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Abstract

Most of the state-of-the-art building simulation programs implement
models in imperative programming languages. This complicates
modeling and excludes the use of certain efficient methods for sim-
ulation and optimization. In contrast, equation-based modeling lan-
guages declare relations among variables, thereby allowing the use of
computer algebra to enable much simpler schematic modeling and to
generate efficient code for simulation and optimization.

We contrast the two approaches in this paper. We explain how
such manipulations support new use cases. In the first of two ex-
amples, we couple models of the electrical grid, multiple buildings,
HVAC systems and controllers to test a controller that adjusts build-
ing room temperatures and PV inverter reactive power to maintain
power quality. In the second example, we contrast the computing
time for solving an optimal control problem for a room-level model
predictive controller with and without symbolic manipulations. Ex-
ploiting the equation-based language led to 2, 200 times faster solu-
tion.
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1 Introduction

To meet increasingly stringent energy performance targets and chal-
lenges posed by distributed renewable energy generation on the
electrical distribution grid, recently more attention is given to system-
level integration, part-load operation and operational optimization of
buildings. The intent is to design and operate a building or a neigh-
borhood optimally. This requires taking into account system-level
interactions between building storage, HVAC systems and electri-
cal grid. Such system-level analysis requires multi-physics simula-
tion and optimization using coupled thermal, electrical and control
models. Optimal operation also requires closing the gap between
designed and actual performance through commissioning, energy
monitoring and fault detection and diagnostics. All these activities
can benefit from using models that represent the design intent. These
models can then be used to verify responses of installed equipment
and control sequences, and to compute optimal control sequences in
a Model Predictive Controller (MPC), the latter possibly after simpli-
fying the model.

This shift in focus will require an increased use of models through-
out the building delivery stages and continuing into the operational
phase. For example, during design, a mechanical engineer will con-
struct a model that represents the design intent. To reduce cost for
implementation of the control sequence, and to ensure that the con-
trol intent is properly implemented, a control model could be used
to generate code that can be uploaded to supervisory building au-
tomation systems, thereby executing the same sequence as was used
during design1. During commissioning, the design model will be 1 Nouidui and Wetter, 2014

used to verify proper installation. During operation, the model will
be used for monitoring actual with expected energy use2, and for 2 Pang et al., 2011

fault detection and diagnostics3. Also, model calibration offers an op- 3 Bonvini et al., 2014

portunity to diagnose why performance as-designed and as-installed
differ. Furthermore, the model can be converted to a form that allows
its use during operation as part of a MPC algorithm.

In addition to the focus on closing the performance gap between
design and operation, another recent focus is to evaluate how build-
ing dynamics, HVAC, thermal and electrical storage, renewable en-
ergy generation and grid responsive control affect the electrical grid4. 4 Baetens et al., 2012; and Bonvini et al.,

2014Models that integrate building loads, HVAC and electrical systems
can be used to develop control sequences that attempt to ensure
power quality.

For a larger discussion of functionalities that future building mod-
eling tools will need to provide to address the needs for low energy
building and community energy grid design and operation, we refer
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to Wetter (2011) and Clarke (2015).
For the aforementioned new foci, the following new needs are

emerging for building simulation tools:

1. Mechanical engineers should be able to design, assess the per-
formance and verify the correctness of local and, in particular,
supervisory control sequences in simulation. They should then use
such a verified, non-ambiguous specification to communicate their
design intent to the control provider. Moreover, the specification
should be used during commissioning to verify that the control
contractor implemented the design intent.

2. Controls engineers should be able to extract subsystem models
from models used during the building design in order to use them
within building control systems for commissioning, model-based
controls, fault detection and diagnostics.

3. Urban planners and researchers should be able to combine mod-
els of buildings, electrical grids and controls in order to improve
the design and operation of such systems that ensure high per-
formance in terms of greenhouse gas emissions or cost, while
ensuring power quality of the grid5. 5 Baetens et al., 2012; and Bonvini et al.,

2014

4. Mechanical engineers should be able to convert design models
to a form that allows the efficient and robust solution of optimal
control problems as part of MPC6. Such models may then be com- 6 Širokỳ et al., 2011

bined with state estimation techniques that adapt the model to the
actual building7. 7 Bonvini et al., 2014

The first item requires modeling and simulation of actual control
sequences, including proper handling of hybrid systems, i.e., sys-
tems in which the state evolves in time based on continuous time
semantics that arises from physics, and discrete time and discrete
event semantics that arises from digital control. The second item re-
quires extraction of a subsystem model and exporting this model in
a self-contained form that can readily be executed as part of a build-
ing automation system. The third item requires models of different
physical domains and models of control systems to be combined for
a dynamic, multi-physics simulation that involves electrical systems,
thermal systems, controls and possibly communication systems.
The fourth item greatly benefits if model equations are accessible to
perform model order reduction and to solve optimal control prob-
lems. In this paper, we will focus on the third and fourth items. For
the first and second items, seeWetter (2009), Wetter et al. (2014) and
Nouidui and Wetter (2014), respectively.

