Specific heat capacity of water (liquid only) which is constant"
  extends Modelica.Icons.Function;
  input Temperature T;
  output SpecificHeatCapacity cp_fl;
algorithm 
  cp_fl := 4186;
end HeatCapacityOfWater;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfLiquid Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfLiquid

Enthalpy of liquid (per unit mass of liquid) which is linear in the temperature

Inputs

TypeNameDefaultDescription
TemperatureT temperature [K]

Outputs

TypeNameDescription
SpecificEnthalpyhliquid enthalpy [J/kg]

Modelica definition

redeclare replaceable function extends enthalpyOfLiquid 
  "Enthalpy of liquid (per unit mass of liquid) which is linear in the temperature"
  annotation(derivative=der_enthalpyOfLiquid);

algorithm 
  h := (T - 273.15)*4186;
end enthalpyOfLiquid;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.der_enthalpyOfLiquid Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.der_enthalpyOfLiquid

Temperature derivative of enthalpy of liquid per unit mass of liquid

Inputs

TypeNameDefaultDescription
TemperatureT temperature [K]
Temperatureder_T temperature derivative [K]

Outputs

TypeNameDescription
SpecificHeatCapacityder_hderivative of liquid enthalpy [J/(kg.K)]

Modelica definition

replaceable function der_enthalpyOfLiquid 
  "Temperature derivative of enthalpy of liquid per unit mass of liquid"
  extends Modelica.Icons.Function;
  input Temperature T "temperature";
  input Temperature der_T "temperature derivative";
  output SpecificHeatCapacity der_h "derivative of liquid enthalpy";
algorithm 
  der_h := 4186;
end der_enthalpyOfLiquid;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfCondensingGas Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfCondensingGas

Enthalpy of steam per unit mass of steam

Inputs

TypeNameDefaultDescription
TemperatureT temperature [K]

Outputs

TypeNameDescription
SpecificEnthalpyhsteam enthalpy [J/kg]

Modelica definition

redeclare function enthalpyOfCondensingGas 
  "Enthalpy of steam per unit mass of steam"
  annotation(derivative=der_enthalpyOfCondensingGas);
  extends Modelica.Icons.Function;

  input Temperature T "temperature";
  output SpecificEnthalpy h "steam enthalpy";
algorithm 
  h := (T-273.15) * steam.cp + Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfVaporization(T);
end enthalpyOfCondensingGas;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.der_enthalpyOfCondensingGas Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.der_enthalpyOfCondensingGas

Derivative of enthalpy of steam per unit mass of steam

Inputs

TypeNameDefaultDescription
TemperatureT temperature [K]
Temperatureder_T temperature derivative [K]

Outputs

TypeNameDescription
SpecificHeatCapacityder_hderivative of steam enthalpy [J/(kg.K)]

Modelica definition

replaceable function der_enthalpyOfCondensingGas 
  "Derivative of enthalpy of steam per unit mass of steam"
  extends Modelica.Icons.Function;
  input Temperature T "temperature";
  input Temperature der_T "temperature derivative";
  output SpecificHeatCapacity der_h "derivative of steam enthalpy";
algorithm 
  der_h := steam.cp;
end der_enthalpyOfCondensingGas;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfGas Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfGas

Enthalpy of gas mixture per unit mass of gas mixture

Inputs

TypeNameDefaultDescription
TemperatureT temperature [K]
MassFractionX[:] vector of mass fractions [kg/kg]

Outputs

TypeNameDescription
SpecificEnthalpyhliquid enthalpy [J/kg]

Modelica definition

redeclare replaceable function extends enthalpyOfGas 
  "Enthalpy of gas mixture per unit mass of gas mixture"
algorithm 
  h := Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfCondensingGas(T)*X[Water]
       + Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfDryAir(T)*(1.0-X[Water]);
end enthalpyOfGas;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfDryAir Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.enthalpyOfDryAir

Enthalpy of dry air per unit mass of dry air

Inputs

TypeNameDefaultDescription
TemperatureT temperature [K]

Outputs

TypeNameDescription
SpecificEnthalpyhdry air enthalpy [J/kg]

Modelica definition

replaceable function enthalpyOfDryAir 
  "Enthalpy of dry air per unit mass of dry air"
  annotation(derivative=der_enthalpyOfDryAir);
  extends Modelica.Icons.Function;

  input Temperature T "temperature";
  output SpecificEnthalpy h "dry air enthalpy";
algorithm 
  h := (T - 273.15)*dryair.cp;
end enthalpyOfDryAir;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.der_enthalpyOfDryAir Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.der_enthalpyOfDryAir

Derivative of enthalpy of dry air per unit mass of dry air

Inputs

TypeNameDefaultDescription
TemperatureT temperature [K]
Temperatureder_T temperature derivative [K]

Outputs

TypeNameDescription
SpecificHeatCapacityder_hderivative of dry air enthalpy [J/(kg.K)]

Modelica definition

replaceable function der_enthalpyOfDryAir 
  "Derivative of enthalpy of dry air per unit mass of dry air"
  extends Modelica.Icons.Function;
  input Temperature T "temperature";
  input Temperature der_T "temperature derivative";
  output SpecificHeatCapacity der_h "derivative of dry air enthalpy";
algorithm 
  der_h := dryair.cp;
end der_enthalpyOfDryAir;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificHeatCapacityCp Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificHeatCapacityCp

Specific heat capacity of gas mixture at constant pressure

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
SpecificHeatCapacitycpSpecific heat capacity at constant pressure [J/(kg.K)]

