Name | Description |
---|---|
f_nonlinear | |
solve |
Type | Name | Default | Description |
---|---|---|---|
Real | x | Independent variable of function | |
Real | f_nonlinear_data[:] | Additional data for the function |
Type | Name | Description |
---|---|---|
Real | y | = f_nonlinear(x) |
redeclare function extends f_nonlinear algorithm y := pW_Tdp(x); end f_nonlinear;
Type | Name | Default | Description |
---|---|---|---|
Real | y_zero | Determine x_zero, such that f_nonlinear(x_zero) = y_zero | |
Real | x_min | Minimum value of x | |
Real | x_max | Maximum value of x | |
Real | f_nonlinear_data[:] | Additional data for function f_nonlinear | |
Real | x_tol | 100*Modelica.Constants.eps | Relative tolerance of the result |
Type | Name | Description |
---|---|---|
Real | x_zero | f_nonlinear(x_zero) = y_zero |
redeclare function extends solve end solve;