This package provides utility functions that are used as input arguments to the example functions.
Extends from Modelica.Icons.Package (Icon for standard packages).
Name | Description |
---|---|
fun1 | y = u^2 - 1 |
fun2 | y = 3*u - sin(w*u) - 1 |
fun3 | y = p[1] + log(p[2]*u) - m*u |
fun4 | y = sin(u) |
fun5 | y = sin(w*u) |
fun6 | y = sqrt(1/(1 - k^2*sin(u)^2)) |
fun7 | y = A*sin(w*u)*q(t) |
Type | Name | Default | Description |
---|---|---|---|
Real | u | Independent variable |
Type | Name | Description |
---|---|---|
Real | y | Dependent variable y=f(u) |
function fun1 "y = u^2 - 1" extends Modelica.Math.Nonlinear.Interfaces.partialScalarFunction; algorithm y := u^2 - 1; end fun1;
Type | Name | Default | Description |
---|---|---|---|
Real | u | Independent variable | |
Real | w | Angular velocity |
Type | Name | Description |
---|---|---|
Real | y | Dependent variable y=f(u) |
function fun2 "y = 3*u - sin(w*u) - 1" extends Modelica.Math.Nonlinear.Interfaces.partialScalarFunction; input Real w "Angular velocity"; algorithm y := 3*u - sin(w*u) - 1; end fun2;
Type | Name | Default | Description |
---|---|---|---|
Real | u | Independent variable | |
Real | p[2] | ||
Real | m |
Type | Name | Description |
---|---|---|
Real | y | Dependent variable y=f(u) |
function fun3 "y = p[1] + log(p[2]*u) - m*u" extends Modelica.Math.Nonlinear.Interfaces.partialScalarFunction; input Real p[2]; input Real m; algorithm y := p[1] + log(p[2]*u) - m*u; end fun3;
Type | Name | Default | Description |
---|---|---|---|
Real | u | Independent variable |
Type | Name | Description |
---|---|---|
Real | y | Dependent variable y=f(u) |
function fun4 "y = sin(u)" extends Modelica.Math.Nonlinear.Interfaces.partialScalarFunction; algorithm y := sin(u); end fun4;
Type | Name | Default | Description |
---|---|---|---|
Real | u | Independent variable | |
Real | w | Angular velocity |
Type | Name | Description |
---|---|---|
Real | y | Dependent variable y=f(u) |
function fun5 "y = sin(w*u)" extends Modelica.Math.Nonlinear.Interfaces.partialScalarFunction; input Real w "Angular velocity"; algorithm y := sin(w*u); end fun5;
Type | Name | Default | Description |
---|---|---|---|
Real | u | Independent variable | |
Real | k | Modul |
Type | Name | Description |
---|---|---|
Real | y | Dependent variable y=f(u) |
function fun6 "y = sqrt(1/(1 - k^2*sin(u)^2))" extends Modelica.Math.Nonlinear.Interfaces.partialScalarFunction; input Real k "Modul"; algorithm y := sqrt(1/(1 - k^2*sin(u)^2)); end fun6;
Type | Name | Default | Description |
---|---|---|---|
Real | u | Independent variable | |
Real | A | Amplitude | |
Real | w | Angular frequency |
Type | Name | Description |
---|---|---|
Real | y | Dependent variable y=f(u) |
function fun7 "y = A*sin(w*u)*q(t)" extends Modelica.Math.Nonlinear.Interfaces.partialScalarFunction; input Real A "Amplitude"; input Real w "Angular frequency"; algorithm y := A*sin(w*u); end fun7;