Extends from Modelica.Icons.Package (Icon for standard packages).
Name | Description |
---|---|
hofpT1 | intermediate function for isentropic specific enthalpy in region 1 |
handsofpT1 | special function for specific enthalpy and specific entropy in region 1 |
hofps1 | function for isentropic specific enthalpy in region 1 |
hofpT2 | intermediate function for isentropic specific enthalpy in region 2 |
handsofpT2 | function for isentropic specific enthalpy and specific entropy in region 2 |
hofps2 | function for isentropic specific enthalpy in region 2 |
hofdT3 | function for isentropic specific enthalpy in region 3 |
hofps3 | isentropic specific enthalpy in region 3 h(p,s) |
hofpsdt3 | isentropic specific enthalpy in region 3 h(p,s) with given good guess in d and T |
hofps4 | isentropic specific enthalpy in region 4 h(p,s) |
hofpT5 | specific enthalpy in region 5 h(p,T) |
water_hisentropic | isentropic specific enthalpy from p,s (preferably use water_hisentropic_dyn in dynamic simulation!) |
water_hisentropic_dyn | isentropic specific enthalpy from p,s and good guesses of d and T |
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
Temperature | T | temperature (K) [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function hofpT1 "intermediate function for isentropic specific enthalpy in region 1" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.Temperature T "temperature (K)"; output SI.SpecificEnthalpy h "specific enthalpy"; protected Real[13] o "vector of auxiliary variables"; Real pi1 "dimensionless pressure"; Real tau "dimensionless temperature"; Real tau1 "dimensionless temperature"; algorithm tau := data.TSTAR1/T; pi1 := 7.1 - p/data.PSTAR1; assert(p > triple.ptriple, "IF97 medium function hofpT1 called with too low pressure\n" + "p = " + String(p) + " Pa <= " + String(triple.ptriple) + " Pa (triple point pressure)"); tau1 := -1.222 + tau; o[1] := tau1*tau1; o[2] := o[1]*tau1; o[3] := o[1]*o[1]; o[4] := o[3]*o[3]; o[5] := o[1]*o[4]; o[6] := o[1]*o[3]; o[7] := o[3]*tau1; o[8] := o[3]*o[4]; o[9] := pi1*pi1; o[10] := o[9]*o[9]; o[11] := o[10]*o[10]; o[12] := o[4]*o[4]; o[13] := o[12]*o[12]; h := data.RH2O*T*tau*(pi1*((-0.00254871721114236 + o[1]*( 0.00424944110961118 + (0.018990068218419 + (-0.021841717175414 - 0.00015851507390979*o[1])*o[1])*o[6]))/o[5] + pi1*(( 0.00141552963219801 + o[3]*(0.000047661393906987 + o[1]*(-0.0000132425535992538 - 1.2358149370591e-14*o[1]*o[3]*o[4])))/o[3] + pi1*(( 0.000126718579380216 - 5.11230768720618e-9*o[5])/o[7] + pi1*(( 0.000011212640954 + o[2]*(1.30342445791202e-6 - 1.4341729937924e-12*o[ 8]))/o[6] + pi1*(o[9]*pi1*((1.40077319158051e-8 + 1.04549227383804e-9 *o[7])/o[8] + o[10]*o[11]*pi1*(1.9941018075704e-17/(o[1]*o[12]*o[3]*o[ 4]) + o[9]*(-4.48827542684151e-19/o[13] + o[10]*o[9]*(pi1*( 4.65957282962769e-22/(o[13]*o[4]) + pi1*((3.83502057899078e-24*pi1)/( o[1]*o[13]*o[4]) - 7.2912378325616e-23/(o[13]*o[4]*tau1))) - 1.00075970318621e-21/(o[1]*o[13]*o[3]*tau1))))) + 3.24135974880936e-6 /(o[4]*tau1)))))) + (-0.29265942426334 + tau1*(0.84548187169114 + o[1] *(3.3855169168385 + tau1*(-1.91583926775744 + tau1*(0.47316115539684 + (-0.066465668798004 + 0.0040607314991784*tau1)*tau1)))))/o[2]); end hofpT1;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
