Package Modelica.Media.Common provides records and functions shared by many of the property sub-packages. High accuracy fluid property models share a lot of common structure, even if the actual models are different. Common data structures and computations shared by these property models are collected in this library.
Extends from Modelica.Icons.Library (Icon for library).
Name | Description |
---|---|
Rate | |
MolarFlowRate | |
MolarReactionRate | |
MolarEnthalpy | |
DerDensityByEntropy | |
DerEnergyByPressure | |
DerEnergyByMoles | |
DerEntropyByTemperature | |
DerEntropyByPressure | |
DerEntropyByMoles | |
DerPressureByDensity | |
DerPressureBySpecificVolume | |
DerPressureByTemperature | |
DerVolumeByTemperature | |
DerVolumeByPressure | |
DerVolumeByMoles | |
IsenthalpicExponent | |
IsentropicExponent | |
IsobaricVolumeExpansionCoefficient | |
IsochoricPressureCoefficient | |
IsothermalCompressibility | |
JouleThomsonCoefficient | |
MINPOS=1.0e-9 | minimal value for physical variables which are always > 0.0 |
AMIN=MINPOS | minimal init area |
AMAX=1.0e5 | maximal init area |
ANOM=1.0 | nominal init area |
MOLMIN=-1.0*MINPOS | minimal Mole Number |
MOLMAX=1.0e8 | maximal Mole Number |
MOLNOM=1.0 | nominal Mole Number |
DMIN=MINPOS | minimal init density |
DMAX=1.0e5 | maximal init density |
DNOM=1.0 | nominal init density |
LAMMIN=MINPOS | minimal thermal conductivity |
LAMNOM=1.0 | nominal thermal conductivity |
LAMMAX=1000.0 | maximal thermal conductivity |
ETAMIN=MINPOS | minimal init dynamic viscosity |
ETAMAX=1.0e8 | maximal init dynamic viscosity |
ETANOM=100.0 | nominal init dynamic viscosity |
EMIN=-1.0e10 | minimal init energy |
EMAX=1.0e10 | maximal init energy |
ENOM=1.0e3 | nominal init energy |
SMIN=-1.0e6 | minimal init entropy |
SMAX=1.0e6 | maximal init entropy |
SNOM=1.0e3 | nominal init entropy |
MDOTMIN=-1.0e5 | minimal init mass flow rate |
MDOTMAX=1.0e5 | maximal init mass flow rate |
MDOTNOM=1.0 | nominal init mass flow rate |
MASSXMIN=-1.0*MINPOS | minimal init mass fraction |
MASSXMAX=1.0 | maximal init mass fraction |
MASSXNOM=0.1 | nominal init mass fraction |
MMIN=-1.0*MINPOS | minimal init mass |
MMAX=1.0e8 | maximal init mass |
MNOM=1.0 | nominal init mass |
MMMIN=0.001 | minimal initial molar mass |
MMMAX=250.0 | maximal initial molar mass |
MMNOM=0.2 | nominal initial molar mass |
MOLEYMIN=-1.0*MINPOS | minimal init mole fraction |
MOLEYMAX=1.0 | maximal init mole fraction |
MOLEYNOM=0.1 | nominal init mole fraction |
GMIN=-1.0e8 | minimal init momentum flux |
GMAX=1.0e8 | maximal init momentum flux |
GNOM=1.0 | nominal init momentum flux |
POWMIN=-1.0e8 | minimal init power or heat |
POWMAX=1.0e8 | maximal init power or heat |
POWNOM=1.0e3 | nominal init power or heat |
PMIN=1.0e4 | minimal init pressure |
PMAX=1.0e8 | maximal init pressure |
PNOM=1.0e5 | nominal init pressure |
COMPPMIN=-1.0*MINPOS | minimal init pressure |
COMPPMAX=1.0e8 | maximal init pressure |
COMPPNOM=1.0e5 | nominal init pressure |
KAPPAMIN=1.0 | minimal init isentropic exponent |
KAPPAMAX=1.7 | maximal init isentropic exponent |
KAPPANOM=1.2 | nominal init isentropic exponent |
SEMIN=-1.0e8 | minimal init specific energy |
SEMAX=1.0e8 | maximal init specific energy |
SENOM=1.0e6 | nominal init specific energy |
SHMIN=-1.0e8 | minimal init specific enthalpy |
SHMAX=1.0e8 | maximal init specific enthalpy |
SHNOM=1.0e6 | nominal init specific enthalpy |
SSMIN=-1.0e6 | minimal init specific entropy |
SSMAX=1.0e6 | maximal init specific entropy |
SSNOM=1.0e3 | nominal init specific entropy |
CPMIN=MINPOS | minimal init specific heat capacity |
CPMAX=1.0e6 | maximal init specific heat capacity |
CPNOM=1.0e3 | nominal init specific heat capacity |
TMIN=MINPOS | minimal init temperature |
TMAX=1.0e5 | maximal init temperature |
TNOM=320.0 | nominal init temperature |
LMIN=MINPOS | minimal init thermal conductivity |
LMAX=500.0 | maximal init thermal conductivity |
LNOM=1.0 | nominal init thermal conductivity |
VELMIN=-1.0e5 | minimal init speed |
VELMAX=1.0e5 | maximal init speed |
VELNOM=1.0 | nominal init speed |
VMIN=0.0 | minimal init volume |
VMAX=1.0e5 | maximal init volume |
VNOM=1.0e-3 | nominal init volume |
ThermoFluidSpecial | property records used by the ThermoFluid library |
SaturationProperties | properties in the two phase region |
SaturationBoundaryProperties | properties on both phase boundaries, including some derivatives |
IF97BaseTwoPhase | Intermediate property data record for IF 97 |
IF97PhaseBoundaryProperties | thermodynamic base properties on the phase boundary for IF97 steam tables |
GibbsDerivs | derivatives of dimensionless Gibbs-function w.r.t dimensionless pressure and temperature |
HelmholtzDerivs | derivatives of dimensionless Helmholtz-function w.r.t dimensionless pressuredensity and temperature |
TwoPhaseTransportProps | defines properties on both phase boundaries, needed in the two phase region |
PhaseBoundaryProperties | thermodynamic base properties on the phase boundary |
NewtonDerivatives_ph | derivatives for fast inverse calculations of Helmholtz functions: p & h |
NewtonDerivatives_ps | derivatives for fast inverse calculation of Helmholtz functions: p & s |
NewtonDerivatives_pT | derivatives for fast inverse calculations of Helmholtz functions:p & T |
ExtraDerivatives | additional thermodynamic derivatives |
BridgmansTables | Calculates all entries in Bridgmans tables if first seven variables given |
gibbsToBridgmansTables | calculates base coefficients for bridgemans tables from gibbs enthalpy |
helmholtzToBridgmansTables | calculates base coefficients for Bridgmans tables from helmholtz energy |
gibbsToBoundaryProps | calulate phase boundary property record from dimensionless Gibbs function |
helmholtzToBoundaryProps | calulate phase boundary property record from dimensionless Helmholtz function |
cv2Phase | compute isochoric specific heat capacity inside the two-phase region |