The contributions of this paper are (i) to explain how equation-
based languages for multi-physics systems can address needs for
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design, operation and dynamic analysis of low energy systems cou-
pled to reneweable energy generation and transmission, (ii) to show
how Modelica models for building envelope, generated from Open-
Studio input files, can be linked to Modelica models for HVAC and
electrical systems to develop a controller that adjusts building tem-
perature and PV inverter reactive power to maintain power quality,
and (iii) to show how Modelica models can be used to efficiently
solve optimal control problems that minimize energy use subject to
comfort constraints.

2 Comparison to State-of-the-art in Building Energy Modeling
and Simulation

Today’s whole building simulation programs formulate models us-
ing imperative programming languages. Imperative programming
languages assign values to functions, declare the sequence of exe-
cution of these functions and change the state of the program, as is
done for example in C/C++, Fortran or MATLAB/Simulink. In such
programs, model equations are tightly intertwined with numerical
solution methods, often by making the numerical solution proce-
dure part of the actual model equations. This approach has its origin
in the seventies when neither modular software approaches were
implemented nor powerful computer algebra tools were available.
These programs have been developed for the use case of building
energy performance assessment to support building design and en-
ergy policy development. Other use cases such as control design and
verification, model use in support of operation, and multi-physics
dynamic analysis that combines building, HVAC, electrical and con-
trol models were no priorities or not even considered8. However, they 8 Crawley et al., 1996

recently gained importance9. 9 Clarke, 2015

Tight coupling of numerical solution methods with model equa-
tions and input/output routines makes it difficult to extend these
programs to support new use cases. The reason is that this coupling
imposes rules that determine for example where inputs to functions
that compute HVAC, building or control equipment are received
from the internal data structure of the program, when these inputs
are updated, when these functions are evaluated to produce new out-
put, and what output values may be lagged in time to avoid algebraic
loops. Such rules have shown to make it increasingly difficult for de-
velopers to add new functionalities to software without inadvertently
introducing an error in other parts of the program. They also make
it difficult for users to understand how component models interact
with other parts of the system model, in particular their interaction
with, and assumptions of, control sequences. Furthermore, they also
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have shown to make it difficult to use such tools for optimization10. 10 Wetter and Wright, 2004

The tight coupling of numerical solution methods with model
equations makes it also difficult to efficiently simulate models for the
various use cases, the reason being that the numerical methods in
todays’ building energy simulation programs are tailored to the use
case of energy analysis during design. However, other use cases such
as controls design and verification, coupled modeling of thermal and
electrical systems, and model use during operation require different
numerical methods. To see why different numerical methods are
required, consider these applications:

Stiff systems: The simulation of feedback control with time constants
of seconds coupled to building energy models with time constants
of hours leads to stiff ordinary differential equations. Their effi-
cient numerical solution requires implicit solvers11. 11 Hairer and Wanner, 1996

Non-stiff systems: In EnergyPlus and in many TRNSYS component
models, HVAC equipment and controllers are generally approxi-
mated using steady-state models, resulting in algebraic equations.
Hence, the resulting system model is not stiff as the only dynamics
is from the building model. In this situation, explicit time integra-
tion algorithms are generally more efficient12. 12 Jorissen et al., 2015

Hybrid systems: Hybrid systems require proper simulation of coupled
continuous time, discrete time and discrete event dynamics. This
in turn requires solution methods with variable time steps and
event handling. For example, when a temperature sensor crosses a
setpoint or a battery reaches its state of charge, a state event takes
place that may switch a controller, necessitating solving for the
time instant when the switch happens and reducing accordingly
the integration time step. Standard ordinary differential equation
solvers require an iteration in time to solve for the time instant
of the event, and reinitializing integrators after the event, which
both are computationally expensive. A new class of ordinary dif-
ferential equation solvers called Quantized State System (QSS)
integration13 are promising for the efficient simulation of such 13 Zeigler and Lee, 1998; Kofman and

Junco, 2001; Cellier and Kofman, 2006;
Kofman, 2003; and Migoni et al., 2013

systems as they do not require iteration for state event detection.
However, their efficient use requires knowledge of the dependency
graph of the state equations, which generally is not available in
legacy building simulators, but readily available in equation-based
languages.