Temperature | T | temperature (K) [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
SpecificEntropy | s | specific entropy [J/(kg.K)] |
function handsofpT1 "special function for specific enthalpy and specific entropy in region 1" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.Temperature T "temperature (K)"; output SI.SpecificEnthalpy h "specific enthalpy"; output SI.SpecificEntropy s "specific entropy"; protected Real[28] o "vector of auxiliary variables"; Real pi1 "dimensionless pressure"; Real tau "dimensionless temperature"; Real tau1 "dimensionless temperature"; Real g "dimensionless Gibbs energy"; Real gtau "derivative of dimensionless Gibbs energy w.r.t. tau"; algorithm assert(p > triple.ptriple, "IF97 medium function handsofpT1 called with too low pressure\n" + "p = " + String(p) + " Pa <= " + String(triple.ptriple) + " Pa (triple point pressure)"); tau := data.TSTAR1/T; pi1 := 7.1 - p/data.PSTAR1; tau1 := -1.222 + tau; o[1] := tau1*tau1; o[2] := o[1]*o[1]; o[3] := o[2]*o[2]; o[4] := o[3]*tau1; o[5] := 1/o[4]; o[6] := o[1]*o[2]; o[7] := o[1]*tau1; o[8] := 1/o[7]; o[9] := o[1]*o[2]*o[3]; o[10] := 1/o[2]; o[11] := o[2]*tau1; o[12] := 1/o[11]; o[13] := o[2]*o[3]; o[14] := pi1*pi1; o[15] := o[14]*pi1; o[16] := o[14]*o[14]; o[17] := o[16]*o[16]; o[18] := o[16]*o[17]*pi1; o[19] := o[14]*o[16]; o[20] := o[3]*o[3]; o[21] := o[20]*o[20]; o[22] := o[21]*o[3]*tau1; o[23] := 1/o[22]; o[24] := o[21]*o[3]; o[25] := 1/o[24]; o[26] := o[1]*o[2]*o[21]*tau1; o[27] := 1/o[26]; o[28] := o[1]*o[3]; g := pi1*(pi1*(pi1*(o[10]*(-0.000031679644845054 + o[2]*(-2.8270797985312e-6 - 8.5205128120103e-10*o[6])) + pi1*(o[12]*(-2.2425281908e-6 + (-6.5171222895601e-7 - 1.4341729937924e-13*o[13])*o[7]) + pi1*(-4.0516996860117e-7/o[3] + o[15]*(o[18]*(o[14]*(o[19]*(2.6335781662795e-23/(o[1]*o[2]*o[21]) + pi1*(-1.1947622640071e-23*o[27] + pi1*(1.8228094581404e-24*o[25] - 9.3537087292458e-26*o[23]*pi1))) + 1.4478307828521e-20/(o[1]*o[2]* o[20]*o[3]*tau1)) - 6.8762131295531e-19/(o[2]*o[20]*o[3]*tau1)) + (-1.2734301741641e-9 - 1.7424871230634e-10*o[11])/(o[1]*o[3]*tau1))))) + o[8]*(-0.00047184321073267 + o[7]*(-0.00030001780793026 + (0.000047661393906987 + o[1]*(-4.4141845330846e-6 - 7.2694996297594e-16*o[9]))*tau1))) + o[5]*(0.00028319080123804 + o[ 1]*(-0.00060706301565874 + o[6]*(-0.018990068218419 + tau1*(-0.032529748770505 + (-0.021841717175414 - 0.00005283835796993*o[1])*tau1))))) + ( 0.14632971213167 + tau1*(-0.84548187169114 + tau1*(-3.756360367204 + tau1*(3.3855169168385 + tau1*(-0.95791963387872 + tau1*( 0.15772038513228 + (-0.016616417199501 + 0.00081214629983568*tau1)* tau1))))))/o[1]; gtau := pi1*((-0.00254871721114236 + o[1]*(0.00424944110961118 + ( 0.018990068218419 + (-0.021841717175414 - 0.00015851507390979*o[1])*o[ 1])*o[6]))/o[28] + pi1*(o[10]*(0.00141552963219801 + o[2]*( 0.000047661393906987 + o[1]*(-0.0000132425535992538 - 1.2358149370591e-14*o[9]))) + pi1*(o[12]*(0.000126718579380216 - 5.11230768720618e-9*o[28]) + pi1*((0.000011212640954 + ( 1.30342445791202e-6 - 1.4341729937924e-12*o[13])*o[7])/o[6] + pi1*( 