Buildings.Fluid.HeatExchangers.BaseClasses.Internal

Solve f(x, data) for x with given f

Information


Function that internally solves a scalar equation.

Extends from Buildings.Utilities.Math.BaseClasses.OneNonLinearEquation (Determine solution of a non-linear algebraic equation in one unknown without derivatives in a reliable and efficient way).

Package Content

NameDescription
Buildings.Fluid.HeatExchangers.BaseClasses.Internal.f_nonlinear f_nonlinear  
Buildings.Fluid.HeatExchangers.BaseClasses.Internal.solve solve  


Buildings.Fluid.HeatExchangers.BaseClasses.Internal.f_nonlinear Buildings.Fluid.HeatExchangers.BaseClasses.Internal.f_nonlinear

Information

Extends from (Nonlinear algebraic equation in one unknown: y = f_nonlinear(x,p,X)).

Inputs

TypeNameDefaultDescription
Realx Independent variable of function
Realf_nonlinear_data[:] Additional data for the function

Outputs

TypeNameDescription
Realy= f_nonlinear(x)

Modelica definition

redeclare function extends f_nonlinear
algorithm 
  y := epsilon_ntuZ(x, f_nonlinear_data[1],
       Buildings.Fluid.Types.HeatExchangerFlowRegime.CrossFlowUnmixed);
end f_nonlinear;

Buildings.Fluid.HeatExchangers.BaseClasses.Internal.solve Buildings.Fluid.HeatExchangers.BaseClasses.Internal.solve

Information

Extends from (Solve f_nonlinear(x_zero)=y_zero; f_nonlinear(x_min) - y_zero and f_nonlinear(x_max)-y_zero must have different sign).

Inputs

TypeNameDefaultDescription
Realy_zero Determine x_zero, such that f_nonlinear(x_zero) = y_zero
Realx_min Minimum value of x
Realx_max Maximum value of x
Realf_nonlinear_data[:] Additional data for function f_nonlinear
Realx_tol100*Modelica.Constants.epsRelative tolerance of the result

Outputs

TypeNameDescription
Realx_zerof_nonlinear(x_zero) = y_zero

Modelica definition

redeclare function extends solve
end solve;

HTML-documentation generated by Dymola Thu Mar 17 10:15:27 2011.