cvdpT2Phase | compute isochoric specific heat capacity inside the two-phase region and derivative of pressure w.r.t. temperature |
gibbsToExtraDerivs | compute additional thermodynamic derivatives from dimensionless Gibbs function |
helmholtzToExtraDerivs | compute additional thermodynamic derivatives from dimensionless Helmholtz function |
Helmholtz_ph | function to calculate analytic derivatives for computing d and t given p and h |
Helmholtz_pT | function to calculate analytic derivatives for computing d and t given p and t |
Helmholtz_ps | function to calculate analytic derivatives for computing d and t given p and s |
smoothStep | Approximation of a general step, such that the characteristic is continuous and differentiable |
OneNonLinearEquation | Determine solution of a non-linear algebraic equation in one unknown without derivatives in a reliable and efficient way |
type Rate = Real (final quantity="Rate", final unit="s-1");
type MolarFlowRate = Real (final quantity="MolarFlowRate", final unit="mol/s");
type MolarReactionRate = Real (final quantity="MolarReactionRate", final unit = "mol/(m3.s)");
type MolarEnthalpy = Real (final quantity="MolarEnthalpy", final unit="J/mol");
type DerDensityByEntropy = Real (final quantity="DerDensityByEntropy", final unit = "kg2.K/(m3.J)");
type DerEnergyByPressure = Real (final quantity="DerEnergyByPressure", final unit = "J/Pa");
type DerEnergyByMoles = Real (final quantity="DerEnergyByMoles", final unit= "J/mol");
type DerEntropyByTemperature = Real (final quantity="DerEntropyByTemperature", final unit="J/K2");
type DerEntropyByPressure = Real (final quantity="DerEntropyByPressure", final unit="J/(K.Pa)");
type DerEntropyByMoles = Real (final quantity="DerEntropyByMoles", final unit = "J/(mol.K)");
type DerPressureByDensity = Real (final quantity="DerPressureByDensity", final unit="Pa.m3/kg");
type DerPressureBySpecificVolume = Real (final quantity= "DerPressureBySpecificVolume", final unit="Pa.kg/m3");
type DerPressureByTemperature = Real (final quantity= "DerPressureByTemperature", final unit="Pa/K");
type DerVolumeByTemperature = Real (final quantity="DerVolumeByTemperature", final unit="m3/K");
type DerVolumeByPressure = Real (final quantity="DerVolumeByPressure", final unit = "m3/Pa");
type DerVolumeByMoles = Real (final quantity="DerVolumeByMoles", final unit= "m3/mol");
type IsenthalpicExponent = Real (final quantity="IsenthalpicExponent", unit= "1");
type IsentropicExponent = Real (final quantity="IsentropicExponent", unit="1");
type IsobaricVolumeExpansionCoefficient = Real (final quantity= "IsobaricVolumeExpansionCoefficient", unit="1/K");
type IsochoricPressureCoefficient = Real (final quantity= "IsochoricPressureCoefficient", unit="1/K");
type IsothermalCompressibility = Real (final quantity= "IsothermalCompressibility", unit="1/Pa");
type JouleThomsonCoefficient = Real (final quantity="JouleThomsonCoefficient", unit="K/Pa");
constant Real MINPOS=1.0e-9 "minimal value for physical variables which are always > 0.0";
constant SI.Area AMIN=MINPOS "minimal init area";
constant SI.Area AMAX=1.0e5 "maximal init area";
constant SI.Area ANOM=1.0 "nominal init area";
constant SI.AmountOfSubstance MOLMIN=-1.0*MINPOS "minimal Mole Number";
constant SI.AmountOfSubstance MOLMAX=1.0e8 "maximal Mole Number";
constant SI.AmountOfSubstance MOLNOM=1.0 "nominal Mole Number";
constant SI.Density DMIN=MINPOS "minimal init density";
constant SI.Density DMAX=1.0e5 "maximal init density";
constant SI.Density DNOM=1.0 "nominal init density";
constant SI.ThermalConductivity LAMMIN=MINPOS "minimal thermal conductivity";
constant SI.ThermalConductivity LAMNOM=1.0 "nominal thermal conductivity";
constant SI.ThermalConductivity LAMMAX=1000.0 "maximal thermal conductivity";
constant SI.DynamicViscosity ETAMIN=MINPOS "minimal init dynamic viscosity";
constant SI.DynamicViscosity ETAMAX=1.0e8 "maximal init dynamic viscosity";
constant SI.DynamicViscosity ETANOM=100.0 "nominal init dynamic viscosity";
constant SI.Energy EMIN=-1.0e10 "minimal init energy";
constant SI.Energy EMAX=1.0e10 "maximal init energy";
constant SI.Energy ENOM=1.0e3 "nominal init energy";
constant SI.Entropy SMIN=-1.0e6 "minimal init entropy";
constant SI.Entropy SMAX=1.0e6 "maximal init entropy";
constant SI.Entropy SNOM=1.0e3 "nominal init entropy";
constant SI.MassFlowRate MDOTMIN=-1.0e5 "minimal init mass flow rate";
constant SI.MassFlowRate MDOTMAX=1.0e5 "maximal init mass flow rate";
constant SI.MassFlowRate MDOTNOM=1.0 "nominal init mass flow rate";
constant SI.MassFraction MASSXMIN=-1.0*MINPOS "minimal init mass fraction";
constant SI.MassFraction MASSXMAX=1.0 "maximal init mass fraction";
constant SI.MassFraction MASSXNOM=0.1 "nominal init mass fraction";
constant SI.Mass MMIN=-1.0*MINPOS "minimal init mass";
constant SI.Mass MMAX=1.0e8 "maximal init mass";
constant SI.Mass MNOM=1.0 "nominal init mass";
constant SI.MolarMass MMMIN=0.001 "minimal initial molar mass";
constant SI.MolarMass MMMAX=250.0 "maximal initial molar mass";
constant SI.MolarMass MMNOM=0.2 "nominal initial molar mass";
constant SI.MoleFraction MOLEYMIN=-1.0*MINPOS "minimal init mole fraction";
constant SI.MoleFraction MOLEYMAX=1.0 "maximal init mole fraction";
constant SI.MoleFraction MOLEYNOM=0.1 "nominal init mole fraction";
constant SI.MomentumFlux GMIN=-1.0e8 "minimal init momentum flux";
constant SI.MomentumFlux GMAX=1.0e8 "maximal init momentum flux";
constant SI.MomentumFlux GNOM=1.0 "nominal init momentum flux";
constant SI.Power POWMIN=-1.0e8 "minimal init power or heat";
constant SI.Power POWMAX=1.0e8 "maximal init power or heat";
constant SI.Power POWNOM=1.0e3 "nominal init power or heat";
constant SI.Pressure PMIN=1.0e4 "minimal init pressure";
constant SI.Pressure PMAX=1.0e8 "maximal init pressure";
constant SI.Pressure PNOM=1.0e5 "nominal init pressure";
constant SI.Pressure COMPPMIN=-1.0*MINPOS "minimal init pressure";