3.24135974880936e-6*o[5] + o[15]*((1.40077319158051e-8 + 1.04549227383804e-9*o[11])/o[13] + o[18]*(1.9941018075704e-17/(o[1]*o[ 2]*o[20]*o[3]) + o[14]*(-4.48827542684151e-19/o[21] + o[19]*(-1.00075970318621e-21 *o[27] + pi1*(4.65957282962769e-22*o[25] + pi1*(-7.2912378325616e-23* o[23] + (3.83502057899078e-24*pi1)/(o[1]*o[21]*o[3])))))))))))) + o[8] *(-0.29265942426334 + tau1*(0.84548187169114 + o[1]*(3.3855169168385 + tau1*(-1.91583926775744 + tau1*(0.47316115539684 + (-0.066465668798004 + 0.0040607314991784*tau1)*tau1))))); h := data.RH2O*T*tau*gtau; s := data.RH2O*(tau*gtau - g); end handsofpT1;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
SpecificEntropy | s | specific entropy [J/(kg.K)] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function hofps1 "function for isentropic specific enthalpy in region 1" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.SpecificEntropy s "specific entropy"; output SI.SpecificEnthalpy h "specific enthalpy"; protected SI.Temperature T "temperature (K)"; algorithm T := Basic.tps1(p, s); h := hofpT1(p, T); end hofps1;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
Temperature | T | temperature (K) [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function hofpT2 "intermediate function for isentropic specific enthalpy in region 2" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.Temperature T "temperature (K)"; output SI.SpecificEnthalpy h "specific enthalpy"; protected Real[16] o "vector of auxiliary variables"; Real pi "dimensionless pressure"; Real tau "dimensionless temperature"; Real tau2 "dimensionless temperature"; algorithm assert(p > triple.ptriple, "IF97 medium function hofpT2 called with too low pressure\n" + "p = " + String(p) + " Pa <= " + String(triple.ptriple) + " Pa (triple point pressure)"); pi := p/data.PSTAR2; tau := data.TSTAR2/T; tau2 := -0.5 + tau; o[1] := tau*tau; o[2] := o[1]*o[1]; o[3] := tau2*tau2; o[4] := o[3]*tau2; o[5] := o[3]*o[3]; o[6] := o[5]*o[5]; o[7] := o[6]*o[6]; o[8] := o[5]*o[6]*o[7]*tau2; o[9] := o[3]*o[5]; o[10] := o[5]*o[6]*tau2; o[11] := o[3]*o[7]*tau2; o[12] := o[3]*o[5]*o[6]; o[13] := o[5]*o[6]*o[7]; o[14] := pi*pi; o[15] := o[14]*o[14]; o[16] := o[7]*o[7]; h := data.RH2O*T*tau*((0.0280439559151 + tau*(-0.2858109552582 + tau*( 1.2213149471784 + tau*(-2.848163942888 + tau*(4.38395111945 + o[1]*( 10.08665568018 + (-0.5681726521544 + 0.06380539059921*tau)*tau))))))/ (o[1]*o[2]) + pi*(-0.017834862292358 + tau2*(-0.09199202739273 + (-0.172743777250296 - 0.30195167236758*o[4])*tau2) + pi*(-0.000033032641670203 + (-0.0003789797503263 + o[3]*(-0.015757110897342 + o[4]*(-0.306581069554011 - 0.000960283724907132*o[8])))*tau2 + pi*(4.3870667284435e-7 + o[3]*(-0.00009683303171571 + o[4]*(-0.0090203547252888 - 1.42338887469272*o[8])) + pi*(-7.8847309559367e-10 + (2.558143570457e-8 + 1.44676118155521e-6*tau2)*tau2 + pi*( 0.0000160454534363627*o[9] + pi*((-5.0144299353183e-11 + o[10]*(-0.033874355714168 - 836.35096769364*o[11]))*o[3] + pi*((-0.0000138839897890111 - 0.973671060893475*o[12])*o[3]*o[6] + pi*((9.0049690883672e-11 - 296.320827232793*o[13])*o[3]*o[5]*tau2 + pi*(2.57526266427144e-7*o[5] *o[6] + pi*(o[4]*(4.1627860840696e-19 + (-1.0234747095929e-12 - 1.40254511313154e-8*o[5])*o[9]) + o[14]*o[15]*(o[13]*(-2.34560435076256e-9 + 5.3465159397045*o[5]*o[7]*tau2) + o[14]*(-19.1874828272775*o[16]*o[ 6]*o[7] + o[14]*(o[11]*(1.78371690710842e-23 + (1.07202609066812e-11 - 0.000201611844951398*o[10])*o[3]*o[5]*o[6]*tau2) + pi*(-1.24017662339842e-24 *o[5]*o[7] + pi*(0.000200482822351322*o[16]*o[5]*o[7] + pi*(-4.97975748452559e-14 *o[16]*o[3]*o[5] + o[6]*o[7]*(1.90027787547159e-27 + o[12]*( 2.21658861403112e-15 - 0.0000547344301999018*o[3]*o[7]))*pi*tau2))))))))))))))))); end hofpT2;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
Temperature | T | temperature (K) [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
SpecificEntropy | s | specific entropy [J/(kg.K)] |
function handsofpT2 "function for isentropic specific enthalpy and specific entropy in region 2" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.Temperature T "temperature (K)"; output SI.SpecificEnthalpy h "specific enthalpy"; output SI.SpecificEntropy s "specific entropy"; protected Real[22] o "vector of auxiliary variables"; Real pi "dimensionless pressure"; Real tau "dimensionless temperature"; Real tau2 "dimensionless temperature"; Real g "dimensionless Gibbs energy"; Real gtau "derivative of dimensionless Gibbs energy w.r.t. tau"; algorithm assert(p > triple.ptriple, "IF97 medium function handsofpT2 called with too low pressure\n" + "p = " + String(p) + " Pa <= " + String(triple.ptriple) + " Pa (triple point pressure)"); tau := data.TSTAR2/T; pi := p/data.PSTAR2; tau2 := tau - 0.5; o[1] := tau2*tau2; o[2] := o[1]*tau2; o[3] := o[1]*o[1]; o[4] := o[3]*o[3]; o[5] := o[4]*o[4]; o[6] := o[3]*o[4]*o[5]*tau2; o[7] := o[1]*o[3]*tau2; o[8] := o[3]*o[4]*tau2; o[9] := o[1]*o[5]*tau2; o[10] := o[1]*o[3]*o[4]; o[11] := o[3]*o[4]*o[5]; o[12] := o[1]*o[3]; o[13] := pi*pi; o[14] := o[13]*o[13]; o[15] := o[13]*o[14]; o[16] := o[3]*o[5]*tau2; o[17] := o[5]*o[5]; o[18] := o[3]*o[5]; o[19] := o[1]*o[3]*o[4]*tau2; o[20] := o[1]*o[5]; o[21] := tau*tau; o[22] := o[21]*o[21]; g := pi*(-0.0017731742473213 + tau2*(-0.017834862292358 + tau2*(-0.045996013696365 + (-0.057581259083432 - 0.05032527872793*o[2])*tau2)) + pi*(tau2*(-0.000033032641670203 + (-0.00018948987516315 + o[1]*(-0.0039392777243355 + o[2]*(-0.043797295650573 - 0.000026674547914087*o[6])))*tau2) + pi*(2.0481737692309e-8 + ( 4.3870667284435e-7 + o[1]*(-0.00003227767723857 + o[2]*(-0.0015033924542148 - 0.040668253562649*o[6])))*tau2 + pi*(tau2*(-7.8847309559367e-10 + (1.2790717852285e-8 + 4.8225372718507e-7*tau2)*tau2) + pi*( 2.2922076337661e-6*o[7] + pi*(o[2]*(-1.6714766451061e-11 + o[8]*(-0.0021171472321355 - 23.895741934104*o[9])) + pi*(-5.905956432427e-18 + o[1]*(-1.2621808899101e-6 - 0.038946842435739*o[10])*o[4]*tau2 + pi*((1.1256211360459e-11 - 8.2311340897998*o[11])*o[4] + pi*(1.9809712802088e-8*o[8] + pi*(( 1.0406965210174e-19 + o[12]*(-1.0234747095929e-13 - 1.0018179379511e-9*o[3]))*o[3] + o[15]*((-8.0882908646985e-11 + 0.10693031879409*o[16])*o[6] + o[13]*(-0.33662250574171*o[17]*o[4]*o[ 5]*tau2 + o[13]*(o[18]*(8.9185845355421e-25 + o[19]*( 3.0629316876232e-13 - 