It follows from this discussion that for models to be applicable
to a wide range of applications, it should be possible to use them
with different numerical solvers. Therefore, models for building
energy systems and their numerical solution methods should be
separated where possible. Exceptions are equations, often arising
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from partial differential equations or from light distributions, for
which special tailored solution methods and parallel programming
patterns allow humans to better exploit the structure of the equations
than is currently supported by code generators. Examples include
solvers for computational fluid dynamics, heat transfer in borehole
heat exchangers14, and ray-tracing for daylighting. Work however is 14 Picard and Helsen, 2014

ongoing to remedy this situation15. 15 Casella, 2015; Schuchart et al., 2015;
and Bergero et al., 2015

3 New Technologies for Building Energy Modeling and Simula-
tion

This section describe new technologies which can be applied in
building energy modeling in support of the different use cases.

3.1 Equation-based Modeling

As explained above, the use of imperative programming languages
limits the applicability and extensibility of models. Furthermore, in
building simulation programs, numerical solution algorithms are
often tightly integrated into the models and thereby can mandate
the use of supervisory control logic that is far removed from how
control sequences are implemented in reality. For example, in En-
ergyPlus, a cooling coil may request from the supervisory control
a certain air mass flow rate in order to meet the load computed in
the predictor step of the thermal zone heat balance. In the buildings
community, the use of equation-based languages has its origin in the
energy simulation program ENET16, which provided the foundation 16 Low and Sowell, 1982; and Sowell

et al., 1984of the SPANK or SPARK program17. In 1989, Sahlin and Sowell18

17 Sowell et al., 1986; Sowell et al., 1989;
and Buhl et al., 1993

18 Sahlin and Sowell, 1989

introduced an equation-based language called Neutral Model Format
(NMF) which is used in the commercial software IDA/ICE19. In 1993,

19 Björsell et al., 1999Klein introduced the equation-based Engineering Equation Solver
EES20. In 1997, Mattsson and Elmqvist reported on an international 20 Klein, 1993

effort to design Modelica, an equation-based, object-oriented model-
ing language21, which incorporates many ideas originally presented 21 Mattsson and Elmqvist, 1997

in the dissertation of Elmqvist (1978). A key difference to imperative
programming languages is that equation-based languages do not
require to specify the sequence of computer assignments needed to
simulate a model. Rather, a model developer can specify the mathe-
matical equations, package them into graphically represented com-
ponents and store them in a hierarchical library. A model user then
assembles these components in a schematic editor to form a system
model. A simulation environment analyses these equations, opti-
mizes them using computer algebra, translates them to executable
code, typically C, and links them with numerical solvers.
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Specifically, the translation for equations to executable code in-
volves analyzing the system of equations to detect for example al-
gebraic loops and zero-crossing functions for state events, and con-
verting the equations to a form that can be solved efficiently using
Block Lower Triangularization and Tearing22. The benefit of gener- 22 Cellier and Kofman, 2006; and

Elmqvist and Otter, 1994ating code for specific solvers has been demonstrated by Fernandez
and Kofman who showed two orders of magnitude simulation speed
improvements when code is generated in a form that is specifically
designed for the QSS methods23. Symbolic manipulations also allow 23 Fernández and Kofman, 2014

to partition the model automatically for parallel computing24. 24 Elmqvist et al., 2014

Loosely speaking, while simulation models implemented using
imperative programming languages require numerical solvers to
select numerical inputs and compare the function values for these
inputs to infer what equations they solve, equation-based modeling
languages such as Modelica allow to understand the structure of the
equations and make use of it to generate efficient code for computa-
tion. Examples of structures are what variables are connected to each
other through algebraic constraints or through a differential equation,
what equations can be differentiated, what equations can be inverted,
and what equations trigger an event that can instantly change a con-
trol signal. As a detailed discussion of these methods are beyond the
scope of this paper, we refer for more background to Elmqvist (1978),
Cellier and Kofman (2006), Elmqvist and Otter (1994) and Elmqvist
et al. (1995). To make these technologies accessible to a wide range of
users in building simulation, research and development is required
and ongoing to advance translators and solvers so they can better
handle large models25. 25 Wetter, 2009; Zimmer, 2013; Wetter

et al., 2014; Jorissen et al., 2015; Casella,
2015; Schuchart et al., 2015; and Bergero
et al., 2015

A promising aspect of Modelica is that it is an open-source lan-
guage that is supported internationally by various industries. In
the buildings industry, in 2012, an international project was started
by Lawrence Berkeley National Laboratory and RWTH Aachen un-
der the umbrella of the International Energy Agency’s Energy in
Buildings and Communities Programme (IEA EBC) called Annex
60

26. Annex 60 develops free open-source, new generation compu- 26 Wetter and van Treeck, 2012

tational tools for building and community energy systems based on
the Modelica, Functional Mockup Interface and Building Information
Modeling standards. It is currently comprised of 41 institutes from 16

countries.