constant SI.Pressure COMPPMAX=1.0e8 "maximal init pressure";
constant SI.Pressure COMPPNOM=1.0e5 "nominal init pressure";
constant SI.RatioOfSpecificHeatCapacities KAPPAMIN=1.0 "minimal init isentropic exponent";
constant SI.RatioOfSpecificHeatCapacities KAPPAMAX=1.7 "maximal init isentropic exponent";
constant SI.RatioOfSpecificHeatCapacities KAPPANOM=1.2 "nominal init isentropic exponent";
constant SI.SpecificEnergy SEMIN=-1.0e8 "minimal init specific energy";
constant SI.SpecificEnergy SEMAX=1.0e8 "maximal init specific energy";
constant SI.SpecificEnergy SENOM=1.0e6 "nominal init specific energy";
constant SI.SpecificEnthalpy SHMIN=-1.0e8 "minimal init specific enthalpy";
constant SI.SpecificEnthalpy SHMAX=1.0e8 "maximal init specific enthalpy";
constant SI.SpecificEnthalpy SHNOM=1.0e6 "nominal init specific enthalpy";
constant SI.SpecificEntropy SSMIN=-1.0e6 "minimal init specific entropy";
constant SI.SpecificEntropy SSMAX=1.0e6 "maximal init specific entropy";
constant SI.SpecificEntropy SSNOM=1.0e3 "nominal init specific entropy";
constant SI.SpecificHeatCapacity CPMIN=MINPOS "minimal init specific heat capacity";
constant SI.SpecificHeatCapacity CPMAX=1.0e6 "maximal init specific heat capacity";
constant SI.SpecificHeatCapacity CPNOM=1.0e3 "nominal init specific heat capacity";
constant SI.Temperature TMIN=MINPOS "minimal init temperature";
constant SI.Temperature TMAX=1.0e5 "maximal init temperature";
constant SI.Temperature TNOM=320.0 "nominal init temperature";
constant SI.ThermalConductivity LMIN=MINPOS "minimal init thermal conductivity";
constant SI.ThermalConductivity LMAX=500.0 "maximal init thermal conductivity";
constant SI.ThermalConductivity LNOM=1.0 "nominal init thermal conductivity";
constant SI.Velocity VELMIN=-1.0e5 "minimal init speed";
constant SI.Velocity VELMAX=1.0e5 "maximal init speed";
constant SI.Velocity VELNOM=1.0 "nominal init speed";
constant SI.Volume VMIN=0.0 "minimal init volume";
constant SI.Volume VMAX=1.0e5 "maximal init volume";
constant SI.Volume VNOM=1.0e-3 "nominal init volume";
record SaturationProperties "properties in the two phase region" extends Modelica.Icons.Record; SI.Temp_K T "temperature"; SI.Density d "density"; SI.Pressure p "pressure"; SI.SpecificEnergy u "specific inner energy"; SI.SpecificEnthalpy h "specific enthalpy"; SI.SpecificEntropy s "specific entropy"; SI.SpecificHeatCapacity cp "heat capacity at constant pressure"; SI.SpecificHeatCapacity cv "heat capacity at constant volume"; SI.SpecificHeatCapacity R "gas constant"; SI.RatioOfSpecificHeatCapacities kappa "isentropic expansion coefficient"; PhaseBoundaryProperties liq "thermodynamic base properties on the boiling curve"; PhaseBoundaryProperties vap "thermodynamic base properties on the dew curve"; Real dpT(unit="Pa/K") "derivative of saturation pressure wrt temperature"; SI.MassFraction x "vapour mass fraction"; end SaturationProperties;
record SaturationBoundaryProperties "properties on both phase boundaries, including some derivatives" extends Modelica.Icons.Record; SI.Temp_K T "Saturation temperature"; SI.Density dl "Liquid density"; SI.Density dv "Vapour density"; SI.SpecificEnthalpy hl "Liquid specific enthalpy"; SI.SpecificEnthalpy hv "Vapour specific enthalpy"; Real dTp "derivative of temperature wrt saturation pressure"; Real ddldp "derivative of density along boiling curve"; Real ddvdp "derivative of density along dew curve"; Real dhldp "derivative of specific enthalpy along boiling curve"; Real dhvdp "derivative of specific enthalpy along dew curve"; SI.MassFraction x "vapour mass fraction"; end SaturationBoundaryProperties;
record IF97BaseTwoPhase "Intermediate property data record for IF 97" extends Modelica.Icons.Record; Integer phase= 0 "phase: 2 for two-phase, 1 for one phase, 0 if unknown"; Integer region(min=1, max=5) "IF 97 region"; SI.Pressure p "pressure"; SI.Temperature T "temperature"; SI.SpecificEnthalpy h "specific enthalpy"; SI.SpecificHeatCapacity R "gas constant"; SI.SpecificHeatCapacity cp "specific heat capacity"; SI.SpecificHeatCapacity cv "specific heat capacity"; SI.Density rho "density"; SI.SpecificEntropy s "specific entropy"; DerPressureByTemperature pt "derivative of pressure wrt temperature"; DerPressureByDensity pd "derivative of pressure wrt density"; Real vt "derivative of specific volume w.r.t. temperature"; Real vp "derivative of specific volume w.r.t. pressure"; Real x "dryness fraction"; Real dpT "dp/dT derivative of saturation curve"; end IF97BaseTwoPhase;
record IF97PhaseBoundaryProperties "thermodynamic base properties on the phase boundary for IF97 steam tables" extends Modelica.Icons.Record; Boolean region3boundary "true if boundary between 2-phase and region 3"; SI.SpecificHeatCapacity R "specific heat capacity"; SI.Temperature T "temperature"; SI.Density d "density"; SI.SpecificEnthalpy h "specific enthalpy"; SI.SpecificEntropy s "specific entropy"; SI.SpecificHeatCapacity cp "heat capacity at constant pressure"; SI.SpecificHeatCapacity cv "heat capacity at constant volume"; DerPressureByTemperature dpT "dp/dT derivative of saturation curve"; DerPressureByTemperature pt "derivative of pressure wrt temperature"; DerPressureByDensity pd "derivative of pressure wrt density"; Real vt(unit="m3/(kg.K)") "derivative of specific volume w.r.t. temperature"; Real vp(unit="m3/(kg.Pa)") "derivative of specific volume w.r.t. pressure"; end IF97PhaseBoundaryProperties;
record GibbsDerivs "derivatives of dimensionless Gibbs-function w.r.t dimensionless pressure and temperature" extends Modelica.Icons.Record; SI.Pressure p "pressure"; SI.Temperature T "temperature"; SI.SpecificHeatCapacity R "specific heat capacity"; Real pi(unit="1") "dimensionless pressure"; Real tau(unit="1") "dimensionless temperature"; Real g(unit="1") "dimensionless Gibbs-function"; Real gpi(unit="1") "derivative of g w.r.t. pi"; Real gpipi(unit="1") "2nd derivative of g w.r.t. pi"; Real gtau(unit="1") "derivative of g w.r.t. tau"; Real gtautau(unit="1") "2nd derivative of g w.r.t tau"; Real gtaupi(unit="1") "mixed derivative of g w.r.t. pi and tau"; end GibbsDerivs;