4.2002467698208e-6*o[8])) + pi*(-5.9056029685639e-26 *o[16] + pi*(3.7826947613457e-6*o[17]*o[3]*o[5]*tau2 + pi*(o[1]*( 7.3087610595061e-29 + o[10]*(5.5414715350778e-17 - 9.436970724121e-7* o[20]))*o[4]*o[5]*pi - 1.2768608934681e-15*o[1]*o[17]*o[3]*tau2)))))))))))))))) + (-0.00560879118302 + tau*(0.07145273881455 + tau*(-0.4071049823928 + tau*(1.424081971444 + tau*(-4.38395111945 + tau*(-9.692768600217 + tau*(10.08665568018 + (-0.2840863260772 + 0.02126846353307*tau)* tau) + Modelica.Math.log(pi)))))))/(o[22]*tau); gtau := (0.0280439559151 + tau*(-0.2858109552582 + tau*(1.2213149471784 + tau*(-2.848163942888 + tau*(4.38395111945 + o[21]*(10.08665568018 + (-0.5681726521544 + 0.06380539059921*tau)*tau))))))/(o[21]*o[22]) + pi*(-0.017834862292358 + tau2*(-0.09199202739273 + (-0.172743777250296 - 0.30195167236758*o[2])*tau2) + pi*(-0.000033032641670203 + (-0.0003789797503263 + o[1]*(-0.015757110897342 + o[2]*(-0.306581069554011 - 0.000960283724907132*o[6])))*tau2 + pi*(4.3870667284435e-7 + o[1]*(-0.00009683303171571 + o[2]*(-0.0090203547252888 - 1.42338887469272*o[6])) + pi*(-7.8847309559367e-10 + (2.558143570457e-8 + 1.44676118155521e-6*tau2)*tau2 + pi*( 0.0000160454534363627*o[12] + pi*(o[1]*(-5.0144299353183e-11 + o[8]*( -0.033874355714168 - 836.35096769364*o[9])) + pi*(o[1]*(-0.0000138839897890111 - 0.973671060893475*o[10])*o[4] + pi*((9.0049690883672e-11 - 296.320827232793*o[11])*o[7] + pi*(2.57526266427144e-7*o[3]*o[4] + pi *(o[2]*(4.1627860840696e-19 + o[12]*(-1.0234747095929e-12 - 1.40254511313154e-8*o[3])) + o[15]*(o[11]*(-2.34560435076256e-9 + 5.3465159397045*o[16]) + o[13]*(-19.1874828272775*o[17]*o[4]*o[5] + o[ 13]*((1.78371690710842e-23 + o[19]*(1.07202609066812e-11 - 0.000201611844951398*o[8]))*o[9] + pi*(-1.24017662339842e-24*o[18] + pi*(0.000200482822351322*o[17]*o[3]*o[5] + pi*(-4.97975748452559e-14* o[1]*o[17]*o[3] + (1.90027787547159e-27 + o[10]*(2.21658861403112e-15 - 0.0000547344301999018*o[20]))*o[4]*o[5]*pi*tau2)))))))))))))))); h := data.RH2O*T*tau*gtau; s := data.RH2O*(tau*gtau - g); end handsofpT2;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
SpecificEntropy | s | specific entropy [J/(kg.K)] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function hofps2 "function for isentropic specific enthalpy in region 2" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.SpecificEntropy s "specific entropy"; output SI.SpecificEnthalpy h "specific enthalpy"; protected SI.Temperature T "temperature (K)"; algorithm T := Basic.tps2(p, s); h := hofpT2(p, T); end hofps2;
Type | Name | Default | Description |
---|---|---|---|
Density | d | density [kg/m3] | |
Temperature | T | temperature (K) [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function hofdT3 "function for isentropic specific enthalpy in region 3" extends Modelica.Icons.Function; input SI.Density d "density"; input SI.Temperature T "temperature (K)"; output SI.SpecificEnthalpy h "specific enthalpy"; protected Real delta; Real tau "dimensionless temperature"; Real[13] o "vector of auxiliary variables"; Real ftau "derivative of dimensionless Helmholtz energy w.r.t. tau"; Real fdelta "derivative of dimensionless Helmholtz energy