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Scope	
  
This chapter presents what a future environment for building system modeling and simulation 
may look like. As buildings continue to require increased performance and better comfort, their 
energy and control systems are becoming more integrated and complex. We therefore focus in 
this chapter on the modeling, simulation and analysis of building energy and control systems. 
Such systems can be classified as heterogeneous systems because they involve multiple domains, 
such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control 
systems and communication systems. Also, they typically involve multiple temporal and spatial 
scales, and their evolution can be described by coupled differential equations, discrete equations 
and events. Modeling and simulating such systems requires a higher level of abstraction and 
modularisation to manage the increased complexity compared to what is used in today’s building 
simulation programs. Therefore, the trend towards more integrated building systems is likely to 
be a driving force for changing the status quo of today’s building simulation programs. This 
chapter discusses evolving modeling requirements and outlines a path toward a future 
environment for modeling and simulation of heterogeneous building systems. 
 
A range of topics that would require many additional pages of discussion has been omitted. 
Examples include computational fluid dynamics for air and particle flow in and around buildings, 
people movement, daylight simulation, uncertainty propagation and optimisation methods for 
building design and controls. For different discussions and perspectives on the future of building 
modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and 
Augenbroe (2004). 

Learning	
  objectives	
  
The learning objective of this chapter is to better understand the limitations of existing building 
simulation programs to model and simulate the performance of integrated building energy and 
control systems and how recent advances can overcome these limitations. In this chapter, the 
reader will be exposed to (i) motivating factors that may change the way we model and simulate 
building energy and control systems, (ii) technologies that enable such a change, and (iii) a path 
for realizing a next generation modeling and simulation environment. While an in-depth 
discussion of the various enabling technologies is not possible in a single chapter, the reader will 
be exposed to the main concepts, and references to further literature are provided. 
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Introduction	
  	
  
Imagine an integrated design team sketching a building envelope in an object-oriented CAD 
system. A dashboard provides immediate feedback about the environmental impact and life cycle 
costs as different design variants are tested. After developing an initial building design, the 
HVAC engineer downloads the Building Information Model (BIM), i.e., an electronic 
representation of the building parameters, draws the HVAC schematic diagram and drags 
standard supervisory control sequences from a library into the schematic diagram. At the press of 
a button, the HVAC engineer runs a whole building energy analysis and sizes the components 
while taking into account the reduced component size due to exploitation of free cooling and 
active facade systems. Next, the HVAC engineer replaces the simplified component models with 
refined equipment models downloaded from an electronic catalogue. The models in this catalogue 
have been used by the manufacturer during the product development and can represent the 
physical behaviour at different levels of temporal and spatial resolution; simplified performance 
models are used for annual energy analysis while detailed models may later be used during 
operation to determine a chiller’s refrigerant charge in a fault detection and diagnostics program. 
After the HVAC engineer specifies the equipment, she/he uploads the data to the BIM that will be 
submitted to code authorities for performance-based code compliance checking within minutes 
and to generate bidding materials and construction plans. During building operation, the BIM 
data will be integrated with models and algorithms for optimisation-based control, fault detection, 
diagnostics and preventive maintenance. 
 
 
 

 
Figure 1: Modeling vs. simulation. (Adapted from Cellier and Kofman (2006), with kind 
permission of Springer Science+Business Media.) 
 
 
What building simulation program will support such a life-cycle approach to simulation from 
product R&D to building operation? This is a focus of this chapter. Central to our discussion is 
the belief that the next generation tools that interface with the workflow of simulationists are not 
building simulation programs in the conventional sense. To explain this, we use the illustration 
from Cellier and Kofman (2006), shown in Figure 1, which distinguishes between the 
mathematical model and the simulation program. Cellier and Kofman state that the whole 
purpose of a mathematical model is to provide the human user of the modeling and simulation 
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environment with a means to present knowledge about the physical system in a way that is as 
convenient to the user as possible. This may be for a building envelope an object-oriented CAD 
system, for an HVAC system a graphical schematic editor and for control systems a block 
diagram and finite state machines. Thus, the mathematical model represents the user interface. 
The mathematical model does not depend on how it is going to be used by the simulation 
program. The primary purpose of the simulation program is to compute the system response, 
typically in the form of time trajectories. The simulation program is automatically generated from 
the mathematical model. It typically provides a run-time interface with which the user can control 
the simulation process. Such a separation between mathematical model and simulation program is 
a critical underlying principle for a future modeling and simulation environment for building 
systems as we will see in this chapter. By following this principle, it is possible to structure the 
problem more naturally in the way a human thinks, and not how one computes a solution.  
 

Motivating	
  factors	
  for	
  a	
  future	
  modeling	
  and	
  simulation	
  
environment	
  	
  
To increase performance and improve comfort, building systems are becoming increasingly 
integrated. Integration is achieved physically by using systems that allow better energy recovery, 
energy storage and increased use of ambient energy sources and sinks for heating, cooling, 
ventilation and lighting. Integration is also achieved operationally by means of integrating 
controls for facade, lighting, HVAC, combined heat and power, solar systems, electrical grid and 
security. The characteristics of these systems are that they involve multiple functional domains 
(heat and mass transfer; fluid dynamics; daylighting; electricity generation and conversion; 
controls; communication across networks), and their temporal evolution may be described in the 
continuous time domain, in the discrete time domain and in a discrete event domain. Typical 
time-scales range from the order of subseconds (communication networks) to years (geothermal 
heat sources). This heterogeneity poses new challenges for modeling and simulation, which are 
used to reduce time-to-market during research and development, and to improve performance and 
cost-effectiveness during the design of innovative building energy systems and associated 
algorithms for controls, fault detection and diagnostics. 
 
Due to the increased importance of controls to improve building performance, the control 
representation in building simulation programs needs to resemble more closely how actual control 
algorithms are implemented. Given the different topologies in which building systems can be 
configured, such as using a double facade as a ventilation air exchange path or using a thermally 
activated ceiling slab for thermal storage, a future modeling environment needs to allow a more 
intuitive representation of such complex systems that allows a user to quickly add new 
component models and reconfigure components to form new systems. Furthermore, the current 
separation between model developer and model user is not conducive to stimulate innovation. 
 
Given the increased integration of different domain disciplines, a future environment for 
modeling and simulation should also enable the concurrent collaboration of multi-disciplinary 
teams, as opposed to a single person, and the sharing of models to integrate different domains. 
This may become increasingly important because much of the innovation in building science is 
likely to happen at the interface between different disciplines; for example, building physics for 
passive energy storage, mechanical systems for efficient energy conversion, controls systems for 
reducing irreversibilities (fluid flow friction and heat transfer), communication systems for 
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propagation of sensor and actuator signals and mathematics to extract better quality information 
from the vast amount of data measured by building automation systems. Addressing the need for 
different discipline experts to collaborate more effectively will require different design of future 
tools. 
 