record HelmholtzDerivs "derivatives of dimensionless Helmholtz-function w.r.t dimensionless pressuredensity and temperature" extends Modelica.Icons.Record; SI.Density d "density"; SI.Temperature T "temperature"; SI.SpecificHeatCapacity R "specific heat capacity"; Real delta(unit="1") "dimensionless density"; Real tau(unit="1") "dimensionless temperature"; Real f(unit="1") "dimensionless Helmholtz-function"; Real fdelta(unit="1") "derivative of f w.r.t. delta"; Real fdeltadelta(unit="1") "2nd derivative of f w.r.t. delta"; Real ftau(unit="1") "derivative of f w.r.t. tau"; Real ftautau(unit="1") "2nd derivative of f w.r.t. tau"; Real fdeltatau(unit="1") "mixed derivative of f w.r.t. delta and tau"; end HelmholtzDerivs;
record TwoPhaseTransportProps "defines properties on both phase boundaries, needed in the two phase region" extends Modelica.Icons.Record; SI.Density d_vap "density on the dew line"; SI.Density d_liq "density on the bubble line"; SI.DynamicViscosity eta_vap "dynamic viscosity on the dew line"; SI.DynamicViscosity eta_liq "dynamic viscosity on the bubble line"; SI.ThermalConductivity lam_vap "thermal conductivity on the dew line"; SI.ThermalConductivity lam_liq "thermal conductivity on the bubble line"; SI.SpecificHeatCapacity cp_vap "cp on the dew line"; SI.SpecificHeatCapacity cp_liq "cp on the bubble line"; SI.MassFraction x "steam quality"; end TwoPhaseTransportProps;
record PhaseBoundaryProperties "thermodynamic base properties on the phase boundary" extends Modelica.Icons.Record; SI.Density d "density"; SI.SpecificEnthalpy h "specific enthalpy"; SI.SpecificEnergy u "inner energy"; SI.SpecificEntropy s "specific entropy"; SI.SpecificHeatCapacity cp "heat capacity at constant pressure"; SI.SpecificHeatCapacity cv "heat capacity at constant volume"; DerPressureByTemperature pt "derivative of pressure wrt temperature"; DerPressureByDensity pd "derivative of pressure wrt density"; end PhaseBoundaryProperties;
record NewtonDerivatives_ph "derivatives for fast inverse calculations of Helmholtz functions: p & h" extends Modelica.Icons.Record; SI.Pressure p "pressure"; SI.SpecificEnthalpy h "specific enthalpy"; DerPressureByDensity pd "derivative of pressure w.r.t. density"; DerPressureByTemperature pt "derivative of pressure w.r.t. temperature"; Real hd "derivative of specific enthalpy w.r.t. density"; Real ht "derivative of specific enthalpy w.r.t. temperature"; end NewtonDerivatives_ph;
record NewtonDerivatives_ps "derivatives for fast inverse calculation of Helmholtz functions: p & s" extends Modelica.Icons.Record; SI.Pressure p "pressure"; SI.SpecificEntropy s "specific entropy"; DerPressureByDensity pd "derivative of pressure w.r.t. density"; DerPressureByTemperature pt "derivative of pressure w.r.t. temperature"; Real sd "derivative of specific entropy w.r.t. density"; Real st "derivative of specific entropy w.r.t. temperature"; end NewtonDerivatives_ps;
record NewtonDerivatives_pT "derivatives for fast inverse calculations of Helmholtz functions:p & T" extends Modelica.Icons.Record; SI.Pressure p "pressure"; DerPressureByDensity pd "derivative of pressure w.r.t. density"; end NewtonDerivatives_pT;
record ExtraDerivatives "additional thermodynamic derivatives" extends Modelica.Icons.Record; IsentropicExponent kappa "isentropic expansion coefficient"; // k in Bejan IsenthalpicExponent theta "isenthalpic exponent"; // same as kappa, except derivative at const h IsobaricVolumeExpansionCoefficient alpha "isobaric volume expansion coefficient"; // beta in Bejan IsochoricPressureCoefficient beta "isochoric pressure coefficient"; // kT in Bejan IsothermalCompressibility gamma "isothermal compressibility"; // kappa in Bejan JouleThomsonCoefficient mu "Joule-Thomson coefficient"; // mu_J in Bejan end ExtraDerivatives;
Important: the phase equilibrium conditions are not yet considered. this means that bridgemans tables do not yet work in the two phase region. Some derivatives are 0 or infinity anyways. Idea: don't use the values in Bridgmans table directly, all derivatives are calculated as the quotient of two entries in the table. The last letter indicates which variable is held constant in taking the derivative. The second letters are the two variables involved in the derivative and the first letter is alwys a d to remind of differentiation.
Example 1: Get the derivative of specific entropy s wrt Temperature at constant specific volume (btw identical to constant density) constant volume --> last letter v Temperature --> second letter T Specific entropy --> second letter s --> the needed value is dsv/dTv Known variables: Temperature T pressure p specific volume v specific inner energy u specific enthalpy h specific entropy s specific helmholtz energy f specific gibbs enthalpy g Not included but useful: density d In order to convert derivatives involving density use the following rules: at constant density == at constant specific volume ddx/dyx = -d*d*dvx/dyx with y,x any of T,p,u,h,s,f,g dyx/ddx = -1/(d*d)dyx/dvx with y,x any of T,p,u,h,s,f,g Usage example assuming water as the medium: model BridgmansTablesForWater extends ThermoFluid.BaseClasses.MediumModels.Water.WaterSteamMedium_ph; Real derOfsByTAtConstantv "derivative of sp. entropy by temperature at constant sp. volume" ThermoFluid.BaseClasses.MediumModels.Common.ExtraDerivatives dpro; ThermoFluid.BaseClasses.MediumModels.Common.BridgmansTables bt; equation dpro = ThermoFluid.BaseClasses.MediumModels.SteamIF97.extraDerivs_pT(p[1],T[1]); bt.p = p[1]; bt.T = T[1]; bt.v = 1/pro[1].d; bt.s = pro[1].s; bt.cp = pro[1].cp; bt.alpha = dpro.alpha; bt.gamma = dpro.gamma; derOfsByTAtConstantv = bt.dsv/bt.dTv; ... end BridgmansTablesForWater;
Extends from Modelica.Icons.Record (Icon for a record).