w.r.t. delta"; algorithm tau := data.TCRIT/T; delta := d/data.DCRIT; o[1] := tau*tau; o[2] := o[1]*o[1]; o[3] := o[2]*o[2]; o[4] := o[3]*tau; o[5] := o[1]*o[2]*o[3]*tau; o[6] := o[2]*o[3]; o[7] := o[1]*o[3]; o[8] := o[3]*o[3]; o[9] := o[1]*o[2]*o[8]; o[10] := o[1]*o[2]*o[8]*tau; o[11] := o[3]*o[8]; o[12] := o[3]*o[8]*tau; o[13] := o[1]*o[3]*o[8]; ftau := 20.944396974307 + tau*(-15.3735415757432 + o[2]*tau*( 18.3301634515678 + o[1]*tau*(-28.08078114862 + o[1]*(14.4640436358204 - 0.194503669468755*o[1]*o[3]*tau)))) + delta*((-2.5308630955428 + o[ 2]*(-6.9146446840086 + (13.2781565976477 - 10.9153200808732*o[1])*o[4])) *tau + delta*(tau*(-1.70429417648412 + o[2]*(29.3833689251262 + (-21.3518320798755 + (0.867251811341388 + 3.26518619032008*o[2])*o[5])*tau)) + delta*(( 2.779959913892 + o[1]*(-8.075966009428 + o[6]*(-0.131436219478341 - 12.37496929108*o[7])))*tau + delta*((-0.88952870857478 + o[1]*( 3.62288282878932 + 18.3358370228714*o[9]))*tau + delta*( 0.10770512626332 + o[1]*(-0.98740869776862 - 13.2264761307011*o[10]) + delta*((0.188521503330184 + 4.27343239646986*o[11])*tau + delta*(-0.027006744482696 *tau + delta*(-0.385692979164272*o[12] + delta*(delta*(-0.00016557679795037 - 0.00116802137560719*delta*o[12]) + (0.00115845907256168 + 0.0840031522296486*o[11])*tau))))))))); fdelta := (1.0658070028513 + delta*(o[1]*(-1.2654315477714 + o[2]*(-1.1524407806681 + (0.88521043984318 - 0.64207765181607*o[1])*o[4])) + delta*( 0.76986920373342 + o[1]*(-1.70429417648412 + o[2]*(9.7944563083754 + (-6.100523451393 + (0.078841073758308 + 0.25116816848616*o[2])*o[5])* tau)) + delta*(-0.8399798909613 + o[1]*(4.169939870838 + o[1]*(-6.056974507071 + o[6]*(-0.0246442911521889 - 1.42788107204769*o[7]))) + delta*( 0.175936297894 + o[1]*(-1.77905741714956 + o[1]*(3.62288282878932 + 2.82089800351868*o[9])) + delta*(delta*(-0.133052405238576 + o[1]*( 0.565564509990552 + 0.98617670687766*o[11]) + delta*(-0.094523605689436 *o[1] + delta*(-0.118674762819776*o[13] + delta*(o[1]*( 0.00521306582652756 + 0.0290780142333399*o[11]) + delta*( 0.00080964802996215 - 0.000494162889679965*delta*o[13] - 0.0016557679795037*tau))))) + (0.5385256313166 + o[1]*(-1.6456811629477 - 2.5435531020579*o[10]))*tau))))))/delta; h := data.RH2O*T*(tau*ftau + delta*fdelta); end hofdT3;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
SpecificEntropy | s | specific entropy [J/(kg.K)] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function hofps3 "isentropic specific enthalpy in region 3 h(p,s)" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.SpecificEntropy s "specific entropy"; output SI.SpecificEnthalpy h "specific enthalpy"; protected SI.Density d "density"; SI.Temperature T "temperature (K)"; SI.Pressure delp=IterationData.DELP "iteration accuracy"; SI.SpecificEntropy dels=IterationData.DELS "iteration accuracy"; Integer error "error if not 0"; algorithm (d,T,error) := Inverses.dtofps3(p=p,s= s,delp= delp,dels= dels); h := hofdT3(d, T); end hofps3;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
SpecificEntropy | s | specific entropy [J/(kg.K)] | |
Density | dguess | good guess density, e.g., from adjacent volume [kg/m3] | |