Modelica definition

redeclare replaceable function extends specificHeatCapacityCp 
  "Specific heat capacity of gas mixture at constant pressure"
algorithm 
  cp := dryair.cp*(1-state.X[Water]) +steam.cp*state.X[Water];
end specificHeatCapacityCp;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificHeatCapacityCv Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificHeatCapacityCv

Specific heat capacity of gas mixture at constant volume

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
SpecificHeatCapacitycvSpecific heat capacity at constant volume [J/(kg.K)]

Modelica definition

redeclare replaceable function extends specificHeatCapacityCv 
  "Specific heat capacity of gas mixture at constant volume"
algorithm 
  cv:= dryair.cv*(1-state.X[Water]) +steam.cv*state.X[Water];
end specificHeatCapacityCv;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.dynamicViscosity Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.dynamicViscosity

dynamic viscosity of dry air

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
DynamicViscosityetaDynamic viscosity [Pa.s]

Modelica definition

redeclare function extends dynamicViscosity 
  "dynamic viscosity of dry air"
algorithm 
  eta := 1.85E-5;
end dynamicViscosity;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.thermalConductivity Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.thermalConductivity

Thermal conductivity of dry air as a polynomial in the temperature

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
ThermalConductivitylambdaThermal conductivity [W/(m.K)]

Modelica definition

redeclare function extends thermalConductivity 
  "Thermal conductivity of dry air as a polynomial in the temperature"
  import Modelica.Media.Incompressible.TableBased.Polynomials_Temp;
algorithm 
  lambda := Polynomials_Temp.evaluate({(-4.8737307422969E-008), 7.67803133753502E-005, 0.0241814385504202},
   Modelica.SIunits.Conversions.to_degC(state.T));
end thermalConductivity;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificEnthalpy Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificEnthalpy

Specific enthalpy

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
SpecificEnthalpyhSpecific enthalpy [J/kg]

Modelica definition

redeclare function extends specificEnthalpy "Specific enthalpy"
algorithm 
  h := Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.h_pTX(state.p, state.T, state.X);
end specificEnthalpy;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificInternalEnergy Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificInternalEnergy

Specific internal energy

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
SpecificEnergyuSpecific internal energy [J/kg]

Modelica definition

redeclare function extends specificInternalEnergy 
  "Specific internal energy"
  extends Modelica.Icons.Function;
algorithm 
  u := Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.h_pTX(state.p,state.T,state.X) - gasConstant(state)*state.T;
end specificInternalEnergy;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificGibbsEnergy Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificGibbsEnergy

Specific Gibbs energy

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
SpecificEnergygSpecific Gibbs energy [J/kg]

Modelica definition

redeclare function extends specificGibbsEnergy 
  "Specific Gibbs energy"
  extends Modelica.Icons.Function;
algorithm 
  g := Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.h_pTX(state.p,state.T,state.X) - state.T*specificEntropy(state);
end specificGibbsEnergy;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificHelmholtzEnergy Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificHelmholtzEnergy

Specific Helmholtz energy

Inputs

TypeNameDefaultDescription
ThermodynamicStatestate thermodynamic state record

Outputs

TypeNameDescription
SpecificEnergyfSpecific Helmholtz energy [J/kg]

Modelica definition

redeclare function extends specificHelmholtzEnergy 
  "Specific Helmholtz energy"
  extends Modelica.Icons.Function;
algorithm 
  f := Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.h_pTX(state.p,state.T,state.X)
         - gasConstant(state)*state.T
         - state.T*Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.specificEntropy(state);
end specificHelmholtzEnergy;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.h_pTX Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.h_pTX

Compute specific enthalpy from pressure, temperature and mass fraction

Inputs

TypeNameDefaultDescription
Pressurep Pressure [Pa]
TemperatureT Temperature [K]
MassFractionX[nX] Mass fractions of moist air [1]

Outputs

TypeNameDescription
SpecificEnthalpyhSpecific enthalpy at p, T, X [J/kg]

Modelica definition

function h_pTX 
  "Compute specific enthalpy from pressure, temperature and mass fraction"
  extends Modelica.Icons.Function;

  input SI.Pressure p "Pressure";
  input SI.Temperature T "Temperature";
  input SI.MassFraction X[nX] "Mass fractions of moist air";
  output SI.SpecificEnthalpy h "Specific enthalpy at p, T, X";
algorithm 
  h := (T - 273.15)*dryair.cp * (1 - X[Water]) + ((T-273.15) * steam.cp + 2501014.5) * X[Water];
end h_pTX;

Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.T_phX Buildings.Media.GasesPTDecoupled.MoistAirNoLiquid.T_phX

Compute temperature from specific enthalpy and mass fraction

Inputs

TypeNameDefaultDescription
AbsolutePressurep Pressure [Pa]
SpecificEnthalpyh specific enthalpy [J/kg]
MassFractionX[:] mass fractions of composition [kg/kg]

Outputs

TypeNameDescription
TemperatureTtemperature [K]

Modelica definition

function T_phX 
  "Compute temperature from specific enthalpy and mass fraction"
  extends Modelica.Icons.Function;

  input AbsolutePressure p "Pressure";
  input SpecificEnthalpy h "specific enthalpy";
  input MassFraction[:] X "mass fractions of composition";
  output Temperature T "temperature";
algorithm 
  T := 273.15 + (h-2501014.5 * X[Water])/(dryair.cp * (1 - X[Water])+steam.cp*X[Water]);
end T_phX;

HTML-documentation generated by Dymola Thu Feb 19 16:53:11 2009.