Because embedded computing is becoming cheaper and more powerful and the performance of 
low-energy buildings is sensitive to controls and equipment degradation, it is likely that 
computational models will be used for commissioning, fault detection, diagnostics and model-
based controls. In this context, the use of models can range from an individual piece of 
equipment, such as for a chiller fault detection, or to whole communities or estates that may be 
connected by a micro-grid for electricity, heating and cooling. Since sustainable buildings will 
have a lifespan that exceeds multiple generations of programming languages, operating systems 
and building simulation programs, models used during operation should be expressed at a high 
enough level of abstraction that ensures maintainability, portability, and facilitates upgrading to 
newer technology as buildings are retrofitted. 
 
With respect to using building simulation for training of service technicians, commissioning 
agents and building operators, today’s building simulation programs fall short in teaching how 
mechanical systems and their control systems operate. At present, models of these systems are 
often so simplified that they do not capture the dynamic behaviour and part-load operation of the 
mechanical system or the response of feedback control systems. Also, in many building 
simulation programs, the governing physical equations cannot be readily inspected by the user, 
which renders them as a black-box. Immersive simulation has the potential to improve the 
knowledge about the operational behaviour of buildings by presenting results of building 
simulation in a form that is closer to the human than a graph on a computer screen. Work to date 
has been primarily focused on computation and visualisation of spatial distribution of 
temperature, flow and comfort in rooms (Malkawi, 2004; Wenisch et al., 2005). A versatile 
environment that would allow a realistic modeling and simulation of the mechanical and control 
system, and that could be reconfigured by the user to examine a variety of systems, would extend 
the promise of immersive simulation to training professionals in the operation of building 
systems. 
 
The transition towards integrated systems introduces new challenges. Effective modeling 
strategies need to manage the increased complexity, the increased fragmentation of the supply 
chain and the need for working in multidisciplinary design teams using shared models. In the 
electronics design automation community, which faces challenges that are similar to the ones of 
the building industry, there are calls for a new design science to address system-level design 
challenges (Sangiovanni-Vincentelli, 2007). The basic tenet of the advocated design flow is the 
identification of design as a meet-in-the-middle process, where successive refinements of 
specifications meet with abstractions of potential implementations. The refinement and 
abstraction process takes place at precisely-defined layers. It remains to be shown how this design 
approach can best benefit the building industry and what its implications are for building system 
models. The embedded systems community also called for a new system science that is jointly 
physical and computational in order to address challenges posed by networking physical devices 
that contain embedded control systems (Lee, 2006). In this community, the semantic of a model is 
expressed at a high enough level of abstraction to allow formal analysis of system properties and 
to generate code automatically that can be used for design, synthesis and operation. It would be a 
surprise if advances in these related disciplines would not also cause the field of building 
simulation to embrace a higher level of abstraction that better addresses challenges in research, 
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design and operation of integrated building systems. 
 
A closer look at the software architecture of today’s building simulation programs reveals that 
they are ill-suited to address the above needs. Many building simulation programs do not exploit 
advances in computer science that allow systems and their evolution to be expressed at a higher 
level of abstraction than that of imperative Fortran subroutines. Most of today's building 
simulation programs are large, monolithic programs that intertwine physics equations, statements 
that control the program flow logic, numerical solution methods, and data input and output 
routines. This makes extending these programs for applications that were not envisioned by their 
developers difficult. Lack of modularity has forced developers of building simulation programs to 
try to catch up by adding modeling capabilities that allow simulating new technologies. However, 
it may be more beneficial to develop a modular platform that can rapidly be extended and 
customised by users to drive the innovation of new systems and to integrate simulation better into 
building design and operation. In view of the gap between current building simulation programs 
and modern modeling and simulation environments, we will now take a step back to describe 
some basic needs that motivate a new approach to building system modeling and simulation. 

Needs	
  for	
  more	
  natural	
  system	
  representations	
  	
  
“Object programs produced by Fortran will be nearly as efficient as those written by good 
programmers.” This statement from the Fortran manual (IBM, 1956), released in 1956, shows 
that as early as fifty years ago, there was a trend towards languages that were closer to the 
problem at hand. Even then, experts questioned whether the “high-level” programming language 
would be adequately efficient. Today, most building simulation programs are still written using 
Fortran to encapsulate causal assignments in programming procedures. In these programs, 
procedures call other procedures, thereby transferring the locus of control from one procedure to 
another. Inside these procedures are imperative statements for algebraic equations, differential 
equations, difference equations and numerical solution algorithms. This syntax for formulating 
physical phenomena was motivated by the programming languages that were available decades 
ago. However, the syntax is far removed from how a physicist would describe the laws that relate 
physical quantities to each other or how an electrical engineer would describe communication in a 
network. 
 
Physical systems are more conveniently modeled by (i) defining an object, (ii) exposing its 
boundary conditions and (iii) encapsulating inside the object mathematical constraints between 
the boundary conditions, the state variables and their derivatives. Consider for example a model 
for a heat conducting rod that stores no energy. It is not possible to determine whether heat flows 
through the thermal conductor because its ends are at different temperatures, or whether the 
temperatures at its ends are different because of the heat flow. So why should a user have to pick 
one or the other view when writing a model for a thermal conductor? It is more natural to create 
an object that exposes heat flow rate and temperature, i.e., (Q1, T1) and (Q2, T2), and encapsulates 
the constraints  Q1+Q2=0 and Q1 = K (T1 − T2 ), where K is the heat conductance (see Figure 2). 
How these equations are solved should be left entirely to an algorithm that generates a simulation 
program. 
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Figure 2: Comparison between procedural, equation-based and actor-oriented component 
models. (Procedural and actor-oriented illustration adapted with permission from Lee (2003).) 
 
 
 
Such an equation-based, object-oriented model formulation is convenient to model physical 
systems that can be described by differential algebraic systems of equations. But is it also 
convenient to model cyber-physical systems? Cyber-physical systems are systems in which 
embedded computers and networks monitor and control physical devices with feedback loops, 
and the physical processes affect computations and vice versa (Lee, 2006). Cyber-physical 
systems are becoming increasingly prevalent in buildings, and their size, in terms of nodes that 
send and receive signals, is growing rapidly. Components in cyber-physical systems exchange a 
sequence of discrete messages with each other through wired or wireless networks, which may 
lose or delay some messages. The sequence of discrete messages describes the evolution of each 
component’s state variables. Such communication networks can be conveniently modeled by 
finite state machines. Finite state machines are objects that, if given the current state and an input, 
return the new state and an output. For computer modeling, it is convenient to represent such 
systems with actor-oriented component models.  
 