Temperature | Tguess | good guess temperature, e.g., from adjacent volume [K] | |
Pressure | delp | IterationData.DELP | relative error in p [Pa] |
SpecificEntropy | dels | IterationData.DELS | relative error in s [J/(kg.K)] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function hofpsdt3 "isentropic specific enthalpy in region 3 h(p,s) with given good guess in d and T" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.SpecificEntropy s "specific entropy"; input SI.Density dguess "good guess density, e.g., from adjacent volume"; input SI.Temperature Tguess "good guess temperature, e.g., from adjacent volume"; input SI.Pressure delp=IterationData.DELP "relative error in p"; input SI.SpecificEntropy dels=IterationData.DELS "relative error in s"; output SI.SpecificEnthalpy h "specific enthalpy"; protected SI.Density d "density"; SI.Temperature T "temperature (K)"; Integer error "error flag"; algorithm (d,T,error) := Inverses.dtofpsdt3(p=p,s= s,dguess= dguess,Tguess= Tguess,delp= delp,dels= dels); h := hofdT3(d, T); end hofpsdt3;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
SpecificEntropy | s | specific entropy [J/(kg.K)] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function hofps4 "isentropic specific enthalpy in region 4 h(p,s)" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.SpecificEntropy s "specific entropy"; output SI.SpecificEnthalpy h "specific enthalpy"; protected SI.Temp_K Tsat "saturation temperature"; SI.MassFraction x "dryness fraction"; SI.SpecificEntropy sl "saturated liquid specific entropy"; SI.SpecificEntropy sv "saturated vapour specific entropy"; SI.SpecificEnthalpy hl "saturated liquid specific enthalpy"; SI.SpecificEnthalpy hv "saturated vapour specific enthalpy"; algorithm if (p <= data.PLIMIT4A) then Tsat := Basic.tsat(p); (hl,sl) := handsofpT1(p, Tsat); (hv,sv) := handsofpT2(p, Tsat); elseif (p < data.PCRIT) then sl := Regions.sl_p_R4b(p); sv := Regions.sv_p_R4b(p); hl := Regions.hl_p_R4b(p); hv := Regions.hv_p_R4b(p); end if; x := max(min(if sl <> sv then (s - sl)/(sv - sl) else 1.0, 1.0),0.0); h := hl + x*(hv - hl); end hofps4;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
Temperature | T | temperature (K) [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function hofpT5 "specific enthalpy in region 5 h(p,T)" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.Temperature T "temperature (K)"; output SI.SpecificEnthalpy h "specific enthalpy"; protected Real[4] o "vector of auxiliary variables"; Real tau "dimensionless temperature"; Real pi "dimensionless pressure"; algorithm tau := data.TSTAR5/T; pi := p/data.PSTAR5; assert(p > triple.ptriple, "IF97 medium function hofpT5 called with too low pressure\n" + "p = " + String(p) + " Pa <= " + String(triple.ptriple) + " Pa (triple point pressure)"); o[1] := tau*tau; o[2] := o[1]*o[1]; o[3] := pi*pi; o[4] := o[2]*o[2]; h := data.RH2O*T*tau*(6.8540841634434 + 3.1161318213925/o[1] + 0.074415446800398/o[2] - 0.0000357523455236121*o[3]*o[4] + 0.0021774678714571*pi - 0.013782846269973*o[1]*pi + 3.8757684869352e-7*o[1]*o[3]*pi - 0.73803069960666/(o[1]*tau) - 0.65923253077834*tau); end hofpT5;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