record BridgmansTables "Calculates all entries in Bridgmans tables if first seven variables given" extends Modelica.Icons.Record; // the first 7 need to calculated in a function! SI.SpecificVolume v "specific volume"; SI.Pressure p "pressure"; SI.Temperature T "temperature"; SI.SpecificEntropy s "specific entropy"; SI.SpecificHeatCapacity cp "heat capacity at constant pressure"; IsobaricVolumeExpansionCoefficient alpha "isobaric volume expansion coefficient"; // beta in Bejan IsothermalCompressibility gamma "isothermal compressibility"; // kappa in Bejan // Derivatives at constant pressure Real dTp=1 "coefficient in Bridgmans table, see info for usage"; Real dpT=-dTp "coefficient in Bridgmans table, see info for usage"; Real dvp=alpha*v "coefficient in Bridgmans table, see info for usage"; Real dpv=-dvp "coefficient in Bridgmans table, see info for usage"; Real dsp=cp/T "coefficient in Bridgmans table, see info for usage"; Real dps=-dsp "coefficient in Bridgmans table, see info for usage"; Real dup=cp - alpha*p*v "coefficient in Bridgmans table, see info for usage"; Real dpu=-dup "coefficient in Bridgmans table, see info for usage"; Real dhp=cp "coefficient in Bridgmans table, see info for usage"; Real dph=-dhp "coefficient in Bridgmans table, see info for usage"; Real dfp=-s - alpha*p*v "coefficient in Bridgmans table, see info for usage"; Real dpf=-dfp "coefficient in Bridgmans table, see info for usage"; Real dgp=-s "coefficient in Bridgmans table, see info for usage"; Real dpg=-dgp "coefficient in Bridgmans table, see info for usage"; // Derivatives at constant Temperature Real dvT=gamma*v "coefficient in Bridgmans table, see info for usage"; Real dTv=-dvT "coefficient in Bridgmans table, see info for usage"; Real dsT=alpha*v "coefficient in Bridgmans table, see info for usage"; Real dTs=-dsT "coefficient in Bridgmans table, see info for usage"; Real duT=alpha*T*v - gamma*p*v "coefficient in Bridgmans table, see info for usage"; Real dTu=-duT "coefficient in Bridgmans table, see info for usage"; Real dhT=-v + alpha*T*v "coefficient in Bridgmans table, see info for usage"; Real dTh=-dhT "coefficient in Bridgmans table, see info for usage"; Real dfT=-gamma*p*v "coefficient in Bridgmans table, see info for usage"; Real dTf=-dfT "coefficient in Bridgmans table, see info for usage"; Real dgT=-v "coefficient in Bridgmans table, see info for usage"; Real dTg=-dgT "coefficient in Bridgmans table, see info for usage"; // Derivatives at constant v Real dsv=alpha*alpha*v*v - gamma*v*cp/T "coefficient in Bridgmans table, see info for usage"; Real dvs=-dsv "coefficient in Bridgmans table, see info for usage"; Real duv=T*alpha*alpha*v*v - gamma*v*cp "coefficient in Bridgmans table, see info for usage"; Real dvu=-duv "coefficient in Bridgmans table, see info for usage"; Real dhv=T*alpha*alpha*v*v - alpha*v*v - gamma*v*cp "coefficient in Bridgmans table, see info for usage"; Real dvh=-dhv "coefficient in Bridgmans table, see info for usage"; Real dfv=gamma*v*s "coefficient in Bridgmans table, see info for usage"; Real dvf=-dfv "coefficient in Bridgmans table, see info for usage"; Real dgv=gamma*v*s - alpha*v*v "coefficient in Bridgmans table, see info for usage"; Real dvg=-dgv "coefficient in Bridgmans table, see info for usage"; // Derivatives at constant s Real dus=dsv*p "coefficient in Bridgmans table, see info for usage"; Real dsu=-dus "coefficient in Bridgmans table, see info for usage"; Real dhs=-v*cp/T "coefficient in Bridgmans table, see info for usage"; Real dsh=-dhs "coefficient in Bridgmans table, see info for usage"; Real dfs=alpha*v*s + dus "coefficient in Bridgmans table, see info for usage"; Real dsf=-dfs "coefficient in Bridgmans table, see info for usage"; Real dgs=alpha*v*s - v*cp/T "coefficient in Bridgmans table, see info for usage"; Real dsg=-dgs "coefficient in Bridgmans table, see info for usage"; // Derivatives at constant u Real dhu=p*alpha*v*v + gamma*v*cp*p - v*cp - p*T*alpha*alpha*v*v "coefficient in Bridgmans table, see info for usage"; Real duh=-dhu "coefficient in Bridgmans table, see info for usage"; Real dfu=s*T*alpha*v - gamma*v*cp*p - gamma*v*s*p + p*T*alpha*alpha*v*v "coefficient in Bridgmans table, see info for usage"; Real duf=-dfu "coefficient in Bridgmans table, see info for usage"; Real dgu=alpha*v*v*p + alpha*v*s*T - v*cp - gamma*v*s*p "coefficient in Bridgmans table, see info for usage"; Real dug=-dgu "coefficient in Bridgmans table, see info for usage"; // Derivatives at constant h Real dfh=(s - v*alpha*p)*(v - v*alpha*T) - gamma*v*cp*p "coefficient in Bridgmans table, see info for usage"; Real dhf=-dfh "coefficient in Bridgmans table, see info for usage"; Real dgh=alpha*v*s*T - v*(s + cp) "coefficient in Bridgmans table, see info for usage"; Real dhg=-dgh "coefficient in Bridgmans table, see info for usage"; // Derivatives at constant g Real dfg=gamma*v*s*p - v*s - alpha*v*v*p "coefficient in Bridgmans table, see info for usage"; Real dgf=-dfg "coefficient in Bridgmans table, see info for usage";end BridgmansTables;
Type | Name | Default | Description |
---|---|---|---|
GibbsDerivs | g | dimensionless derivatives of Gibbs function |
Type | Name | Description |
---|---|---|
SpecificVolume | v | specific volume [m3/kg] |
Pressure | p | pressure [Pa] |
Temperature | T | temperature [K] |
SpecificEntropy | s | specific entropy [J/(kg.K)] |
SpecificHeatCapacity | cp | heat capacity at constant pressure [J/(kg.K)] |
IsobaricVolumeExpansionCoefficient | alpha | isobaric volume expansion coefficient [1/K] |