 
Figure 2 illustrates the disconnect between how building simulation programs are written and 
how the evolution of physical systems and communication systems can be described. In 
procedural programs, a procedure that belongs to a class is called. This procedure manipulates 
data, may call other procedures, and then returns to transfer the locus of control back to the 
calling procedure. This is how typical building simulation programs are written. In equation-
based programs, classes are typically encapsulated based on thermodynamic system boundaries. 
Ports are used to expose potential and flow variables (e.g., temperature and heat flow rate) 
without specifying what is input and output as this is not needed to describe physics. Acausal 
relations define constraints between the port data and between the thermodynamic states of the 
system. In actor-oriented programs, actors contain ports that receive and send tokens. A model of 
computation (Lee, 2003) specifies operational rules that determine when actors perform internal 
computations, update their states and perform external communications, which can, for example, 
be at fixed time intervals or whenever new tokens arrive. The ports are connected to other 
components’ ports in order to communicate with each other. 
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Needs	
  to	
  reduce	
  software	
  cost	
  and	
  development	
  time	
  	
  
Cellier (1996) states the main factors that reduce cost and development time of software as 
follows:  
 
Reusability: A software design methodology that ensures optimal reusability of software 
components is the most essential factor in keeping the software development and maintenance 
cost down.  
Abstraction: Higher abstraction levels at the user interface help reduce the time of software 
development as well as debugging. The conceptual distance between the user interface and the 
final production code needs to be enlarged. Software translators can perform considerably more 
tasks than they traditionally did.  
 
 
 

 
(a)  

(b) 

 
(c)  

(d) 
 

Figure 3: Representation of heat flow models with feedback control. 
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The reusability of code can be significantly increased through the use of equation-based object-
oriented models that separate acausal relations between model variables from their solution 
algorithms. For example, Figure 3 shows models of a heat conducting wall in which the heat 
input is regulated by a feed-back control loop. Only half of the wall depth has been modeled 
because the wall is assumed to be symmetric and exposed to the same boundary conditions. In 
Figure 3(a), heat is added from the object called “source” to the wall’s axis of symmetry, i.e., to 
the object called “mass1” which is at the centre of the wall. In Figure 3(b), heat is added to the 
surface of the wall. The top row shows the implementation using equation-based object-oriented 
models, where each icon encapsulates a model for an individual physical phenomenon (such as 
heat convection, heat conduction and heat storage). With this representation, the system being 
modeled is easily recognised. In contrast, the bottom row shows the same physical models, but 
they have been implemented using causal models in the form of block diagrams. Figure 3(a) and 
Figure 3(c) describe the same system, as do Figure 3(b) and Figure 3(d). Note that the top row 
also contains causal models, but only for the control system since this is most naturally 
represented using input/output blocks. The equation-based object-oriented system models are 
easier to read because the schematic model representations only defines the connectivity between 
the component models, but there is no notion of causality needed. In contrast, the block-diagrams 
in the bottom row impose causality for each component and for the information flow within the 
system models. This limits model readability and reuse. It also led to more work for creating the 
models. 
 
When developing the equation-based object-oriented model shown in the top row, each individual 
component model, such as for the heat conductor or the heat storage, could be tested individually 
in isolation of the overall system. Such unit tests help detect possible programming errors earlier 
when it is cheaper to fix them. Assembling the equation-based object-oriented system model by 
connecting lines between the components then poses little risk for introducing errors. To 
assemble the causal system model, however, gains must be computed and heat flows must be 
added and connected to the corresponding integrator, which is time consuming and presents 
opportunities to make mistakes. The left and right columns of the figure differ only in the location 
where heat is added to the construction. For the equation-based object-oriented model, all a 
modeler must do is reconnect one line; for the causal model the modeler must add and delete 
blocks and recompute gains, thus reusing a significantly smaller part of the model and possibly 
introducing mistakes. The example illustrates that the equation-based object-oriented system 
representation not only reduces development time but also allows a more natural system 
representation as discussed in the previous section.  

Needs	
  to	
  integrate	
  tools	
  in	
  a	
  coherent	
  workflow	
  	
  
Researchers and practitioners represent different user groups who use modeling and simulation 
within different workflows and therefore have different requirements that are best addressed by a 
modular environment. With a modular approach, the same underlying core of the environment 
can be used for both user groups while customized interfaces can address the individual 
requirements. An example of a modular software environment is Linux, which can be customised 
to run in embedded systems such as cell phones, in graphical desktop environments, in server 
farms and in super computers. Modularisation also makes it significantly easier for users to 
participate in program development; an example is the modular design of TRNSYS’ simulation 
components that allows a large user community to develop simulation components that extend the 
scope of the program.  
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Researchers require an environment that integrates well with computational-based rapid 
prototyping and system design processes that reduce cost and product time-to-market. The 
environment must also provide formal ways for managing the increased system complexity and 
integration challenges in heterogeneous design and supply chains (Sangiovanni-Vincentelli, 2007; 
Barnard, 2005). For product development it is common that simulation models are progressively 
replaced with more detailed models and with hardware as development progresses. Such 
processes typically include automatic code generation that translates a control algorithm 
developed in a modeling and simulation environment into code that can be downloaded to control 
hardware. New environments should allow users to add novel component and system models 
rapidly, and combine models in new system topologies to analyse new configurations for 
integrated building systems. Meeting these requirements mandates an environment that consists 
of modular models with standardised interfaces that can be individually tested and replaced with 
more detailed models as more information becomes available during the design, or supplanted by 
hardware that is linked with the simulation model.  
 
Practitioners require that a new environment for modeling and simulation integrates well with the 
building delivery process. Since BIM are becoming increasingly used, mandated by large 
building owners, supported for energy code compliance checking and profitable for design teams 
to use, it is important that the building simulation program can be generated using BIM inputs. 
Integrating BIMs into the building life cycle will require that mathematical models are 
instantiated and parameterised using data specified in or referenced by a BIM. As controls 
become increasingly important in reducing energy consumption, peak electrical power and 
downsizing or even eliminating mechanical equipment (such as eliminating a chiller if night-
ventilation of a building suffices to meet the comfort requirements), control-relevant information 
also needs to be specified by the BIM. To avoid data inconsistency between design and operation, 
and to avoid duplicate data entry, the environment should also be able to use a BIM to instantiate 
and parameterise models for model-based controls, fault detection and diagnostics. In this 
context, BIM is used in a broader sense than today and will include formal specifications of 
control sequences. The specifications will have a semantics that is expressive enough so they can 
be used during design to simulate the system performance, during bidding for estimating 
construction costs, during commissioning to verify the proper operation, and during operation for 
controlling the building system. Model instantiation and parameterisation is easiest to achieve if 
the components specified in the BIM and in the simulation model have the same modularisation 
and if the connectivity between components is only constrained by how physical laws permit real 
components to be connected. To meet these requirements, a more general approach for 
component connectivity rules is needed than what can be found in many building simulation 
programs.  

Enabling	
  technologies	
  
The previous section showed that building systems are becoming increasingly integrated across 
different functional domains. System integration increases design and operational complexity. A 
future modeling and simulation environment for building systems will address this challenge by 
using technologies that enable an intuitive representation of the system topology, the intrinsic 
behaviour of individual components and the interaction among the components once they become 
part of a system. This section discusses these technologies. 
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We will make a distinction between modeling and simulation as introduced by Cellier and 
Kofman (2006) and illustrated in Figure 1. Since building energy analysis requires large amounts 
of input data, it is convenient for our discussion to further separate mathematical modeling into 
behavioural modeling and data modeling. By behavioural modeling we mean specifying the 
mathematical equations that model a phenomenon, which Polderman and Willems (2007) call the 
behavioural equations. Behavioural models may be based on physical laws, performance curves 
or by functions that update states and outputs of a finite state machine. By data modeling we 
mean representing the static data of a system without specifying the mathematical model that 
describes how the system evolves in time. 
 
