Name | Description |
---|---|
smoothModel | true if the (derived) model should not generate state events |
onePhase | true if the (derived) model should never be called with two-phase inputs |
FluidLimits | validity limits for fluid model |
FluidConstants | extended fluid constants |
fluidConstants | constant data for the fluid |
ThermodynamicState | Thermodynamic state of two phase medium |
SaturationProperties | Saturation properties of two phase medium |
FixedPhase | phase of the fluid: 1 for 1-phase, 2 for two-phase, 0 for not known, e.g., interactive use |
BaseProperties | Base properties (p, d, T, h, u, R, MM, sat) of two phase medium |
setDewState | Return the thermodynamic state on the dew line |
setBubbleState | Return the thermodynamic state on the bubble line |
setState_dTX | Return thermodynamic state as function of d, T and composition X or Xi |
setState_phX | Return thermodynamic state as function of p, h and composition X or Xi |
setState_psX | Return thermodynamic state as function of p, s and composition X or Xi |
setState_pTX | Return thermodynamic state as function of p, T and composition X or Xi |
setSat_T | Return saturation property record from temperature |
setSat_p | Return saturation property record from pressure |
bubbleEnthalpy | Return bubble point specific enthalpy |
dewEnthalpy | Return dew point specific enthalpy |
bubbleEntropy | Return bubble point specific entropy |
dewEntropy | Return dew point specific entropy |
bubbleDensity | Return bubble point density |
dewDensity | Return dew point density |
saturationPressure | Return saturation pressure |
saturationTemperature | Return saturation temperature |
saturationPressure_sat | Return saturation temperature |
saturationTemperature_sat | Return saturation temperature |
saturationTemperature_derp | Return derivative of saturation temperature w.r.t. pressure |
saturationTemperature_derp_sat | Return derivative of saturation temperature w.r.t. pressure |
surfaceTension | Return surface tension sigma in the two phase region |
molarMass | Return the molar mass of the medium |
dBubbleDensity_dPressure | Return bubble point density derivative |
dDewDensity_dPressure | Return dew point density derivative |
dBubbleEnthalpy_dPressure | Return bubble point specific enthalpy derivative |
dDewEnthalpy_dPressure | Return dew point specific enthalpy derivative |
specificEnthalpy_pTX | Return specific enthalpy from pressure, temperature and mass fraction |
temperature_phX | Return temperature from p, h, and X or Xi |
density_phX | Return density from p, h, and X or Xi |
temperature_psX | Return temperature from p, s, and X or Xi |
density_psX | Return density from p, s, and X or Xi |
specificEnthalpy_psX | Return specific enthalpy from p, s, and X or Xi |
setState_pT | Return thermodynamic state from p and T |
setState_ph | Return thermodynamic state from p and h |
setState_ps | Return thermodynamic state from p and s |
setState_dT | Return thermodynamic state from d and T |
setState_px | Return thermodynamic state from pressure and vapour quality |
setState_Tx | Return thermodynamic state from temperature and vapour quality |
vapourQuality | Return vapour quality |
density_ph | Return density from p and h |
temperature_ph | Return temperature from p and h |
pressure_dT | Return pressure from d and T |
specificEnthalpy_dT | Return specific enthalpy from d and T |
specificEnthalpy_ps | Return specific enthalpy from p and s |
temperature_ps | Return temperature from p and s |
density_ps | Return density from p and s |
specificEnthalpy_pT | Return specific enthalpy from p and T |
density_pT | Return density from p and T |
Inherited | |
ThermoStates | Enumeration type for independent variables |
mediumName="unusablePartialMedium" | Name of the medium |
substanceNames={mediumName} | Names of the mixture substances. Set substanceNames={mediumName} if only one substance. |
extraPropertiesNames=fill("", 0) | Names of the additional (extra) transported properties. Set extraPropertiesNames=fill("",0) if unused |
singleState | = true, if u and d are not a function of pressure |
reducedX=true | = true if medium contains the equation sum(X) = 1.0; set reducedX=true if only one substance (see docu for details) |
fixedX=false | = true if medium contains the equation X = reference_X |
reference_p=101325 | Reference pressure of Medium: default 1 atmosphere |
reference_T=298.15 | Reference temperature of Medium: default 25 deg Celsius |
reference_X=fill(1/nX, nX) | Default mass fractions of medium |
p_default=101325 | Default value for pressure of medium (for initialization) |
T_default=Modelica.SIunits.Conversions.from_degC(20) | Default value for temperature of medium (for initialization) |
h_default=specificEnthalpy_pTX(p_default, T_default, X_default) | Default value for specific enthalpy of medium (for initialization) |
X_default=reference_X | Default value for mass fractions of medium (for initialization) |