3.2 Optimization

Equation-based modeling languages allow code generators to con-
vert model equations to a form that is well suited to solve large scale
nonlinear optimization problems27. This section describes a state of 27 Åkesson et al., 2010
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the art method that converts an infinite dimensional optimal con-
trol problem into a finite dimensional approximation that standard
nonlinear programming (NLP) solvers can solve. Equation-based
modeling languages allow automating this conversion.

Equation-based modeling languages allow to describe systems of
differential algebraic equations (DAE) in the general form

F(t, ẋ(t), x(t), u(t), y(t), Θ) = 0, (1a)

Y(t, x(t), u(t), y(t), Θ) = 0, (1b)

F0(ẋ(t0), x(t0), u(t0), y(t0), Θ) = 0, (1c)

where F(·, ·, ·, ·, ·, ·) describes the time rate of change, Y(·, ·, ·, ·, ·) are
algebraic constraints, F0(·, ·, ·, ·, ·) implicitly defines initial conditions,
t ∈ [t0, t f ] is time for some initial and final time t0 and t f , x : R →
Rnx is the state vector, u : R → Rnu is the control function, y : R →
Rny is the vector of algebraic variables, and Θ ∈ Rp is the vector of
parameters. Such a DAE system can be used to model a building, its
HVAC systems and controllers. Necessary and sufficient conditions
for existence, uniqueness and differentiability of a solution to (1) can
be found in Wetter (2005).

Once the model is available, we can add constraints and a cost
function to define an optimal control problem that minimizes energy
consumption or cost. An example optimal control problem for (1) is

minimize
u(·)∈U , Θ∈Rp

f (x(t), u(t), y(t), Θ), (2a)

subject to F(t, ẋ(t), x(t), u(t), y(t), Θ) = 0, (2b)

Y(t, x(t), u(t), y(t), Θ) = 0, (2c)

F0(ẋ(t0), x(t0), u(t0), y(t0), Θ) = 0, (2d)

H(t, ẋ(t), x(t), u(t), y(t), Θ) = 0, (2e)

G(t, ẋ(t), x(t), u(t), y(t), Θ) ≤ 0, (2f)

for all t ∈ [t0, t f ], where f (·, ·, ·, ·) is the cost function and U is the
set of admissible control functions. The solution to (2) is the optimal
control function and the optimal design parameter that minimizes
f (·, ·, ·, ·) while satisfying the system dynamics (2b) and (2c), the ini-
tial conditions (2d) and the constraints (2e) and (2f). For generality,
we assume (2a)–(2f) to be nonlinear and twice continuously differen-
tiable28. 28 Polak, 1997

The problem (2) is infinite dimensional because its solution is a
functional that has to be valid for all t ∈ [t0, t f ]. Directly solving an
infinite dimensional optimal control problem for a general nonlinear
system is not possible and it therefore needs to be converted into a
finite dimensional approximation29. Biegler (2010) presents multiple 29 Polak, 1997
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methods for such a conversion into the form

minimize
z∈Rnz

c(z),

subject to zl ≤ z ≤ zu,

g(z) = 0,

h(z) ≤ 0,

(3)

where z is the finite dimensional optimization variable, zl and zu are
the lower and upper bounds, c(·) is the cost function, and g(·) and
h(·) are the equality and inequality constraints.

Among the available techniques, we describe direct collocation
methods because they are well suited for equation-based modeling
languages30. Direct collocation methods use polynomials to approx- 30 Åkesson et al., 2010

imate the trajectories of the variables of a DAE system. The polyno-
mials are defined on a finite number of support points that are called
collocation points. Hence, they convert the infinite to a finite dimen-
sional optimization problem, which can be solved by a NLP solver
such as IPOPT31. 31 Wächter and Biegler, 2006

The method starts by dividing the time horizon [t0, t f ] into ne

elements, each element containing the same number of collocation
points nc. The Modelica tool JModelica32, which we used, uses the 32 Åkesson et al., 2009