IsothermalCompressibility | gamma | isothermal compressibility [1/Pa] |
function gibbsToBridgmansTables "calculates base coefficients for bridgemans tables from gibbs enthalpy" extends Modelica.Icons.Function; input GibbsDerivs g "dimensionless derivatives of Gibbs function"; output SI.SpecificVolume v "specific volume"; output SI.Pressure p=g.p "pressure"; output SI.Temperature T=g.T "temperature"; output SI.SpecificEntropy s "specific entropy"; output SI.SpecificHeatCapacity cp "heat capacity at constant pressure"; output IsobaricVolumeExpansionCoefficient alpha "isobaric volume expansion coefficient"; // beta in Bejan output IsothermalCompressibility gamma "isothermal compressibility"; // kappa in Bejan protected Real vt(unit="m3/(kg.K)") "derivative of specific volume w.r.t. temperature"; Real vp(unit="m4.kg-2.s2") "derivative of specific volume w.r.t. pressure"; algorithm vt := g.R/g.p*(g.pi*g.gpi - g.tau*g.pi*g.gtaupi); vp := g.R*g.T/(g.p*g.p)*g.pi*g.pi*g.gpipi; v := (g.R*g.T*g.pi*g.gpi)/g.p; s := g.R*(g.tau*g.gtau - g.g); cp := -g.R*g.tau*g.tau*g.gtautau; alpha := vt/v; gamma := -vp/v; end gibbsToBridgmansTables;
Type | Name | Default | Description |
---|---|---|---|
HelmholtzDerivs | f | dimensionless derivatives of Helmholtz function |
Type | Name | Description |
---|---|---|
SpecificVolume | v | specific volume [m3/kg] |
Pressure | p | pressure [Pa] |
Temperature | T | temperature [K] |
SpecificEntropy | s | specific entropy [J/(kg.K)] |
SpecificHeatCapacity | cp | heat capacity at constant pressure [J/(kg.K)] |
IsobaricVolumeExpansionCoefficient | alpha | isobaric volume expansion coefficient [1/K] |
IsothermalCompressibility | gamma | isothermal compressibility [1/Pa] |
function helmholtzToBridgmansTables "calculates base coefficients for Bridgmans tables from helmholtz energy" extends Modelica.Icons.Function; input HelmholtzDerivs f "dimensionless derivatives of Helmholtz function"; output SI.SpecificVolume v=1/f.d "specific volume"; output SI.Pressure p "pressure"; output SI.Temperature T=f.T "temperature"; output SI.SpecificEntropy s "specific entropy"; output SI.SpecificHeatCapacity cp "heat capacity at constant pressure"; output IsobaricVolumeExpansionCoefficient alpha "isobaric volume expansion coefficient"; // beta in Bejan output IsothermalCompressibility gamma "isothermal compressibility"; // kappa in Bejan protected DerPressureByTemperature pt "derivative of pressure w.r.t. temperature"; DerPressureBySpecificVolume pv "derivative of pressure w.r.t. specific volume "; SI.SpecificHeatCapacity cv "isochoric specific heat capacity"; algorithm p := f.R*f.d*f.T*f.delta*f.fdelta; pv := -(f.d*f.d)*f.R*f.T*f.delta*(2.0*f.fdelta + f.delta*f.fdeltadelta); pt := f.R*f.d*f.delta*(f.fdelta - f.tau*f.fdeltatau); s := f.R*(f.tau*f.ftau - f.f); alpha := -f.d*pt/pv; gamma := -f.d/pv; cp := f.R*(-f.tau*f.tau*f.ftautau + (f.delta*f.fdelta - f.delta*f.tau*f. fdeltatau)^2/(2*f.delta*f.fdelta + f.delta*f.delta*f.fdeltadelta)); end helmholtzToBridgmansTables;
Type | Name | Default | Description |
---|---|---|---|
GibbsDerivs | g | dimensionless derivatives of Gibbs function |
Type | Name | Description |
---|---|---|
PhaseBoundaryProperties | sat | phase boundary properties |
function gibbsToBoundaryProps "calulate phase boundary property record from dimensionless Gibbs function" extends Modelica.Icons.Function; input GibbsDerivs g "dimensionless derivatives of Gibbs function"; output PhaseBoundaryProperties sat "phase boundary properties"; protected Real vt "derivative of specific volume w.r.t. temperature"; Real vp "derivative of specific volume w.r.t. pressure"; algorithm sat.d := g.p/(g.R*g.T*g.pi*g.gpi); sat.h := g.R*g.T*g.tau*g.gtau; sat.u := g.T*g.R*(g.tau*g.gtau - g.pi*g.gpi); sat.s := g.R*(g.tau*g.gtau - g.g); sat.cp := -g.R*g.tau*g.tau*g.gtautau; sat.cv := g.R*(-g.tau*g.tau*g.gtautau + (g.gpi - g.tau*g.gtaupi)*(g.gpi - g. tau*g.gtaupi)/(g.gpipi)); vt := g.R/g.p*(g.pi*g.gpi - g.tau*g.pi*g.gtaupi); vp := g.R*g.T/(g.p*g.p)*g.pi*g.pi*g.gpipi; // sat.kappa := -1/(sat.d*g.p)*sat.cp/(vp*sat.cp + vt*vt*g.T); sat.pt := -g.p/g.T*(g.gpi - g.tau*g.gtaupi)/(g.gpipi*g.pi); sat.pd := -g.R*g.T*g.gpi*g.gpi/(g.gpipi); end gibbsToBoundaryProps;
Type | Name | Default | Description |
---|---|---|---|
HelmholtzDerivs | f | dimensionless derivatives of Helmholtz function |
Type | Name | Description |
---|---|---|
PhaseBoundaryProperties | sat | phase boundary property record |
function helmholtzToBoundaryProps "calulate phase boundary property record from dimensionless Helmholtz function" extends Modelica.Icons.Function; input HelmholtzDerivs f "dimensionless derivatives of Helmholtz function"; output PhaseBoundaryProperties sat "phase boundary property record"; protected SI.Pressure p "pressure"; algorithm p := f.R*f.d*f.T*f.delta*f.fdelta; sat.d := f.d; sat.h := f.R*f.T*(f.tau*f.ftau + f.delta*f.fdelta); sat.s := f.R*(f.tau*f.ftau - f.f); sat.u := f.R*f.T*f.tau*f.ftau; sat.cp := f.R*(-f.tau*f.tau*f.ftautau + (f.delta*f.fdelta - f.delta*f.tau*f. fdeltatau)^2/(2*f.delta*f.fdelta + f.delta*f.delta*f.fdeltadelta)); sat.cv := f.R*(-f.tau*f.tau*f.ftautau); sat.pt := f.R*f.d*f.delta*(f.fdelta - f.tau*f.fdeltatau); sat.pd := f.R*f.T*f.delta*(2.0*f.fdelta + f.delta*f.fdeltadelta); end helmholtzToBoundaryProps;
Type | Name | Default | Description |
---|---|---|---|
PhaseBoundaryProperties | liq | properties on the boiling curve | |
PhaseBoundaryProperties | vap | properties on the condensation curve | |
MassFraction | x | vapour mass fraction [1] | |
Temperature | T | temperature [K] | |