SpecificEntropy | s | specific entropy [J/(kg.K)] | |
Integer | phase | 0 | phase: 2 for two-phase, 1 for one phase, 0 if unknown |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function water_hisentropic "isentropic specific enthalpy from p,s (preferably use water_hisentropic_dyn in dynamic simulation!)" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.SpecificEntropy s "specific entropy"; input Integer phase= 0 "phase: 2 for two-phase, 1 for one phase, 0 if unknown"; output SI.SpecificEnthalpy h "specific enthalpy"; protected Modelica.Media.Common.GibbsDerivs g "derivatives of dimensionless Gibbs-function w.r.t. dimensionless pi and tau"; Modelica.Media.Common.HelmholtzDerivs f "derivatives of dimensionless Helmholtz-function w.r.t. dimensionless delta and tau"; Integer region(min=1, max=5) "IF97 region"; Integer error "error if not 0"; SI.Temperature T "temperature"; SI.Density d "density"; algorithm region := Regions.region_ps(p=p,s= s,phase=phase); if (region == 1) then h := hofps1(p, s); elseif (region == 2) then h := hofps2(p, s); elseif (region == 3) then (d,T,error) := Inverses.dtofps3(p=p,s= s,delp= IterationData.DELP,dels= IterationData.DELS); h := hofdT3(d, T); elseif (region == 4) then h := hofps4(p, s); elseif (region == 5) then (T,error) := Inverses.tofps5(p=p,s= s,relds= IterationData.DELS); h := hofpT5(p, T); end if; end water_hisentropic;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | pressure [Pa] | |
SpecificEntropy | s | specific entropy [J/(kg.K)] | |
Density | dguess | good guess density, e.g., from adjacent volume [kg/m3] | |
Temperature | Tguess | good guess temperature, e.g., from adjacent volume [K] | |
Integer | phase | 1 for one phase, 2 for two phase |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
function water_hisentropic_dyn "isentropic specific enthalpy from p,s and good guesses of d and T" extends Modelica.Icons.Function; input SI.Pressure p "pressure"; input SI.SpecificEntropy s "specific entropy"; input SI.Density dguess "good guess density, e.g., from adjacent volume"; input SI.Temperature Tguess "good guess temperature, e.g., from adjacent volume"; input Integer phase "1 for one phase, 2 for two phase"; output SI.SpecificEnthalpy h "specific enthalpy"; protected Modelica.Media.Common.GibbsDerivs g "derivatives of dimensionless Gibbs-function w.r.t. dimensionless pi and tau"; Modelica.Media.Common.HelmholtzDerivs f "derivatives of dimensionless Helmholtz-function w.r.t. dimensionless delta and tau"; Integer region(min=1, max=5) "IF97 region"; Integer error "error if not 0"; SI.Temperature T "temperature"; SI.Density d "density"; algorithm region := Regions.region_ps(p=p,s= s,phase= phase); if (region == 1) then h := hofps1(p, s); elseif (region == 2) then h := hofps2(p, s); elseif (region == 3) then h := hofpsdt3(p=p,s= s,dguess= dguess,Tguess= Tguess,delp= IterationData.DELP,dels= IterationData.DELS); elseif (region == 4) then h := hofps4(p, s); elseif (region == 5) then (T,error) := Inverses.tofpst5(p=p,s= s,Tguess= Tguess,relds= IterationData.DELS); h := hofpT5(p, T); end if; end water_hisentropic_dyn;