Radau collocation method to place these points, but other methods
exist as well. The Radau collocation method places a collocation
point at the start and end of each element to ensure continuity of
the state trajectories, and places the others to maximize accuracy.
In each element, time is normalized as t̃i(τ) = ti−1 + hi (t f − t0) τ,
for τ ∈ [0, 1] and i ∈ {1, . . . , ne}, where ti is the time at the end
of element i, τ ∈ [0, 1] is the normalized time within the element,
and hi is the length of element i. The time dependent variables ẋ(·),
x(·), u(·), and y(·) are approximated using collocation polynomials
in each element. The collocation polynomials use the Lagrange basis
polynomials, and they use the collocation points as the interpolation
points. The collocation polynomials are

xi(τ) =
nc

∑
k=0

xi,k l̃k(τ), (4a)

ui(τ) =
nc

∑
k=1

ui,k lk(τ), (4b)

yi(τ) =
nc

∑
k=1

yi,k lk(τ), (4c)

where xi,k, ui,k, and yi,k are the values of the variable x(·), u(·) and
y(·) at the collocation point k in element i, lk(·) is the Lagrange basis
polynomial and l̃k(·) is the Lagrange basis polynomial that includes
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the first point to ensure continuity of the state variables. The La-
grange bases are, with i ∈ {1, . . . , ne},

l̃k(τ) = ∏
j∈{0, ..., nc}\{k}

τ − τj

τk − τj
, (5a)

lk(τ) = ∏
j∈{1, ..., nc}\{k}

τ − τj

τk − τj
. (5b)

As τ is normalized, the basis polynomials are the same for all ele-
ments. The polynomial approximation of the derivative ẋi(·) of (4a)
is

ẋi(τ) =
1

hi (t f − t0)

nc

∑
k=0

xi,k
dl̃k(τ)

dτ
. (6)

The collocation method defines the approximations (4) and (6) of
the variables in (2). Equation-based modeling languages allow access-
ing the model equations, thereby allowing to automatically generate
the finite dimensional approximations defined by the collocation
methods in (4) and (6).

JModelica employs a collocation method to transcribe the problem
(2) into an NLP problem. A local optimum to the finite dimensional
approximation of (2) will be found by solving the first-order Karush-
Kuhn-Tucker (KKT) conditions, using iterative techniques based on
Newton’s method. This requires first- and second-order derivatives
of the cost and constraint functions with respect to the NLP variables.
JModelica uses CasADi33, a software for automatic differentiation 33 Andersson, 2013

that is tailored for dynamic optimization. Equation-based modeling
languages allow to automatically provide the information required by
CasADi to build a symbolic representation of the optimization prob-
lem. Using the symbolic representation of the NLP problem, CasADi
can efficiently compute the required derivatives and exploit the spar-
sity pattern of the problem. NLP solvers such as IPOPT are then used
to find a piecewise polynomial approximation of the solution to the
original problem (2). The number of variables in the approximated
problem is nz = (1 + ne nc)(2nx + nu + ny) + (ne − 1)nx + np + 2. For
a more detailed overview see Magnusson and Åkesson (2012).

In summary, equation-based modeling languages provide three
main advantages for optimization: First, they support the automatic
conversion of simulation models into optimization problems, reduc-
ing engineering costs and time. Second, they can provide analytic
expressions for gradients to be used by NLP solvers. Third, they al-
low to automatically generate the finite dimensional approximations
defined by the collocation methods. In Section 4.2 we present how
this improves computing performance relative to simulation-based
optimization.
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Figure 1: Neighborhood model
with renewable energy sources.
The yellow lines are weather
data, green lines are electrical
lines, and dashed blue lines are
for post-processing.

4 Applications

We will now present two applications. First, we demonstrate the
development of a building HVAC and PV inverter controller that
maintains voltage constraints in the electrical distribution. Second,
we demonstrate the reduction in computing time for solving a non-
linear optimal control problem with and without the use of the above
described computer algebra.

4.1 Combined building temperature and PV inverter control to satisfy
voltage constraints in electrical distribution grid

This example demonstrates how equation-based modeling languages
allow to couple models of different physical domains. The exam-
ple analyzes both the thermal and electrical dynamics of a small
neighborhood with a high PV penetration. It requires the coupling
of models for building energy simulation, electrical system simula-
tion and feedback control loops. The models interact with each other
through the electrical load imposed by the building on the grid, and
the feedback control that adjusts the building room temperature set
point and that increases the reactive power of the PV inverter in case
of violation of the power quality.