Pressure | p | preoperties [Pa] |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | cv | isochoric specific heat capacity [J/(kg.K)] |
function cv2Phase "compute isochoric specific heat capacity inside the two-phase region" extends Modelica.Icons.Function; input PhaseBoundaryProperties liq "properties on the boiling curve"; input PhaseBoundaryProperties vap "properties on the condensation curve"; input SI.MassFraction x "vapour mass fraction"; input SI.Temperature T "temperature"; input SI.Pressure p "preoperties"; output SI.SpecificHeatCapacity cv "isochoric specific heat capacity"; protected Real dpT "derivative of pressure w.r.t. temperature"; Real dxv "derivative of vapour mass fraction w.r.t. specific volume"; Real dvTl "derivative of liquid specific volume w.r.t. temperature"; Real dvTv "derivative of vapour specific volume w.r.t. temperature"; Real duTl "derivative of liquid specific inner energy w.r.t. temperature"; Real duTv "derivative of vapour specific inner energy w.r.t. temperature"; Real dxt "derivative of vapour mass fraction w.r.t. temperature"; algorithm dxv := if (liq.d <> vap.d) then liq.d*vap.d/(liq.d - vap.d) else 0.0; dpT := (vap.s - liq.s)*dxv; // wrong at critical point dvTl := (liq.pt - dpT)/liq.pd/liq.d/liq.d; dvTv := (vap.pt - dpT)/vap.pd/vap.d/vap.d; dxt := -dxv*(dvTl + x*(dvTv - dvTl)); duTl := liq.cv + (T*liq.pt - p)*dvTl; duTv := vap.cv + (T*vap.pt - p)*dvTv; cv := duTl + x*(duTv - duTl) + dxt*(vap.u - liq.u); end cv2Phase;
Type | Name | Default | Description |
---|---|---|---|
PhaseBoundaryProperties | liq | properties on the boiling curve | |
PhaseBoundaryProperties | vap | properties on the condensation curve | |
MassFraction | x | vapour mass fraction [1] | |
Temperature | T | temperature [K] | |
Pressure | p | preoperties [Pa] |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | cv | isochoric specific heat capacity [J/(kg.K)] |
Real | dpT | derivative of pressure w.r.t. temperature |
function cvdpT2Phase "compute isochoric specific heat capacity inside the two-phase region and derivative of pressure w.r.t. temperature" extends Modelica.Icons.Function; input PhaseBoundaryProperties liq "properties on the boiling curve"; input PhaseBoundaryProperties vap "properties on the condensation curve"; input SI.MassFraction x "vapour mass fraction"; input SI.Temperature T "temperature"; input SI.Pressure p "preoperties"; output SI.SpecificHeatCapacity cv "isochoric specific heat capacity"; output Real dpT "derivative of pressure w.r.t. temperature"; protected Real dxv "derivative of vapour mass fraction w.r.t. specific volume"; Real dvTl "derivative of liquid specific volume w.r.t. temperature"; Real dvTv "derivative of vapour specific volume w.r.t. temperature"; Real duTl "derivative of liquid specific inner energy w.r.t. temperature"; Real duTv "derivative of vapour specific inner energy w.r.t. temperature"; Real dxt "derivative of vapour mass fraction w.r.t. temperature"; algorithm dxv := if (liq.d <> vap.d) then liq.d*vap.d/(liq.d - vap.d) else 0.0; dpT := (vap.s - liq.s)*dxv; // wrong at critical point dvTl := (liq.pt - dpT)/liq.pd/liq.d/liq.d; dvTv := (vap.pt - dpT)/vap.pd/vap.d/vap.d; dxt := -dxv*(dvTl + x*(dvTv - dvTl)); duTl := liq.cv + (T*liq.pt - p)*dvTl; duTv := vap.cv + (T*vap.pt - p)*dvTv; cv := duTl + x*(duTv - duTl) + dxt*(vap.u - liq.u); end cvdpT2Phase;
Type | Name | Default | Description |
---|---|---|---|
GibbsDerivs | g | dimensionless derivatives of Gibbs function |
Type | Name | Description |
---|---|---|
ExtraDerivatives | dpro | additional property derivatives |
function gibbsToExtraDerivs "compute additional thermodynamic derivatives from dimensionless Gibbs function" extends Modelica.Icons.Function; input GibbsDerivs g "dimensionless derivatives of Gibbs function"; output ExtraDerivatives dpro "additional property derivatives"; protected Real vt "derivative of specific volume w.r.t. temperature"; Real vp "derivative of specific volume w.r.t. pressure"; SI.Density d "density"; SI.SpecificVolume v "specific volume"; SI.SpecificHeatCapacity cv "isochoric heat capacity"; SI.SpecificHeatCapacity cp "isobaric heat capacity"; algorithm d := g.p/(g.R*g.T*g.pi*g.gpi); v := 1/d; vt := g.R/g.p*(g.pi*g.gpi - g.tau*g.pi*g.gtaupi); vp := g.R*g.T/(g.p*g.p)*g.pi*g.pi*g.gpipi; cp := -g.R*g.tau*g.tau*g.gtautau; cv := g.R*(-g.tau*g.tau*g.gtautau + (g.gpi - g.tau*g.gtaupi)*(g.gpi - g.tau *g.gtaupi)/g.gpipi); dpro.kappa := -1/(d*g.p)*cp/(vp*cp + vt*vt*g.T); dpro.theta := cp/(d*g.p*(-vp*cp + vt*v - g.T*vt*vt)); dpro.alpha := d*vt; dpro.beta := -vt/(g.p*vp); dpro.gamma := -d*vp; dpro.mu := -(v - g.T*vt)/cp; end gibbsToExtraDerivs;
Type | Name | Default | Description |
---|---|---|---|
HelmholtzDerivs | f | dimensionless derivatives of Helmholtz function |
Type | Name | Description |
---|---|---|
ExtraDerivatives | dpro | additional property derivatives |
function helmholtzToExtraDerivs "compute additional thermodynamic derivatives from dimensionless Helmholtz function" extends Modelica.Icons.Function; input HelmholtzDerivs f "dimensionless derivatives of Helmholtz function"; output ExtraDerivatives dpro "additional property derivatives"; protected SI.Pressure p "pressure"; SI.SpecificVolume v "specific volume"; DerPressureByTemperature pt "derivative of pressure w.r.t. temperature"; DerPressureBySpecificVolume pv "derivative of pressure w.r.t. specific volume"; SI.SpecificHeatCapacity cv "isochoric specific heat capacity"; algorithm v := 1/f.d; p := f.R*f.d*f.T*f.delta*f.fdelta; pv := -(f.d*f.d)*f.R*f.T*f.delta*(2.0*f.fdelta + f.delta*f.fdeltadelta); pt := f.R*f.d*f.delta*(f.fdelta - f.tau*f.fdeltatau); cv := f.R*(-f.tau*f.tau*f.ftautau); dpro.kappa := 1/(f.d*p)*((-pv*cv + pt*pt*f.T)/(cv)); dpro.theta := -1/(f.d*p)*((-pv*cv + f.T*pt*pt)/(cv + pt*v)); dpro.alpha := -f.d*pt/pv; dpro.beta := pt/p; dpro.gamma := -f.d/pv; dpro.mu := (v*pv + f.T*pt)/(pt*pt*f.T - pv*cv); end helmholtzToExtraDerivs;