nS=size(substanceNames, 1) | Number of substances |
nX=nS | Number of mass fractions |
nXi=if fixedX then 0 else if reducedX then nS - 1 else nS | Number of structurally independent mass fractions (see docu for details) |
nC=size(extraPropertiesNames, 1) | Number of extra (outside of standard mass-balance) transported properties |
C_nominal=1.0e-6*ones(nC) | Default for the nominal values for the extra properties |
setSmoothState | Return thermodynamic state so that it smoothly approximates: if x > 0 then state_a else state_b |
dynamicViscosity | Return dynamic viscosity |
thermalConductivity | Return thermal conductivity |
prandtlNumber | Return the Prandtl number |
pressure | Return pressure |
temperature | Return temperature |
density | Return density |
specificEnthalpy | Return specific enthalpy |
specificInternalEnergy | Return specific internal energy |
specificEntropy | Return specific entropy |
specificGibbsEnergy | Return specific Gibbs energy |
specificHelmholtzEnergy | Return specific Helmholtz energy |
specificHeatCapacityCp | Return specific heat capacity at constant pressure |
heatCapacity_cp | alias for deprecated name |
specificHeatCapacityCv | Return specific heat capacity at constant volume |
heatCapacity_cv | alias for deprecated name |
isentropicExponent | Return isentropic exponent |
isentropicEnthalpy | Return isentropic enthalpy |
velocityOfSound | Return velocity of sound |
isobaricExpansionCoefficient | Return overall the isobaric expansion coefficient beta |
beta | alias for isobaricExpansionCoefficient for user convenience |
isothermalCompressibility | Return overall the isothermal compressibility factor |
kappa | alias of isothermalCompressibility for user convenience |
density_derp_h | Return density derivative w.r.t. pressure at const specific enthalpy |
density_derh_p | Return density derivative w.r.t. specific enthalpy at constant pressure |
density_derp_T | Return density derivative w.r.t. pressure at const temperature |
density_derT_p | Return density derivative w.r.t. temperature at constant pressure |
density_derX | Return density derivative w.r.t. mass fraction |
specificEntropy_pTX | Return specific enthalpy from p, T, and X or Xi |
density_pTX | Return density from p, T, and X or Xi |
AbsolutePressure | Type for absolute pressure with medium specific attributes |
Density | Type for density with medium specific attributes |
DynamicViscosity | Type for dynamic viscosity with medium specific attributes |
EnthalpyFlowRate | Type for enthalpy flow rate with medium specific attributes |
MassFlowRate | Type for mass flow rate with medium specific attributes |
MassFraction | Type for mass fraction with medium specific attributes |
MoleFraction | Type for mole fraction with medium specific attributes |
MolarMass | Type for molar mass with medium specific attributes |
MolarVolume | Type for molar volume with medium specific attributes |
IsentropicExponent | Type for isentropic exponent with medium specific attributes |
SpecificEnergy | Type for specific energy with medium specific attributes |
SpecificInternalEnergy | Type for specific internal energy with medium specific attributes |
SpecificEnthalpy | Type for specific enthalpy with medium specific attributes |
SpecificEntropy | Type for specific entropy with medium specific attributes |
SpecificHeatCapacity | Type for specific heat capacity with medium specific attributes |
SurfaceTension | Type for surface tension with medium specific attributes |
Temperature | Type for temperature with medium specific attributes |
ThermalConductivity | Type for thermal conductivity with medium specific attributes |
PrandtlNumber | Type for Prandtl number with medium specific attributes |
VelocityOfSound | Type for velocity of sound with medium specific attributes |
ExtraProperty | Type for unspecified, mass-specific property transported by flow |
CumulativeExtraProperty | Type for conserved integral of unspecified, mass specific property |
ExtraPropertyFlowRate | Type for flow rate of unspecified, mass-specific property |
IsobaricExpansionCoefficient | Type for isobaric expansion coefficient with medium specific attributes |
DipoleMoment | Type for dipole moment with medium specific attributes |
DerDensityByPressure | Type for partial derivative of density with resect to pressure with medium specific attributes |
DerDensityByEnthalpy | Type for partial derivative of density with resect to enthalpy with medium specific attributes |
DerEnthalpyByPressure | Type for partial derivative of enthalpy with resect to pressure with medium specific attributes |
DerDensityByTemperature | Type for partial derivative of density with resect to temperature with medium specific attributes |
Choices | Types, constants to define menu choices |
constant Boolean smoothModel "true if the (derived) model should not generate state events";