Figure 1 shows a net zero energy (NZE) neighborhood, imple-
mented using components from the Buildings library34, an open- 34 Wetter et al., 2014

source free Modelica library with more than 500 models for the
simulation of buildings, HVAC components, room and interzonal
airflow, electrical systems and controls. By coupling models of build-
ings, HVAC, electrical systems and controls we can assess the effect
of building load onto the electrical grid and assess the efficacy of
control measures. The neighborhood contains seven small office
buildings. Each building represents a small office that is part of the
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EnergyPlus commercial reference building models35. Each model has 35 Deru et al., 2011

one floor and is divided into five thermal zones plus one attic. The
floor area of each building is about 500 m2.

The building model comprises four different components, the ther-
mal part, the schedules, the HVAC system and the electrical models.
The thermal part accounts for the heat transfer through the enve-
lope and energy storage in building constructions. The schedules
represent the building internal loads due to occupants, as well as
plug loads and lighting systems. The HVAC model represents the
mechanical system and the control loops that maintain the thermal
comfort in the building. The electrical models represent the interac-
tion between the building and the electric network. They include an
inductive load model that represents the electric load of the build-
ing and PV panels. We implemented all models in Modelica36. The 36 Wetter et al., 2014; and Bonvini et al.,

2014thermal model was available as an EnergyPlus model. To integrate it
with the rest of the building model, it was automatically converted
to Modelica. The automatic conversion program leverages the Open-
Studio API to identify the thermal zones and the components of the
building fabrics. The conversion program converts the models by
instantiating and connecting components of the Modelica Buildings
library.

The building electricity consumption is modeled using the induc-
tive load

Pbui(t) = Phvac(t) + Pplug(t) + Plight(t), (7a)

Qbui(t) = Pbui(t) tan(φ), (7b)

where Pbui(·) is the total active power, Qbui(·) is the total reactive
power, φ is the phase angle of the apparent power for the power fac-
tor p f , with φ = arccos(p f ), Phvac(·) is the power consumed by the
HVAC system, Pplug(·) are the plug loads and Plight(·) is the lighting
power. In addition, the neighborhood has a wind turbine that supple-
ments the energy provided by the PVs. TMY3 weather data for San
Francisco, CA, were used. For more information about the electrical
models and their implementations see Bonvini et al. (2014). The nom-
inal voltage of the neighborhood is Vnom = 1.2 kV and the nominal
load of each building is Pload

nom = 18.6 kW. The total nominal power of
the PVs installed in the neighborhood is PPV

nom = 130 kW and hence
twice the sum of the nominal load of the office units. The PVs are un-
evenly distributed among the different buildings. The nominal power
of the wind turbine is Pwind

nom = 93 kW and therefore it is five times
the nominal load of an office building. The buildings are connected
through annealed aluminum cables of size AWG 1/0 that are 300 m
long. The neighborhood produces annually about 25% more energy
than it consumes.
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Figure 2: Voltage levels in three
different nodes of the neigh-
borhood as a function of power
generated by renewables, wind
speed and horizontal global
irradiation without feedback
control.

We assumed the electrical system to be balanced because the anal-
ysis does not focus on possible asymmetries caused by the connection
of the loads and sources on different phases, but rather on their im-
pact on the voltage quality. In particular, we aim to keep the voltage
within an admissible region of V = [0.9, 1.1] pu. To obtain diversity,
the PV efficiency, orientation and tilt angles have been varied. Also,
the power factor of the inductive load varies among the buildings
between 0.8 and 0.95.
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Figure 3: Voltage levels in three
different nodes of the neigh-
borhood as a function of power
generated by renewables with
feedback control that adjust
room air temperature setback
and reactive power control at all
PV inverters.

We will now analyze the simulation results for the case where
there is no control to ensure that the voltage remains within the
admissible region. Figure 2 shows how the voltages in three different
nodes of the neighborhood vary with respect to the power generated
by the renewables over the power consumed. The lower two plots
show the voltage at the three nodes as a function of wind speed and
horizontal global irradiation. As expected, the voltage increases as
the power generated by the renewables increases. The highest voltage
is V8, measured by the sensor sen8 in Figure 1, which is at the end of
the line where the concentration of PVs is higher and where the wind
turbine is located. During 17 hours of the year, the voltage is above or
below the admissible region of V = [0.9, 1.1] pu.
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Figure 4: Electrical circuit with
reactive power control at the PV
inverter.

To keep voltages within the admissible region, we will now add
two control measures to the above example. During low voltages,
we increase the set point temperature of the buildings by 2 Kelvin.
During high voltages, we add reactive power at the PV converters37. 37 Turitsyn et al., 2011

Figure 4 shows the section of the Modelica model that comprises of
the building load, the PV, and a reactive load. Based on the voltage at
the PV connection, a feedback controller injects reactive load in order
to not exceed a voltage set point of 1.09 pu. Figure 3 shows that this
control measure keeps the voltage within the admissible region.
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4.2 Optimal control of a thermal zone
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Figure 5: Simplified model of a
thermal zone.

