| Name | Description | 
|---|---|
| Library with base classes for mathematical functions | |
| Collection of models that illustrate model use and test models | |
| Power function, regularized near zero, but nonzero value for x=0 | |
Function that approximates y=|x|^n where n>0 so that
This function replaces y=|x|^n in the interval -delta...+delta by a 4-th order polynomial that has the same function value, first and second derivative at x=+/-delta.
A typical use of this function is to replace the function for the convective heat transfer coefficient for forced or free convection that is of the form h=c * |dT|^n for some constant c and exponent 0 ≤ n ≤ 1. By using this function, the original function that has an infinite derivative near zero and that takes on zero at the origin is replaced by a function with a bounded derivative and a non-zero value at the origin. Physically, the region -delta...+delta may be interpreted as the region where heat conduction dominates convection in the boundary layer.
See the package Examples for the graph.
| Type | Name | Default | Description | 
|---|---|---|---|
| Real | x | Abscissa value | |
| Real | n | Exponent | |
| Real | delta | 0.01 | Abscissa value where transition occurs | 
| Type | Name | Description | 
|---|---|---|
| Real | y | Function value | 
function regNonZeroPower "Power function, regularized near zero, but nonzero value for x=0" annotation(derivative=BaseClasses.der_regNonZeroPower); input Real x "Abscissa value"; input Real n "Exponent"; input Real delta = 0.01 "Abscissa value where transition occurs"; output Real y "Function value"; protected Real a1; Real a3; Real a5; Real delta2; Real x2; Real y_d "=y(delta)"; Real yP_d "=dy(delta)/dx"; Real yPP_d "=d^2y(delta)/dx^2"; algorithm if abs(x) > delta then y := abs(x)^n; else delta2 :=delta*delta; x2 :=x*x; y_d :=delta^n; yP_d :=n*delta^(n - 1); yPP_d :=n*(n - 1)*delta^(n - 2); a1 := -(yP_d/delta - yPP_d)/delta2/8; a3 := (yPP_d - 12 * a1 * delta2)/2; a5 := (y_d - delta2 * (a3 + delta2 * a1)); y := a5 + x2 * (a3 + x2 * a1); assert(a5>0, "delta is too small for this exponent n"); end if; end regNonZeroPower;
Function to provide a once continuously differentialbe transition between to arguments.
The function is adapted from Modelica.Media.Air.MoistAir.Utilities.spliceFunction and provided here for easier accessability to model developers.
| Type | Name | Default | Description | 
|---|---|---|---|
| Real | pos | Argument of x > 0 | |
| Real | neg | Argument of x < 0 | |
| Real | x | Independent value | |
| Real | deltax | 1 | Width of transition interval | 
| Type | Name | Description | 
|---|---|---|
| Real | out | Smoothed value | 
function spliceFunction 
  annotation(derivative=BaseClasses.der_spliceFunction);  
    input Real pos "Argument of x > 0";
    input Real neg "Argument of x < 0";
    input Real x "Independent value";
    input Real deltax=1 "Width of transition interval";
    output Real out "Smoothed value";
protected 
    Real scaledX;
    Real scaledX1;
    Real y;
algorithm 
    scaledX1 := x/deltax;
    scaledX := scaledX1*Modelica.Math.asin(1);
    if scaledX1 <= -0.999999999 then
      y := 0;
    elseif scaledX1 >= 0.999999999 then
      y := 1;
    else
      y := (Modelica.Math.tanh(Modelica.Math.tan(scaledX)) + 1)/2;
    end if;
    out := pos*y + (1 - y)*neg;
end spliceFunction;