constant Boolean onePhase "true if the (derived) model should never be called with two-phase inputs";
constant FluidConstants[nS] fluidConstants "constant data for the fluid";
type FixedPhase = Integer(min=0,max=2) "phase of the fluid: 1 for 1-phase, 2 for two-phase, 0 for not known, e.g., interactive use";
The minimum pressure mostly applies to the liquid state only. The minimum density is also arbitrary, but is reasonable for techical applications to limit iterations in non-linear systems. The limits in enthalpy and entropy are used as safeguards in inverse iterations.
Extends from Modelica.Icons.Record (Icon for records).
record FluidLimits "validity limits for fluid model" extends Modelica.Icons.Record; Temperature TMIN "minimum temperature"; Temperature TMAX "maximum temperature"; Density DMIN "minimum density"; Density DMAX "maximum density"; AbsolutePressure PMIN "minimum pressure"; AbsolutePressure PMAX "maximum pressure"; SpecificEnthalpy HMIN "minimum enthalpy"; SpecificEnthalpy HMAX "maximum enthalpy"; SpecificEntropy SMIN "minimum entropy"; SpecificEntropy SMAX "maximum entropy";end FluidLimits;
redeclare replaceable record extends FluidConstants "extended fluid constants" Temperature criticalTemperature "critical temperature"; AbsolutePressure criticalPressure "critical pressure"; MolarVolume criticalMolarVolume "critical molar Volume"; Real acentricFactor "Pitzer acentric factor"; Temperature triplePointTemperature "triple point temperature"; AbsolutePressure triplePointPressure "triple point pressure"; Temperature meltingPoint "melting point at 101325 Pa"; Temperature normalBoilingPoint "normal boiling point (at 101325 Pa)"; DipoleMoment dipoleMoment "dipole moment of molecule in Debye (1 debye = 3.33564e10-30 C.m)"; Boolean hasIdealGasHeatCapacity=false "true if ideal gas heat capacity is available"; Boolean hasCriticalData=false "true if critical data are known"; Boolean hasDipoleMoment=false "true if a dipole moment known"; Boolean hasFundamentalEquation=false "true if a fundamental equation"; Boolean hasLiquidHeatCapacity=false "true if liquid heat capacity is available"; Boolean hasSolidHeatCapacity=false "true if solid heat capacity is available"; Boolean hasAccurateViscosityData=false "true if accurate data for a viscosity function is available"; Boolean hasAccurateConductivityData=false "true if accurate data for thermal conductivity is available"; Boolean hasVapourPressureCurve=false "true if vapour pressure data, e.g., Antoine coefficents are known"; Boolean hasAcentricFactor=false "true if Pitzer accentric factor is known"; SpecificEnthalpy HCRIT0=0.0 "Critical specific enthalpy of the fundamental equation"; SpecificEntropy SCRIT0=0.0 "Critical specific entropy of the fundamental equation"; SpecificEnthalpy deltah=0.0 "Difference between specific enthalpy model (h_m) and f.eq. (h_f) (h_m - h_f)"; SpecificEntropy deltas=0.0 "Difference between specific enthalpy model (s_m) and f.eq. (s_f) (s_m - s_f)"; end FluidConstants;
redeclare replaceable record extends ThermodynamicState "Thermodynamic state of two phase medium" FixedPhase phase(min=0, max=2) "phase of the fluid: 1 for 1-phase, 2 for two-phase, 0 for not known, e.g., interactive use"; end ThermodynamicState;
replaceable record SaturationProperties "Saturation properties of two phase medium" extends Modelica.Icons.Record; AbsolutePressure psat "saturation pressure"; Temperature Tsat "saturation temperature"; end SaturationProperties;
Type | Name | Default | Description |
---|---|---|---|
Advanced | |||
Boolean | preferredMediumStates | false | = true if StateSelect.prefer shall be used for the independent property variables of the medium |
redeclare replaceable partial model extends BaseProperties "Base properties (p, d, T, h, u, R, MM, sat) of two phase medium" SaturationProperties sat "Saturation properties at the medium pressure"; end BaseProperties;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation point | |
FixedPhase | phase | 1 | phase: default is one phase |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | complete thermodynamic state info |
replaceable partial function setDewState "Return the thermodynamic state on the dew line" extends Modelica.Icons.Function; input SaturationProperties sat "saturation point"; input FixedPhase phase(min = 1, max = 2) = 1 "phase: default is one phase"; output ThermodynamicState state "complete thermodynamic state info"; end setDewState;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation point | |
FixedPhase | phase | 1 | phase: default is one phase |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | complete thermodynamic state info |
replaceable partial function setBubbleState "Return the thermodynamic state on the bubble line" extends Modelica.Icons.Function; input SaturationProperties sat "saturation point"; input FixedPhase phase(min = 1, max = 2) = 1 "phase: default is one phase"; output ThermodynamicState state "complete thermodynamic state info"; end setBubbleState;