The purpose of modeling is to create a mathematical model from a physical system. From the 
mathematical model, a simulation program can be generated by using symbolic manipulations to 
sort equations, invert equations and replace derivative operators with numerical discretisation 
schemes. Generating a simulation program can be done manually by a programmer, as is the 
current practice in most building simulation programs such as in TRNSYS or EnergyPlus. 
Alternatively, it can be automated, as done in equation-based modeling environments such as 
Dymola, OpenModelica, SPARK, IDA or EES. The manual approach requires a model developer 
to write a simulation program (or subroutine), interface it with numerical solution methods, 
integrate it into the program kernel and implement methods to retrieve parameters and time-
varying inputs and to write outputs. Manually generated programs are error prone and take 
considerably more time to write than specifying the actual physical relations that govern the 
object to be modeled. Equation-based modeling, in contrast, allows a model builder to 
concentrate the effort on describing the physical constraints and state transitions that define the 
evolution of the system. Generating efficient code for numerical simulation is left to a code 
generator.  

Behavioral	
  models	
  
In the building simulation community, the need for more flexible means of constructing 
simulation models was expressed two decades ago by Sowell et al. (1986). A draft research plan 
was assembled by an international team working at the Lawrence Berkeley National Laboratory 
in 1985 for the collaborative development of a next generation building simulation program 
called the Energy Kernel System (EKS) for building simulation. A prototype software system 
called SPANK (Simulation Problem Analysis Kernel) that eventually became SPARK was 
created that contained some of the features envisioned for EKS (Sowell et al., 1986, 1989). 
Another development that embraced equation-based model formulation for building simulation is 
the Neutral Model Format (NMF) (Sahlin and Sowell, 1989; Sahlin, 1996). NMF is the primary 
modeling language used in IDA, an equation-based modeling and simulation environment that is 
used by researchers and practitioners and thas recently been used to translate and simulate models 
written in the Modelica language described below (Sahlin and Grozman, 2003). The Engineering 
Equation Solver (EES) is another equation-based modeling and simulation environment with an 
interface to thermophysical property functions, such as for steam and refrigerants (Klein and 
Alvarado, 1992). 
 
In the meantime, a significantly larger industry-driven effort has been started that includes a 
wider range of industrial sectors and academic partners. In 1996, a consortium formed to develop 
Modelica, a freely-available, equation-based object-oriented modeling language that is designed 
for component-oriented, multi-domain modeling of dynamic systems. The goal of the consortium 
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is to combine the benefits of existing modeling languages to define a new uniform language for 
model representation (Mattsson and Elmqvist, 1997; Fritzson and Engelson, 1998). Over the past 
decade, the Modelica language has gained significant adoption in various industrial sectors and 
has been used in demanding industrial applications. It is well positioned to become the de-facto 
standard for modeling complex physical or communication systems. The rise of Modelica 
provides an opportunity to revive the efforts of the International Energy Agency Task 22 to create 
a model library for building simulation, which was then implemented in NMF, that can be shared 
among different modeling and simulation environments (Vuolle et al., 1999). Modelica libraries 
for multi-domain physics include models for control, thermal, electrical and mechanical systems, 
as well as for fluid systems and different media (Elmqvist et al., 2003; Casella et al., 2006). 
Modelica models can contain differential equations, algebraic equations and discrete equations. 
Using standardised interfaces, a model’s mathematical relations among its interface variables are 
encapsulated, and the model can be represented graphically by an icon. The encapsulation 
facilitates model reuse and exchange and allows connecting component models to system models 
using a graphical or textual editor. The tenets of Modelica models are that each component 
represents a physical device with physical interface ports, such as heat flow rate and temperature 
for solid ports and pressure, species flow and enthalpy for fluid ports. Defining a device- and 
physics-oriented system architecture enables intuitive model construction. The Modelica 
approach is realised by following the object-oriented modeling paradigm, a term that was coined 
by Elmqvist (1978) and summarised by Cellier et al. (1995) as follows:  
 
Encapsulation of knowledge: The modeler must be able to encode all knowledge related to a 
particular object in a compact fashion in one place with well-defined interface points to the 
outside.  
Topological interconnection capability: The modeler should be able to interconnect objects in a 
topological fashion, plugging together component models in the same way as an experimenter 
would plug together real equipment in a laboratory. This requirement entails that the equations 
describing the models must be declarative in nature, i.e., they must be acausal.  
Hierarchical modeling: The modeler should be able to declare interconnected models as new 
objects, making them indistinguishable from the outside from the basic equation models. Models 
can then be built up in a hierarchical fashion.  
Object instantiation: The modeler should have the possibility to describe generic object classes, 
and instantiate actual objects from these class definitions by a mechanism of model invocation.  
Class inheritance: A useful feature is class inheritance, since it allows encapsulation of 
knowledge even below the level of a physical object. The so encapsulated knowledge can then be 
distributed through the model by an inheritance mechanism, which ensures that the same 
knowledge will not have to be encoded several times in different places of the model separately.  
Generalised Networking Capability: A useful feature of a modeling environment is the 
capability to interconnect models through nodes. Nodes are different from regular models 
(objects) in that they offer a variable number of connections to them. This feature mandates the 
availability of across and through variables, so that power continuity across the nodes can be 
guaranteed.  
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(a) View of the system model and the HVAC model 
 

 
(b) View of a section of the multizone building model 

 
Figure 4: Schematic view of a building system model in Modelica that was constructed using 
different hierarchical layers to manage the model complexity, and that decomposes different 
domains. In the top figure (a), on the left, there are models for the HVAC system (top), for the 
interzonal air flow (middle) and for the building envelope heat transfer (bottom), which are 
connected to each other by fluid loops and control signals to form a coupled system of equations. 
The top right shows the inside of the HVAC system definition for each thermal zone, with an icon 
for the HVAC secondary loop, for the controller and for the user that may adjust the set points to 
maintain comfort. The bottom right shows the actual implementation of the HVAC secondary 
loop with the heat exchangers, the fans and pumps. The bottom figure (b), shows a section of the 
multizone building model with models for the rooms that are connected to each other with finite 
difference heat transfer models. Also shown are models for the thermal comfort. 
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Figure 4 illustrates how a multizone building model was created by graphically connecting 
physical ports for heat flow rate, air flow rate and control signals of thermal zone models, airflow 
models and HVAC system models. Each icon encapsulates a model that may encapsulate other 
models, thus allowing a model builder to manage the complexity of large system models through 
hierarchical modeling. Hierarchical model building also facilitates model reuse and testing of 
submodels before they are assembled as a large system model that may be difficult to debug. 
Object-oriented model construction with clearly defined encapsulations accelerates model 
development by allowing concurrent construction of multiple process models by their respective 
experts. For example, the HVAC and controls engineer can construct their models simultaneously 
and combine them later to a system model. The concurrent workflow with subsequent model 
combination is illustrated by Figure 4(a). On the left side of the figure, the three separate models 
represent the HVAC systems, the interzonal air flow and the building heat transfer (Wetter, 
2006a,b). The different domain models are integrated with each other by drawing lines between 
the model ports. The lines automatically generate equality constraints for across variables 
(temperature, pressure) and conservation equations for through variables (heat flow rate, mass 
flow rate).  
 