This example demonstrates the use of collocation methods to solve
a constrained nonlinear optimal control problem, and compares its
computing performance to a gradient free optimization method. The
example minimizes sensible cooling, heating and fan energy demand
for a thermal zone of a variable air volume flow (VAV) system by
adjusting the time profiles of the supply air mass flow rate, the shad-
ing device control signal and the reheat power at the terminal box,
subject to comfort constraints. Our application requirements are that
the optimizations of indidual zones are decoupled from each other,
and that the central HVAC system can have its own control. For our
example, the central HVAC system will supply air at 18◦C and at a
relative humidity required for humidity control. Figure 5 shows the
simplified thermal model of the zone. Separate models exist for ex-
terior constructions, partitions to adjacent zones and internal mass.
These constructions are characterized by thermal capacitors and ther-
mal conductances that account for heat conduction and convection.
There is also a thermal conductor for infiltration.

We modeled the windows with a thermal conductance Gwin and
a power source Qwin

sol (t) = Srad(t) Awin SHGCF (uwin(t)), where
Srad(t) is the total solar radiation per unit area towards the win-
dow normal direction, Awin is the glass area, SHGC is the solar heat
gain coefficient of the window, uwin(t) ∈ [0, 1] is the position of the
blind, and F : R → R is a function that models the impact of the
blinds on the fraction of solar radiation that enters the zone. The
contribution due to solar radiation on the external constructions is
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Qext
sol (t) = Srad(t) Aext α, where Aext is its area, and α is the solar ab-

sorption coefficient of the exterior surface. The thermal conductance
Gim models the heat transfer between the air and the internal mass.
The power sources Qihg(t) and Qim(t), respectively, model the inter-
nal heat gains that contribute to the zone air and internal mass. The
internal heat gain is defined as Qihg(t) = Pocc(t) + Plights(t) + Pplug(t),
where Pocc(t) is the internal heat gain due to occupancy, Plights(t)
is the internal heat gains due to lights, and Pplug(t) is the internal
heat gains due to the plug loads. The power delivered by the HVAC
system is Phvac(t) = Phea(t) + Psup(t) + Pf an(t), where Phea(t) is the
power released by the reheating coil in the VAV box, Pf an(t) is the fan
power, and Psup(t) is the cooling power provided by the supply air
from the central HVAC system through the VAV box.

The latter is Psup(t) = ṁair(t) cp (Tsup(t)− Tair(t)), where ṁair(t)
is the mass flow rate of air passing through the VAV box, cp is the
air specific heat capacity, Tsup(t) is the temperature of the supply
air entering the VAV box and Tair(t) is the temperature of the air in
the zone.38 The power of the fan is Pf an(t) = Pnom

f an (ṁair(t)/ṁnom
air )3, 38 Note that the computation of Psup(t)

is approximate to decouple the in-
dividual optimizations of multiple
zones from each other. This was done
to reduce the dimensionality of the
optimization and to allow them to be
solved in a distributed way. The actual
sensible cooling provided by a cooling
coil in a system with economizer is
P̄c(t) = ṁair(t) cp (Tsup(t)− (Tmix(t) +
∆Tf an(t))), where Tmix(t) is the mixed
air temperature after the economizer
and ∆Tf an(t) is the temperature raise
over the fan. If yout(t) ∈ [0, 1] is the
outside air fraction, this becomes
P̄c(t) = ṁair(t) cp (Tsup(t)− Tair(t) +
yout(t) (Tair(t)− Tout(t))− ∆Tf an(t)).
As yout(t) and ∆Tf an(t) (through the
fan efficiency) depends on the mass
flow rates and return air temperatures
of other zones, these terms have been
neglected in order to decouple the
individual zone-level optimizations.

where ṁnom
air is the nominal supply air mass flow rate, and Pnom

f an is
the fan power required to supply ṁnom

air to the zone. Weather data for
Sacramento, CA, have been used.