Type | Name | Default | Description |
---|---|---|---|
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Density | d | density [kg/m3] | |
Temperature | T | Temperature [K] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare replaceable partial function extends setState_dTX "Return thermodynamic state as function of d, T and composition X or Xi" input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; end setState_dTX;
Type | Name | Default | Description |
---|---|---|---|
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare replaceable partial function extends setState_phX "Return thermodynamic state as function of p, h and composition X or Xi" input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; end setState_phX;
Type | Name | Default | Description |
---|---|---|---|
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare replaceable partial function extends setState_psX "Return thermodynamic state as function of p, s and composition X or Xi" input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; end setState_psX;
Type | Name | Default | Description |
---|---|---|---|
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
AbsolutePressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare replaceable partial function extends setState_pTX "Return thermodynamic state as function of p, T and composition X or Xi" input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; end setState_pTX;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] |
Type | Name | Description |
---|---|---|
SaturationProperties | sat | saturation property record |
replaceable function setSat_T "Return saturation property record from temperature" extends Modelica.Icons.Function; input Temperature T "temperature"; output SaturationProperties sat "saturation property record"; algorithm sat.Tsat := T; sat.psat := saturationPressure(T); end setSat_T;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | pressure [Pa] |
Type | Name | Description |
---|---|---|
SaturationProperties | sat | saturation property record |
replaceable function setSat_p "Return saturation property record from pressure" extends Modelica.Icons.Function; input AbsolutePressure p "pressure"; output SaturationProperties sat "saturation property record"; algorithm sat.psat := p; sat.Tsat := saturationTemperature(p); end setSat_p;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | hl | boiling curve specific enthalpy [J/kg] |
replaceable partial function bubbleEnthalpy "Return bubble point specific enthalpy" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output SI.SpecificEnthalpy hl "boiling curve specific enthalpy"; end bubbleEnthalpy;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | hv | dew curve specific enthalpy [J/kg] |
replaceable partial function dewEnthalpy "Return dew point specific enthalpy" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output SI.SpecificEnthalpy hv "dew curve specific enthalpy"; end dewEnthalpy;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
SpecificEntropy | sl | boiling curve specific entropy [J/(kg.K)] |
replaceable partial function bubbleEntropy "Return bubble point specific entropy" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output SI.SpecificEntropy sl "boiling curve specific entropy"; end bubbleEntropy;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
SpecificEntropy | sv | dew curve specific entropy [J/(kg.K)] |
replaceable partial function dewEntropy "Return dew point specific entropy" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output SI.SpecificEntropy sv "dew curve specific entropy"; end dewEntropy;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
Density | dl | boiling curve density [kg/m3] |
replaceable partial function bubbleDensity "Return bubble point density" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output Density dl "boiling curve density"; end bubbleDensity;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
Density | dv | dew curve density [kg/m3] |
replaceable partial function dewDensity "Return dew point density" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output Density dv "dew curve density"; end dewDensity;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] |
Type | Name | Description |
---|---|---|
AbsolutePressure | p | saturation pressure [Pa] |
replaceable partial function saturationPressure "Return saturation pressure" extends Modelica.Icons.Function; input Temperature T "temperature"; output AbsolutePressure p "saturation pressure"; end saturationPressure;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | pressure [Pa] |
Type | Name | Description |
---|---|---|
Temperature | T | saturation temperature [K] |
