Buildings.Fluid.HeatPumps.Calibration.BaseClasses

Base classes for calibration of heat pump models

Information

This package contains base classes that are used to construct the models in Buildings.Fluid.HeatPumps.Calibration.

Extends from Modelica.Icons.BasesPackage (Icon for packages containing base classes).

Package Content

Name Description
Buildings.Fluid.HeatPumps.Calibration.BaseClasses.PartialWaterToWater PartialWaterToWater Partial model for calibration of water to water heat pumps

Buildings.Fluid.HeatPumps.Calibration.BaseClasses.PartialWaterToWater

Partial model for calibration of water to water heat pumps

Buildings.Fluid.HeatPumps.Calibration.BaseClasses.PartialWaterToWater

Information

Base class for the calibration of water to water heat pump models.

Source and load temperatures and flow rates are read from an external time table.

Parameters

TypeNameDefaultDescription
replaceable package Medium1Modelica.Media.Interfaces.Pa...Medium model at the condenser side
replaceable package Medium2Modelica.Media.Interfaces.Pa...Medium model at the evaporator side
replaceable package refBuildings.Media.Refrigerants...Refrigerant model
MassFlowRatem1_flow_nominal Nominal mass flow rate on condenser side [kg/s]
MassFlowRatem2_flow_nominal Nominal mass flow rate on evaporator side [kg/s]
Pressuredp1_nominal1000Pressure drop at nominal mass flow rate on condenser side [Pa]
Pressuredp2_nominal1000Pressure drop at nominal mass flow rate on evaporator side [Pa]
ThermalConductanceUACon Thermal conductance of condenser [W/K]
ThermalConductanceUAEva Thermal conductance of evaporator [W/K]
PartialWaterToWaterheaPumredeclare Buildings.Fluid.He... 

Connectors

TypeNameDescription
replaceable package Medium1Medium model at the condenser side
replaceable package Medium2Medium model at the evaporator side
replaceable package refRefrigerant model

Modelica definition

model PartialWaterToWater "Partial model for calibration of water to water heat pumps" replaceable package Medium1 = Modelica.Media.Interfaces.PartialMedium "Medium model at the condenser side"; replaceable package Medium2 = Modelica.Media.Interfaces.PartialMedium "Medium model at the evaporator side"; replaceable package ref = Buildings.Media.Refrigerants.R410A "Refrigerant model"; parameter Modelica.Units.SI.MassFlowRate m1_flow_nominal "Nominal mass flow rate on condenser side"; parameter Modelica.Units.SI.MassFlowRate m2_flow_nominal "Nominal mass flow rate on evaporator side"; parameter Modelica.Units.SI.Pressure dp1_nominal=1000 "Pressure drop at nominal mass flow rate on condenser side"; parameter Modelica.Units.SI.Pressure dp2_nominal=1000 "Pressure drop at nominal mass flow rate on evaporator side"; parameter Modelica.Units.SI.ThermalConductance UACon "Thermal conductance of condenser"; parameter Modelica.Units.SI.ThermalConductance UAEva "Thermal conductance of evaporator"; Modelica.Blocks.Sources.CombiTimeTable calDat( tableOnFile=true, columns=2:5); Modelica.Blocks.Routing.DeMultiplex4 splDat "De-multiplex"; Buildings.Fluid.Sources.Boundary_pT sin2( redeclare final package Medium = Medium2, nPorts=1) "Boundary condition"; Modelica.Fluid.Sources.MassFlowSource_T Sou( redeclare final package Medium = Medium2, nPorts=1, use_m_flow_in=true, use_T_in=true) "Mass flow source"; Buildings.Fluid.Sources.Boundary_pT sin1( redeclare final package Medium = Medium1, nPorts=1) "Pressure boundary condition"; Modelica.Fluid.Sources.MassFlowSource_T loa( redeclare final package Medium = Medium1, nPorts=1, use_m_flow_in=true, use_T_in=true) "Mass flow source"; replaceable Buildings.Fluid.HeatPumps.BaseClasses.PartialWaterToWater heaPum constrainedby Buildings.Fluid.HeatPumps.BaseClasses.PartialWaterToWater( redeclare final package Medium1 = Medium1, redeclare final package Medium2 = Medium2, redeclare final package ref = ref, final m1_flow_nominal=m1_flow_nominal, final m2_flow_nominal=m2_flow_nominal, final dp1_nominal=dp1_nominal, final dp2_nominal=dp2_nominal, enable_variable_speed=false, show_T=true); Modelica.Blocks.Sources.IntegerConstant isOn(k=1) "Control signal"; equation connect(calDat.y, splDat.u); connect(splDat.y1[1], Sou.T_in); connect(splDat.y3[1], Sou.m_flow_in); connect(splDat.y4[1],loa.m_flow_in); connect(loa.ports[1], heaPum.port_a1); connect(sin2.ports[1], heaPum.port_b2); connect(Sou.ports[1], heaPum.port_a2); connect(sin1.ports[1], heaPum.port_b1); connect(splDat.y2[1],loa.T_in); connect(isOn.y, heaPum.stage); end PartialWaterToWater;