Libraries of component models that allow assembling such systems are created using objects with 
standardised interfaces that define all independent variables necessary to describe the desired 
effect. Using these standardised interfaces makes models compatible with each other without 
having to add converters that convert one set of interface data into another one. For example, in 
Modelica’s thermal library there is a connector called HeatPort that defines an interface for 
elements that transfer or store heat by introducing the tuple temperature and heat flow rate as 

 
1 partial connector 
2   Modelica.Thermal.HeatTransfer.Interfaces.HeatPort  
3      "Thermal port for 1-D heat transfer"; 
4   SI.Temperature T "Port temperature"; 
5   flow SI.HeatFlowRate Q_flow  
6     "Heat flow rate (positive if flowing into the component)"; 
7 end HeatPort; 
 

The keyword flow declares that all variables connected to Q_flow need to sum to zero. For 
example, if two HeatPorts that are called port1 and port2 are connected, a Modelica 
translator will generate the equality constraint port1.T = port2.T and the conservation 
equation port1.Q_flow + port2.Q_flow = 0. Similar connectors are defined for other 
physical interfaces including fluid ports, electrical signals and translational and rotational bodies. 
The above heat port connector is used to define an interface for one-dimensional heat transfer 
elements with no energy storage in the following partial model: 
  
 1 partial model Element1D 
 2   "Partial heat transfer element that does not store energy" 
 3   SI.HeatFlowRate Q_flow "Heat flow rate"; 
 4   SI.Temperature dT "port_a.T-port_b.T"; 
 5   HeatPort port_a; 
 6   HeatPort port_b; 
 7  equation 
 8   dT = port_a.T - port_b.T; 
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 9   port_a.Q_flow = Q_flow; 
10   port_b.Q_flow = -Q_flow; 
11 end Element1D; 

  
This model is incomplete because it does not specify how temperatures and heat flow rate depend 
on each other. This incompleteness is denoted by the keyword partial which has two 
purposes: It shows to a user that the model cannot be instantiated, and it tells a Modelica 
translator that the model is allowed to have more variables than equations, which is used for 
automatic error checking. To define a complete model, the above partial model is used to define a 
thermal conductor as 
  
1 model ThermalConductor 
2   "Thermal element transporting heat without storage" 
3   extends Interfaces.Element1D; 
4   parameter SI.ThermalConductance G "Thermal conductance"; 
5 equation 
6   Q_flow = G*dT; 
7 end ThermalConductor; 

 
The thermal conductor model is graphically represented by an icon that is used, for example, in 

the system model shown in Figure 3. Note that by replacing the parameter declaration on line 4 
and the equation on line 6, the semantics can be changed to represent other one-dimensional heat 
transfer elements, such as a model for convective heat transfer. 
 

 
 
 

 
Figure 5: Comparison of relative reduction in labor time and code size for equation-based vs. 
procedural programming languages. 
 
Equation-based modeling languages have been shown to significantly reduce model development 
time compared to conventional programming languages such as C/C++ or Fortran, as shown in 
Figure 5. A comparison of the development time for the BuildOpt multizone thermal building 
model which is implemented in C/C++ and a comparable implementation in Modelica showed a 
development time five to ten times faster when using Modelica (Wetter, 2005, 2006a; Wetter and 
Haugstetter, 2006). The Modelica development is faster primarily because Modelica is an 
acausal, equation-based, object-oriented language. This automated the work for writing routines 
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for data input and output, sorting equations and procedure calls, implementing numerical solution 
methods and managing the large amount of data that is involved in building simulation. The 
shorter development time also manifests itself in a code size four times smaller (6,000 lines 
instead of 24,000 lines of code, not counting freely available libraries). In another experiment, the 
author asked three engineers familiar with Fortran and Modelica to implement the system shown 
in Figure 5(a) in Fortran and in the Modelica modeling and simulation environment Dymola. 
Even for such a simple problem where data input, output and storage are easy to implement, the 
model in Modelica was built 2.5 to 5 times faster than in Fortran. Similar increase in productivity 
has also been reported by Sahlin (2000), who was three times faster in implementing a thermal 
building simulator using the equation-based language NMF. These benchmarks indicate 
significant time-savings for modeling when using equation-based modeling languages.  

Data	
  models	
  	
  
A BIM is an instance of a data model that describes a specific building unambiguously. Several 
data models are used by the construction industry. The only open, object-oriented data model that 
covers the whole building life cycle are the Industry Foundation Classes (IFC), developed by the 
International Alliance for Interoperability and currently under consideration at the International 
Organization for Standardization (ISO) to become an international standard (ISO/PAS 
16739:2005). Economic motivations for using BIMs include an increase in productivity through 
data interoperability among the participants of the building delivery process as well as data 
integrity during project planning, cost analysis, energy analysis and automatic code compliance 
checking. This section focuses upon how a future modeling and simulation environment for 
building systems can make BIM use throughout the building life cycle more seamless. Therefore, 
our discussion is tool-oriented to show how building performance assessment tools can best 
address requirements that originate from the use of BIM. We refer the reader to Augenbroe et al. 
(2004) and Lam et al. (2004) for a process-oriented discussion of simulation models within the 
building process and to Bazjanac (2008) for a discussion of semi-automated data transformation 
between BIM authoring tools and building simulation tools.  
 
This discussion assumes that future BIMs will contain specifications for building controls that 
will be used during design for building simulation as well as during operation for model-based 
algorithms for controls, fault detection and diagnostics. Since controls are an essential tool for 
increasing building system efficiency, they would be a natural extension to a BIM, and the IFC2x 
platform specification indeed mentions building automation as one discipline that it aims to 
support. To enable a seamless combination of data models represented by a BIM and behavioural 
models represented in an equation-based object-oriented language that can generate a building 
simulation program, the component modularisation and the variables that connect components 
should be identical in the data model and the behavioural model. Furthermore, data and 
behavioural models need to allow connecting components in the same way as one would connect 
actual components. Otherwise the set of possible HVAC systems is larger than the set of HVAC 
systems that can be simulated, which makes seamless BIM use difficult if not impossible for 
some HVAC systems.  
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Figure 6: Schematic diagram of an HVAC system that uses a double-skin facade for the exhaust 
air (left side) and implementation in EnergyPlus that required two air loops (right-side). (Figure 
courtesy of Tobias Maile, Lawrence Berkeley National Laboratory.) 
 