replaceable partial function saturationTemperature "Return saturation temperature" extends Modelica.Icons.Function; input AbsolutePressure p "pressure"; output Temperature T "saturation temperature"; end saturationTemperature;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
AbsolutePressure | p | saturation pressure [Pa] |
replaceable function saturationPressure_sat "Return saturation temperature" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output AbsolutePressure p "saturation pressure"; algorithm p := sat.psat; end saturationPressure_sat;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
Temperature | T | saturation temperature [K] |
replaceable function saturationTemperature_sat "Return saturation temperature" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output Temperature T "saturation temperature"; algorithm T := sat.Tsat; end saturationTemperature_sat;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | pressure [Pa] |
Type | Name | Description |
---|---|---|
Real | dTp | derivative of saturation temperature w.r.t. pressure |
replaceable partial function saturationTemperature_derp "Return derivative of saturation temperature w.r.t. pressure" extends Modelica.Icons.Function; input AbsolutePressure p "pressure"; output Real dTp "derivative of saturation temperature w.r.t. pressure"; end saturationTemperature_derp;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
Real | dTp | derivative of saturation temperature w.r.t. pressure |
replaceable function saturationTemperature_derp_sat "Return derivative of saturation temperature w.r.t. pressure" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output Real dTp "derivative of saturation temperature w.r.t. pressure"; algorithm dTp := saturationTemperature_derp(sat.psat); end saturationTemperature_derp_sat;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
SurfaceTension | sigma | Surface tension sigma in the two phase region [N/m] |
replaceable partial function surfaceTension "Return surface tension sigma in the two phase region" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output SurfaceTension sigma "Surface tension sigma in the two phase region"; end surfaceTension;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
MolarMass | MM | Mixture molar mass [kg/mol] |
redeclare replaceable partial function extends molarMass "Return the molar mass of the medium" algorithm MM := fluidConstants[1].molarMass; end molarMass;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
DerDensityByPressure | ddldp | boiling curve density derivative [s2/m2] |
replaceable partial function dBubbleDensity_dPressure "Return bubble point density derivative" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output DerDensityByPressure ddldp "boiling curve density derivative"; end dBubbleDensity_dPressure;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
DerDensityByPressure | ddvdp | saturated steam density derivative [s2/m2] |
replaceable partial function dDewDensity_dPressure "Return dew point density derivative" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output DerDensityByPressure ddvdp "saturated steam density derivative"; end dDewDensity_dPressure;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
DerEnthalpyByPressure | dhldp | boiling curve specific enthalpy derivative [J.m.s2/kg2] |
replaceable partial function dBubbleEnthalpy_dPressure "Return bubble point specific enthalpy derivative" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output DerEnthalpyByPressure dhldp "boiling curve specific enthalpy derivative"; end dBubbleEnthalpy_dPressure;
Type | Name | Default | Description |
---|---|---|---|
SaturationProperties | sat | saturation property record |
Type | Name | Description |
---|---|---|
DerEnthalpyByPressure | dhvdp | saturated steam specific enthalpy derivative [J.m.s2/kg2] |
replaceable partial function dDewEnthalpy_dPressure "Return dew point specific enthalpy derivative" extends Modelica.Icons.Function; input SaturationProperties sat "saturation property record"; output DerEnthalpyByPressure dhvdp "saturated steam specific enthalpy derivative"; end dDewEnthalpy_dPressure;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
MassFraction | X[nX] | Mass fractions [kg/kg] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Specific enthalpy at p, T, X [J/kg] |
redeclare replaceable function specificEnthalpy_pTX "Return specific enthalpy from pressure, temperature and mass fraction" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input Temperature T "Temperature"; input MassFraction X[nX] "Mass fractions"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output SpecificEnthalpy h "Specific enthalpy at p, T, X"; algorithm h := specificEnthalpy(setState_pTX(p,T,X,phase)); end specificEnthalpy_pTX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
MassFraction | X[nX] | Mass fractions [kg/kg] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
Temperature | T | Temperature [K] |