Type | Name | Default | Description |
---|---|---|---|
HelmholtzDerivs | f | dimensionless derivatives of Helmholtz function |
Type | Name | Description |
---|---|---|
NewtonDerivatives_ph | nderivs | derivatives for Newton iteration to calculate d and t from p and h |
function Helmholtz_ph "function to calculate analytic derivatives for computing d and t given p and h" extends Modelica.Icons.Function; input HelmholtzDerivs f "dimensionless derivatives of Helmholtz function"; output NewtonDerivatives_ph nderivs "derivatives for Newton iteration to calculate d and t from p and h"; protected SI.SpecificHeatCapacity cv "isochoric heat capacity"; algorithm cv := -f.R*(f.tau*f.tau*f.ftautau); nderivs.p := f.d*f.R*f.T*f.delta*f.fdelta; nderivs.h := f.R*f.T*(f.tau*f.ftau + f.delta*f.fdelta); nderivs.pd := f.R*f.T*f.delta*(2.0*f.fdelta + f.delta*f.fdeltadelta); nderivs.pt := f.R*f.d*f.delta*(f.fdelta - f.tau*f.fdeltatau); nderivs.ht := cv + nderivs.pt/f.d; nderivs.hd := (nderivs.pd - f.T*nderivs.pt/f.d)/f.d; end Helmholtz_ph;
Type | Name | Default | Description |
---|---|---|---|
HelmholtzDerivs | f | dimensionless derivatives of Helmholtz function |
Type | Name | Description |
---|---|---|
NewtonDerivatives_pT | nderivs | derivatives for Newton iteration to compute d and t from p and t |
function Helmholtz_pT "function to calculate analytic derivatives for computing d and t given p and t" extends Modelica.Icons.Function; input HelmholtzDerivs f "dimensionless derivatives of Helmholtz function"; output NewtonDerivatives_pT nderivs "derivatives for Newton iteration to compute d and t from p and t"; algorithm nderivs.p := f.d*f.R*f.T*f.delta*f.fdelta; nderivs.pd := f.R*f.T*f.delta*(2.0*f.fdelta + f.delta*f.fdeltadelta); end Helmholtz_pT;
Type | Name | Default | Description |
---|---|---|---|
HelmholtzDerivs | f | dimensionless derivatives of Helmholtz function |
Type | Name | Description |
---|---|---|
NewtonDerivatives_ps | nderivs | derivatives for Newton iteration to compute d and t from p and s |
function Helmholtz_ps "function to calculate analytic derivatives for computing d and t given p and s" extends Modelica.Icons.Function; input HelmholtzDerivs f "dimensionless derivatives of Helmholtz function"; output NewtonDerivatives_ps nderivs "derivatives for Newton iteration to compute d and t from p and s"; protected SI.SpecificHeatCapacity cv "isochoric heat capacity"; algorithm cv := -f.R*(f.tau*f.tau*f.ftautau); nderivs.p := f.d*f.R*f.T*f.delta*f.fdelta; nderivs.s := f.R*(f.tau*f.ftau - f.f); nderivs.pd := f.R*f.T*f.delta*(2.0*f.fdelta + f.delta*f.fdeltadelta); nderivs.pt := f.R*f.d*f.delta*(f.fdelta - f.tau*f.fdeltatau); nderivs.st := cv/f.T; nderivs.sd := -nderivs.pt/(f.d*f.d); end Helmholtz_ps;
This function is used to approximate the equation
y = if x > 0 then y1 else y2;
by a smooth characteristic, so that the expression is continuous and differentiable:
y = smooth(1, if x > x_small then y1 else if x < -x_small then y2 else f(y1, y2));
In the region -x_small < x < x_small a 2nd order polynomial is used for a smooth transition from y1 to y2.
If mass fractions X[:] are approximated with this function then this can be performed for all nX mass fractions, instead of applying it for nX-1 mass fractions and computing the last one by the mass fraction constraint sum(X)=1. The reason is that the approximating function has the property that sum(X) = 1, provided sum(X_a) = sum(X_b) = 1 (and y1=X_a[i], y2=X_b[i]). This can be shown by evaluating the approximating function in the abs(x) < x_small region (otherwise X is either X_a or X_b):
X[1] = smoothStep(x, X_a[1] , X_b[1] , x_small); X[2] = smoothStep(x, X_a[2] , X_b[2] , x_small); ... X[nX] = smoothStep(x, X_a[nX], X_b[nX], x_small);
or
X[1] = c*(X_a[1] - X_b[1]) + (X_a[1] + X_b[1])/2 X[2] = c*(X_a[2] - X_b[2]) + (X_a[2] + X_b[2])/2; ... X[nX] = c*(X_a[nX] - X_b[nX]) + (X_a[nX] + X_b[nX])/2; c = (x/x_small)*((x/x_small)^2 - 3)/4
Summing all mass fractions together results in
sum(X) = c*(sum(X_a) - sum(X_b)) + (sum(X_a) + sum(X_b))/2 = c*(1 - 1) + (1 + 1)/2 = 1
Extends from Modelica.Icons.Function (Icon for a function).
Type | Name | Default | Description |
---|---|---|---|
Real | x | Abszissa value | |
Real | y1 | Ordinate value for x > 0 | |
Real | y2 | Ordinate value for x < 0 | |
Real | x_small | 1e-5 | Approximation of step for -x_small <= x <= x_small; x_small > 0 required |
Type | Name | Description |
---|---|---|
Real | y | Ordinate value to approximate y = if x > 0 then y1 else y2 |
function smoothStep "Approximation of a general step, such that the characteristic is continuous and differentiable" extends Modelica.Icons.Function; input Real x "Abszissa value"; input Real y1 "Ordinate value for x > 0"; input Real y2 "Ordinate value for x < 0"; input Real x_small(min=0) = 1e-5 "Approximation of step for -x_small <= x <= x_small; x_small > 0 required"; output Real y "Ordinate value to approximate y = if x > 0 then y1 else y2"; algorithm y := smooth(1, if x > x_small then y1 else if x < -x_small then y2 else if abs(x_small)>0 then (x/x_small)*((x/x_small)^2 - 3)*(y2-y1)/4 + (y1+y2)/2 else (y1+y2)/2);end smoothStep;