Many building simulation programs are based on software principles that do not match how 
buildings and energy systems are actually built and controlled. Also, their modeling language is 
not expressive enough to allow computing the evolution of heterogeneous systems in a way that 
properly accounts for concurrency of event-driven systems. This can make the use of models for 
simulation-based controls and commissioning difficult. In addition, the model modularisation and 
model connectivity rule is imposed by the program developers. They decide what should be 
lumped in a monolithic subsystem model, what causality should be imposed on the equations to 
translate them into procedural code and what connections should be required for an object. These 
decisions are not motivated by how a BIM represents an HVAC system and they do not 
necessarily reflect real HVAC systems. Rather, the selection of component modularisation, 
component causality and connection variables is motivated by accommodating the data flow and 
solution algorithms imposed by the program architecture. For example, the room model of 
EnergyPlus computes a heating or cooling load in units of power. This load is then sent to zone 
equipment units, such as a fan coil, that try to meet the load. Thus, the control input of the fan coil 
is a load in watts, as opposed to a signal from a thermostat. This type of component connectivity 
is different from the connectivity of actual components. Furthermore, in EnergyPlus, a valve that 
adjusts a cooling coil’s water flow rate is implicitly assumed to be part of the coil, which 
represents a component modularisation that does not correspond with that of actual systems. 
Further difficulties in generating a simulation model from a BIM can arise in non-conventional 
systems that do not follow the fluid loop structure of some building simulation programs. For 
example, because EnergyPlus (as well as DOE-2) does not allow equipment between thermal 
zones, the double facade system shown on the left side in Figure 6 had to be implemented using 
two air loops, and the exhaust fan had to be replaced by a supply fan to satisfy the EnergyPlus 
system structure. Automatically mapping the actual topology on the left from a BIM into the 
topology on the right seems to be an impossible task. The BIM translator would first need to 
understand in what system context the components are used, and then map one system topology, 
representing the actual building expressed in the BIM, into another system topology that can be 
simulated by the particular building simulation program. Because of this difficulty, early 
implementations of BIM to building simulation program translators are based on restricting the 
BIM instances to system topologies that can be simulated by the downstream simulation 
program (Bazjanac and Maile, 2004). In view of these limitations, more fundamental research 
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should be done to understand the computability of mappings between BIM and BIM-processing 
applications, as also suggested by Augenbroe et al. (2004).  
 
To generate a mathematical model from a BIM, a more generic component modularisation and 
connectivity rule than what is employed in today’s building simulation programs needs to be 
used. It is most natural to base the modularisation rule on how components are modularised in 
reality; typically modular units are defined by how they are packaged when shipped to the 
construction site. Furthermore, the connectivity rules of models should follow the same rules in 
which components can be connected in reality. This is easiest to realise by using acausal models 
that follow the object-oriented modeling paradigm and whose interface variables are sufficient to 
describe the interaction of connected objects. Models with these traits can be arbitrarily 
assembled to build systems as long as their connections have the same physical properties, such 
as temperature and heat flow rate for a solid-to-solid interface. Such a connection framework is 
indeed realised in the Modelica language. 
 
A further difficulty arises when modeling cyber-physical systems. Cyber-physical systems will 
become more common as it becomes cheaper to densely instrument buildings with networks of 
sensor and actuators that control the building system. In cyber-physical systems, physical 
processes can affect when computations are performed and messages are sent across networks. 
For some systems, event detection, event ordering and other techniques for modeling and 
simulation of heterogeneous systems that properly model concurrency are needed. These needs 
may be easiest to meet by generating an actor-oriented system model for the communication 
network in which a model of computation controls the interactions between the different actors. 
The model may then be embedded into equation-based models for the physical components to 
form a hybrid system, which then can be used for designing and commissioning such networks.  

Model	
  translation	
  and	
  simulation	
  	
  
The translation of mathematical models into a simulation program can be fully automated. When 
translating a model, symbolic processing is important to reduce computing time since many 
building system simulation problems lead to large, sparse differential algebraic equation systems 
(DAE systems). Symbolic processing is typically used to reduce the index of the DAE system and 
to exploit sparsity. Pantelides (1988) presents an algorithm that reduces the index of DAE 
systems so that the equations can be solved using ordinary differential equation solvers. This 
algorithm is, for example, used by Dymola (Mattsson et al., 2000). It is current practice in 
modern simulators to exploit sparsity during model translation or during run-time. For example, 
Dymola and SPARK use symbolic processors during model translation to reduce the system of 
equations to block lower-triangular form. This process is called partitioning and is discussed in 
detail by Duff et al. (1989). Partitioning algorithms can guarantee that it is not possible to further 
reduce the dimensionality of the system of equations by permuting variables and equations. After 
partitioning, tearing can be used to break the dependency graph of equations and variables to 
further reduce the dimensionality of the system of equations. The resulting systems of equations 
are typically small but dense. Tearing can be done automatically or it can be guided by using 
physical insight with language constructs that can be embedded in a model library (Elmqvist and 
Otter, 1994). A further reduction in computation time can be obtained by symbolically inserting 
the discretisation formulae that represent the numerical integration algorithm into the differential-
algebraic equation model, a process called inline integration that was introduced by Elmqvist et 
al. (1995). The IDA solver, in contrast, employs algorithms for sparse Jacobian factorisation 



  18 

during simulation. It relies less on global symbolic manipulations during model translation, but it 
also employs tearing and automatic generation of Jacobians (Sahlin and Grozman, 2003). Fast 
model compilation is an advantage of IDA’s approach that is particularly attractive for short-term 
simulations. 
Research in symbolic and numerical solution algorithms and proper model formulation is 
critically important for making equation-based building modeling and simulation accessible to a 
large audience. It is not realistic to demand that the typical simulation user have knowledge in 
these mathematical fields. Therefore it is important that robust solution algorithms and model 
libraries be put in place so that they are available for use by typical simulation users without 
experience in fixing numerical problems. While these topics have received little attention from 
the building simulation community, the fact that IDA is used by HVAC engineers indicates that 
this problem is not insurmountable. 
 
There are several technologies in place that decrease the computation time and lead to increased 
numerical robustness. But how do they compare to conventional building simulation programs? 
In general, comparing the run-time efficiency of different simulators is a challenging endeavour 
because of the different temporal and physical resolution of the tools, and because solvers can be 
tuned to be more efficient for certain classes of problems at the expense of robustness. 
Nevertheless, the following comparison shows that commercial general purpose simulators can be 
as efficient in performing a building simulation as commercial special tailored building 
simulation programs. Sahlin et al. (2004) compared the computation time of IDA ICE with 
EnergyPlus. In their numerical experiments, IDA ICE required approximately half the 
computation time that was required by EnergyPlus for a three zone building with natural 
ventilation and twice the computation time in initial experiments for a 53 zone building without 
natural ventilation. Sowell and Haves (2001) compared the computation time of SPARK and 
HVACSIM+ for a variable air volume flow system that serves six thermal zones. They report that 
SPARK computes about 15 to 20 times faster than HVACSIM+, and they attribute the decrease 
in computation times to SPARK’s symbolic processing. Another variable air volume flow 
network model with 26 rooms shows that the computation time of SPARK and Dymola are 
similar for this class of problems (Wetter et al., 2008). Wetter and Haugstetter (2006) compared 
the simulation time of a multizone building model written in Modelica with a building model 
using TRNSYS’ TYPE 56 that gives comparable energy use and transient response. The 
Modelica model was simulated using the solver of Dymola and Simulink. They report that 
Dymola computed four times slower and Simulink three times slower than TRNSYS. In these 
experiments, TRNSYS computed the heat conduction with Conduction Transfer Functions, which 
are considered to be computationally faster than the finite difference scheme used in the Modelica 
implementation. 
 