redeclare replaceable function temperature_phX "Return temperature from p, h, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "Specific enthalpy"; input MassFraction X[nX] "Mass fractions"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output Temperature T "Temperature"; algorithm T := temperature(setState_phX(p,h,X,phase)); end temperature_phX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
MassFraction | X[nX] | Mass fractions [kg/kg] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
Density | d | density [kg/m3] |
redeclare replaceable function density_phX "Return density from p, h, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "Specific enthalpy"; input MassFraction X[nX] "Mass fractions"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output Density d "density"; algorithm d := density(setState_phX(p,h,X,phase)); end density_phX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
MassFraction | X[nX] | Mass fractions [kg/kg] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
Temperature | T | Temperature [K] |
redeclare replaceable function temperature_psX "Return temperature from p, s, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEntropy s "Specific entropy"; input MassFraction X[nX] "Mass fractions"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output Temperature T "Temperature"; algorithm T := temperature(setState_psX(p,s,X,phase)); end temperature_psX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
MassFraction | X[nX] | Mass fractions [kg/kg] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
Density | d | Density [kg/m3] |
redeclare replaceable function density_psX "Return density from p, s, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEntropy s "Specific entropy"; input MassFraction X[nX] "Mass fractions"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output Density d "Density"; algorithm d := density(setState_psX(p,s,X,phase)); end density_psX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
MassFraction | X[nX] | Mass fractions [kg/kg] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
redeclare replaceable function specificEnthalpy_psX "Return specific enthalpy from p, s, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEntropy s "Specific entropy"; input MassFraction X[nX] "Mass fractions"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output SpecificEnthalpy h "specific enthalpy"; algorithm h := specificEnthalpy(setState_psX(p,s,X,phase)); end specificEnthalpy_psX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare replaceable function setState_pT "Return thermodynamic state from p and T" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input Temperature T "Temperature"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output ThermodynamicState state "thermodynamic state record"; algorithm state := setState_pTX(p,T,fill(0,0),phase); end setState_pT;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare replaceable function setState_ph "Return thermodynamic state from p and h" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "Specific enthalpy"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output ThermodynamicState state "thermodynamic state record"; algorithm state := setState_phX(p,h,fill(0, 0),phase); end setState_ph;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare replaceable function setState_ps "Return thermodynamic state from p and s" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEntropy s "Specific entropy"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output ThermodynamicState state "thermodynamic state record"; algorithm state := setState_psX(p,s,fill(0,0),phase); end setState_ps;
Type | Name | Default | Description |
---|---|---|---|
Density | d | density [kg/m3] | |
Temperature | T | Temperature [K] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare replaceable function setState_dT "Return thermodynamic state from d and T" extends Modelica.Icons.Function; input Density d "density"; input Temperature T "Temperature"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output ThermodynamicState state "thermodynamic state record"; algorithm state := setState_dTX(d,T,fill(0,0),phase); end setState_dT;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
MassFraction | x | Vapour quality [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | Thermodynamic state record |
replaceable function setState_px "Return thermodynamic state from pressure and vapour quality" input AbsolutePressure p "Pressure"; input MassFraction x "Vapour quality"; output ThermodynamicState state "Thermodynamic state record"; algorithm state := setState_ph( p, (1-x)*bubbleEnthalpy(setSat_p(p)) + x*dewEnthalpy(setSat_p(p)), 2); end setState_px;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | Temperature [K] | |
MassFraction | x | Vapour quality [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