One should keep in mind that these benchmarks have been simulated using a single processor. 
The recent switch to parallel microcomputers requires, however, that programs are written 
differently to take advantage of the new hardware architecture. For example, the conventional 
wisdom is that multiplications are slow but data loading and storing is fast. This is reversed by 
new hardware, because modern microprocessors can take 200 clock cycles to access dynamic 
random access memory (DRAM), but a floating-point multiplication may take only four clock 
cycles (Asanovic et al., 2006). Although how to best address this change in programming 
paradigm is an open research field, it is reasonable to expect that models formulated in equation-
based, high-level programming languages, as opposed to existing simulation programs, are in a 
better position to take advantage of this shift towards parallel hardware. One reason for this 
expectation is that equation-based simulation environments naturally separate the algebraic and 
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numerical solvers from the model equations. This facilitates replacing algebraic and numerical 
solvers, as well as model translators, with newer versions that exploit the new hardware 
architecture.  

Collaborative	
  development	
  
Over the past decade, Web 2.0 applications that enable distributed, concurrent, collaborative 
development of code and documentation have become a commodity. A characteristic of many 
successful open-source projects is that they employ a modular design that consists of small units 
with standardised interfaces. These units are good at doing one particular task, thereby providing 
a core of program functionalities around which further features can be built by a community of 
developers. Structuring the code into small units allows units to be developed and tested 
individually and then integrated into a larger system. It also reduces barriers to participation since 
only a small part of the program architecture needs to be understood by most contributors. This 
modularisation facilitates reusing code, distributing development efforts and using experts for the 
tasks that they are best at, such as developing numerical solvers, mathematical models or user 
interfaces. Involving different experts with a variety of backgrounds brings diverse points of view 
for solving a problem, which can further increase the quality of the code.  
 
Many building simulation programs are developed by teams that do not always involve experts 
from other disciplines such as computer science, scientific computation and applied mathematics. 
Therefore, many advances in these fields are transferred to the building simulation community at 
a rather slow rate. To facilitate a better transfer of science and technologies, future developers of 
an environment for modeling and simulation should integrate, and where necessary, further 
develop existing technologies with other communities that are active in system modeling and 
simulation. This should enable sharing of models, solvers and interfaces to accelerate the 
development of more advanced tools. In such a model, significantly bigger investments for tool 
and library development can be leveraged. 

A	
  path	
  towards	
  a	
  next	
  generation	
  environment	
  for	
  building	
  
simulation	
  and	
  computational	
  engineering	
  
Equation-based object-oriented modeling and simulation environments have been applied 
successfully in numerous demanding industrial applications. However, the building simulation 
community still rarely uses them, and little investment has been made to advance equation-based 
object-oriented building energy system modeling and simulation. If a new modular environment 
were to be used for whole building energy analysis, it would likely be measured against tools that 
have been developed for this purpose over several decades, often involving hundreds of man 
years of development time. Clearly, it does not make sense to target markets with heavy prior 
investment in existing technologies to help develop and mature a new environment for modeling 
and simulation. Instead, market segments with unmet needs should be pursued. Unmet needs are 
encountered primarily in the analysis and synthesis of algorithms for controls, fault detection and 
diagnostics, in research for building systems that integrate different domains such as HVAC, 
refrigeration, active facades and communication networks, and in the use of models during 
operation. 
 
 



  20 

 
Figure 7: Parametric plot of the normalised source energy consumption for cooling and lighting 
as a function of the width of the west and east-facing window. The dots are iterates of the Hooke-
Jeeves algorithm. (Figure adapted from Wetter and Polak (2004).) 
 
 
Specific applications that a new modular environment for building modeling and simulation 
should target include:  

• Building systems for Net Zero Energy Buildings. To achieve cost-effective Net Zero 
Energy Buildings, new system approaches are needed that require analysis and synthesis 
of coupled multi-physics systems that may include active facade, lighting controls, solar-
assisted cooling and dehumidification, natural ventilation, storage of heat in the building 
structure and storage of humidity in desiccants. Such systems pose new challenges and 
opportunities for multi-variate control, optimal energy storage management and reduction 
of system-internal irreversibilities, i.e., destroyed exergy. 

• Design optimisation of innovative building energy and control systems. Innovative 
building energy and control systems are typically harder to design since there are not 
many design rules available and because they often involve complex systems that interact 
dynamically. However, once simulation input files have been created, optimisation 
algorithms can help find the optimal building and energy system design with little user 
effort. In optimisation, a user selects a vector of design parameters x and defines a cost 
function f(x) that needs to be minimised, possibly subject to constraints. Nonlinear 
programming algorithms, a class of computationally efficient optimisation algorithms, 
require the cost function to be differentiable in the design parameters. However, building 
simulation programs contain iterative solution algorithms and therefore compute a 
numerical approximation f*(ε, x) to the cost function, where ε is the tolerance of the 
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numerical solvers. The iterative solution algorithms introduce discontinuities in the 
numerical approximation to the cost function because a change in design parameters can 
cause a change in the number of solver iterations or in the grid on which a differential 
equation is discretised. Tightening the solver tolerance ε is possible in equation-based 
simulation programs, but it is often impractical in traditional building simulation 
programs since their solvers may be embedded in different component models and spread 
throughout hundreds of thousands of lines of code. Unfortunately, in building simulation 
programs, these discontinuities can be large enough to cause optimisation algorithms to 
fail far from an optimal solution (Wetter and Wright, 2004; Polak and Wetter, 2006). To 
illustrate this problem, we show in Figure 7 a section of a surface plot of normalised 
building energy consumption as a function of the width of the west and east windows, 
wwest and weast. The plot was generated by sampling about 20,000 simulations on a two-
dimensional grid. Globally, energy is minimised by increasing the width of both windows 
within the domain shown in the figure, i.e., the energy is minimal at the front corner in 
the figure. However, locally, due to the loose solver tolerance, the cost function exhibits 
“smooth” regions that are separated from each other by discontinuities. These “smooth” 
regions are visible in the graph as flat plateaus. The white lines that are visible on these 
plateaus are contours of equal function value. The problem is that in these “smooth 
regions,” decreasing the west window width reduces energy. This caused the Hooke-
Jeeves optimisation algorithm to generate a sequence of iterates that starts at the arrow on 
the right side in the figure and traverses towards the arrow in the left side in the figure 
where it jams at a discontinuity. 

• Model predictive control. Model predictive control allows optimal equipment 
scheduling while taking into account the dynamics of the building energy system and the 
anticipated future building energy load. It allows one to minimise a user-specified cost 
function such as energy use, subject to state constraints like thermal comfort and indoor 
air quality. When solving the optimal control problem in a model predictive control 
algorithm, all state variables of the simulation model need to be reset to initial values 
prior to evaluating the performance of different control actions. However, in many 
traditional building simulation programs, resetting state variables is difficult if not 
impossible without significant code changes. Furthermore, for computational efficiency 
and to prove that the optimisation algorithm finds the optimal control sequence, the 
differential equations need to be smooth in the control input, which is typically not the 
case in building simulation programs. Lack of smoothness, in addition to the loose solver 
tolerance mentioned above, can cause the optimisation to fail for the same reasons as 
discussed in the previous item. 