replaceable function setState_Tx "Return thermodynamic state from temperature and vapour quality" input Temperature T "Temperature"; input MassFraction x "Vapour quality"; output ThermodynamicState state "thermodynamic state record"; algorithm state := setState_ph( saturationPressure_sat(setSat_T(T)), (1-x)*bubbleEnthalpy(setSat_T(T)) + x*dewEnthalpy(setSat_T(T)), 2); end setState_Tx;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
MassFraction | x | Vapour quality [kg/kg] |
replaceable function vapourQuality "Return vapour quality" input ThermodynamicState state "Thermodynamic state record"; output MassFraction x "Vapour quality"; protected constant SpecificEnthalpy eps = 1e-8; algorithm x := min(max( (specificEnthalpy(state)-bubbleEnthalpy(setSat_p(pressure(state)))) / (dewEnthalpy(setSat_p(pressure(state))) - bubbleEnthalpy(setSat_p(pressure(state))) + eps), 0),1); end vapourQuality;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
Density | d | Density [kg/m3] |
redeclare replaceable function density_ph "Return density from p and h" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "Specific enthalpy"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output Density d "Density"; algorithm d := density_phX(p, h, fill(0,0), phase); end density_ph;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
Temperature | T | Temperature [K] |
redeclare replaceable function temperature_ph "Return temperature from p and h" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "Specific enthalpy"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output Temperature T "Temperature"; algorithm T := temperature_phX(p, h, fill(0,0),phase); end temperature_ph;
Type | Name | Default | Description |
---|---|---|---|
Density | d | Density [kg/m3] | |
Temperature | T | Temperature [K] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
AbsolutePressure | p | Pressure [Pa] |
redeclare replaceable function pressure_dT "Return pressure from d and T" extends Modelica.Icons.Function; input Density d "Density"; input Temperature T "Temperature"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output AbsolutePressure p "Pressure"; algorithm p := pressure(setState_dTX(d, T, fill(0,0),phase)); end pressure_dT;
Type | Name | Default | Description |
---|---|---|---|
Density | d | Density [kg/m3] | |
Temperature | T | Temperature [K] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
redeclare replaceable function specificEnthalpy_dT "Return specific enthalpy from d and T" extends Modelica.Icons.Function; input Density d "Density"; input Temperature T "Temperature"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output SpecificEnthalpy h "specific enthalpy"; algorithm h := specificEnthalpy(setState_dTX(d, T, fill(0,0),phase)); end specificEnthalpy_dT;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
redeclare replaceable function specificEnthalpy_ps "Return specific enthalpy from p and s" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEntropy s "Specific entropy"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output SpecificEnthalpy h "specific enthalpy"; algorithm h := specificEnthalpy_psX(p,s,fill(0,0)); end specificEnthalpy_ps;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
Temperature | T | Temperature [K] |
redeclare replaceable function temperature_ps "Return temperature from p and s" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEntropy s "Specific entropy"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output Temperature T "Temperature"; algorithm T := temperature_psX(p,s,fill(0,0),phase); end temperature_ps;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
Density | d | Density [kg/m3] |
redeclare replaceable function density_ps "Return density from p and s" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEntropy s "Specific entropy"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output Density d "Density"; algorithm d := density_psX(p, s, fill(0,0), phase); end density_ps;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
redeclare replaceable function specificEnthalpy_pT "Return specific enthalpy from p and T" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input Temperature T "Temperature"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output SpecificEnthalpy h "specific enthalpy"; algorithm h := specificEnthalpy_pTX(p, T, fill(0,0),phase); end specificEnthalpy_pT;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
FixedPhase | phase | 0 | 2 for two-phase, 1 for one-phase, 0 if not known |
Type | Name | Description |
---|---|---|
Density | d | Density [kg/m3] |
redeclare replaceable function density_pT "Return density from p and T" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input Temperature T "Temperature"; input FixedPhase phase=0 "2 for two-phase, 1 for one-phase, 0 if not known"; output Density d "Density"; algorithm d := density(setState_pTX(p, T, fill(0,0),phase)); end density_pT;