• System linearisation for development of control algorithms. Many design methods for 
control algorithms of nonlinear systems require linearisation of the open loop response 
with respect to controls or disturbances, sometimes at multiple operating points. Such 
linearisations are difficult to perform with large monolithic building simulation programs. 
The reason is that system linearisation requires isolating the subsystem that is part of the 
feedback control loop, initializing its state variables and simulating its open loop response 
subject to different control inputs and disturbances. An additional difficulty posed by 
large monolithic building simulation programs is that their numerical solvers frequently 
fail to converge. This can render a numerical approximation to a derivative useless for 
functions such as the one shown in Figure 7. 

• Fault detection and diagnostics. For fault detection and diagnostics of components and 
subsystems, only a subset of the building system needs to be simulated. Realistic 
modeling of the component dynamics can be important to discern between faults and 
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transient effects. Such applications require modeling of realistic controls as opposed to 
the idealised controls that are found in many building simulation programs. 

 
Theses applications do not in general require an annual whole building simulation. Rather they 
require a flexible modeling environment that allows a user to rapidly add new models, 
symbolically invert models and extract a subsystem of a model for further analysis, such as for 
input-output feedback linearisation or model reduction for controls design. By targeting these 
applications, the new environment can be developed with users who have the technical skills 
needed to mature the environment in terms of model scope, validation and formulation. This, in 
turn, will ensure robustness when obtaining a numerical solution and will ultimately form a base 
for a next generation building modeling and simulation environment.  
 
 

 
Figure 8: Ptolemy II graphical user interface with extensions to couple simulation programs, in 
this example EnergyPlus and MATLAB/Simulink, for run-time data exchange (Wetter and Haves, 
2008). 
 
 
 

While desirable for numerical efficiency it is often not necessary to model and simulate the whole 
building system in a new environment for modeling and simulation. Models expressed in 
equation-based object-oriented modeling languages can be interfaced with existing simulation 
programs to extend the scope of systems they can analyse. In environments that separate 
modeling from simulation, different models can be interfaced during compilation in such a way 
that they will share the same differential equation solver. An example is the commercial interface 
between Simulink and Dymola in which a Modelica model can be imported into Simulink in the 
form of an S-function. Monolithic simulation programs that do not allow extracting models from 
their solvers can be changed in such a way that they interface either directly another simulation 
program or a middleware that synchronises the data exchange as the simulation time progresses in 
each simulation program. A discussion about coupling of building simulation programs can be 
found in Trcka et al. (2006, 2009). 
Both coupling approaches have been realised with many building simulation programs. As an 
example, Figure 8 shows the schematic editor of a modeling and simulation environment that has 
been extended to couple different building simulation programs (Wetter and Haves, 2008). Here, 



  23 

each simulation program communicates during run-time using the Berkeley socket application 
programming interface to exchange data with an instance of a Java object that is shown in the 
figure by the white icons labelled “Simulator”. In this example, EnergyPlus simulates the 
building heat flow and natural ventilation and MATLAB/Simulink simulates the controller for the 
window opening. A model of computation controls the interactions between the models. In this 
modeling environment, different domains such as discrete event, continuous time and 
synchronous data flow can be combined hierarchically. This enables the simultaneous simulation 
of building energy systems, control systems and communication networks.  

Synopsis	
  	
  
In a future environment for modeling and simulation, models will be expressed at a higher level 
of abstraction, which will allow a modeler to formulate the system closer to how the actual 
system behaves. Mathematical models and simulation programs will be distinct system 
representations; the first accommodates a human’s way of expressing and structuring systems and 
the second enables efficient computation of numerical solutions. Separating mathematical models 
from their solution processes will also facilitate assembling system models that combine different 
domains. Combining such models will be realised by formulating equality and conservation 
equations that link shared interface variables on an equation-level, as opposed to by integrating 
different programs, each with its individual solver, data management and input/output routines. 
Combining models on an equation-level is easier from the point of view of software engineering, 
mathematics (to ensure a consistent solution), and usability. Following the object-oriented 
modeling paradigm enables managing the complexity of large systems through hierarchical 
modeling. It also enables model assembly the same way as an experimenter would connect real 
components. This, in turn, allows creating a modeling environment where equation-based object-
oriented models have the same modularity and connectivity rules as a modular BIM, facilitating 
the use of BIM to create simulation programs at different stages of the building life cycle. In 
addition, the higher level of abstraction allows sharing not only models, but also modeling and 
simulation environments and their associated technologies, such as numerical and symbolic 
solvers, with other industrial sectors.  
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Recommended	
  reading	
  	
  
For a computational approach to heterogeneous systems the reader is referred to the textbook of 
Lee and Varaiya (2002). For a discussion about trends and challenges of system level design we 
refer to Sangiovanni-Vincentelli (2007). The prerequisites for generating efficient simulation 
code from a general-purpose solver are discussed by Elmqvist et al. (1995). Cellier et al. (1996) 
discusses common pitfalls and misconceptions about the modeling of physical systems. Tiller 
(2001) and Fritzson (2004) discuss different equation-based modeling approaches for dynamical 
systems. Cellier and Kofman (2006) present in a rigorous way methods for transforming 
mathematical models into computational code. The textbook has been written for an engineering 
audience. Mattsson et al. (2000) describe how symbolic and numerical methods are combined in 
Dymola to solve reliably and efficiently high-index DAE systems. For a detailed discussion of 
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BIM see for example Eastman et al. (2008). Clarke (2001) gives a detailed exposition of models 
that are typically found in building simulation programs. Malkawi and Augenbroe (2004) present 
recent trends in building simulation with a focus on combined air and heat flow, uncertainty 
propagation and integration of simulation into the design process.  

Assignments	
  	
  
1) Implement two versions of the system model shown in Figure 3(a). For the first version, use 
causal block-diagrams and for the second version, use acausal models for the physical 
components. As parameters, use for each heat capacitor 10 J/K, for each heat conductor 10 W/K, 
for the convective heat transfer 5 W/K, for the setpoint and the initial temperatures 20°C and for 
the control gain 100 W/K. For the boundary condition, use T(t) = 20 + 5 sin(2 π t/3600), where t 
denotes time in seconds and the temperature is in degree Celsius. Compute the maximum control 
error. Next, reconfigure the system to the topology shown in Figure 3(b). Compute again the 
maximum control error. Discuss the time it took to develop and reconfigure the two model 
representations. 
Hint: You may use Modelica or MATLAB/Simulink with the SimScapeTM extension to create 
acausal and causal models. 
 
2) How do you think a next generation building energy analysis tool will look like?  

Answers	
  	
  
1) For configuration (a), the maximum control error is 0.12 K and for configuration (b), it is 

0.24 K.  
 