We implemented the model using Modelica. The model can be
described as an initial-value ordinary differential equation. Thus, it
is a special case of the generalized DAE system (1) in which the alge-
braic constraints Y(·, ·, ·, ·, ·) are absent. Therefore, the state variables,
control functions and parameter are

x(t) = [Tair(t), Tim(t), Tint
con(t), Text

con(t)], (8a)

u(t) = [ṁair(t), uwin(t), Phea(t)], (8b)

Θ = [Tair(t0)]. (8c)

The energy consumption of the HVAC system is

E(t f ) =
∫ t f

t0

(−Psup(t) ηcoo + Phea(t) ηhea + Pf an(t)) dt, (9)

where ηcoo and ηhea are coefficients that repesents the efficiency of
the HVAC system to provide cooling and heating. These typically
include the coefficient of performance of chillers or heat pumps, or
the efficiency of the furnace, as well as the effect of free-cooling by
the economizer. The optimization variables are the time profiles for
the control signals of the supply air mass flow rate ṁair(·), the blind
position uwin(·), the reheat power Phea(·), as well as the initial zone
temperature Tair(t0). We modified equation (9) to balance the weights
of all its terms, obtaining

Eγ(t f ) =
∫ t f

t0

(−γ1Psup(t)ηcoo + γ2Phea(t)ηhea + γ3Pf an(t)) dt, (10)
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where γ ∈ R3, with γi > 0 for all i ∈ {1, 2, 3}, are constants.
We formulated the optimal control problem as

minimize
u(·)∈U

Eγ(t f ) +
∫ t f

t0

κ uwin(t)2 dt, (11a)

subject to F(t, ẋ(t), x(t), u(t), y(t), Θ) = 0, (11b)

F0(ẋ(t0), x(t0), u(t0), y(t0), Θ) = 0, (11c)

Tl
air(t) ≤ Tair(t) ≤ Tu

air(t), (11d)

0 ≤ uwin(t) ≤ uu
win(t), (11e)

ṁl
air ≤ ṁair(t) ≤ ṁu

air, (11f)

Phea(t) ≥ 0, (11g)

Tair(t0) = Tair(t f ), (11h)

for all t ∈ [t0, t f ], where U is the set of admissible control functions
u(·) defined in (8b), κ ∈ R+ is a constant, Tl

air(t) and Tu
air(t) are the

lower and upper bounds of the comfort region of the air temperature,
uu

win(t) is the maximum admissible value for the control signal of
the blind, and ṁl

air and ṁu
air are the minimum and maximum supply

air mass flow rates for the zone. The cost function (11a) includes
an additional term that penalizes excessive control actions of the
windows. For example it penalizes deploying the blinds at night. The
equality constraint (11h) imposes that the temperature of the air at
the start and at the end of the optimization period are the same.

We solved the optimization problem using JModelica39, using 39 Åkesson et al., 2009

the collocation method described in Section 3.2 and solved the fi-
nite dimensional NLP problem with IPOPT version 3.11.9, and with
the linear solver mumps. For the collocation, we used ne = 48 el-
ements, each being 30 minutes long. For each element, three collo-
cation points were used. The optimization is run for a summer day.
The red dotted line in Figure 6(a) shows the outside air dry bulb
temperature.

Figure 6 shows the results of the collocation method. The optimal
cooling power delivered by the HVAC system maintains the tempera-
ture of the zone inside the thermal comfort zone, The constraint (11f)
on the minimum air change causes the temperature to not quite reach
the upper comfort bound at night. The optimal blind position follows
the maximum admissible value in order to reduce the solar heat gain
during the afternoon, when the supply mass flow rate reaches its
maximum capacity of seven air changes per hour. Figure 6(c) shows
that the additional term in (11a) that penalizes excessive control
actions causes the blinds to be closed at night. The red line in Fig-
ure 6(b) shows that the VAV box does not reheat the air to maintain
comfort in the zone. This result is consistent with the high outside air
temperatures.



4 APPLICATIONS 19

0 6 12 18 24
Time [hours]

18
20
22
24
26
28
30
32
34
36

Te
m

pe
ra

tu
re

 [
◦
C]

Tair(t)

Tout(t)

Tsup(t)

(a)

0 6 12 18 24
Time [hours]

0

15

30

45

Po
w

er
 d

en
si

ty
 [W

/m
2

]

Psup(t)

Phea(t)

(b)

0 6 12 18 24
Time [hours]

0.0

0.2

0.4

W
in

do
w

 c
on

tr
ol

 s
ig

na
l [

1]

(c)

0 6 12 18 24
Time [hours]

0.0

0.2

0.4

0.6

0.8

Ai
r m

as
s 

flo
w

 ra
te

 [k
g/
s]

(d)
Figure 6: (a) Optimal room
air temperature (black line),
thermal discomfort zone (red
area), outside temperature (red
dotted) and supply air tempera-
ture (blue dashed). (b) Optimal
cooling and heating power
provided by the HVAC system
through the VAV box. (c) Opti-
mal control signal for the blind
(black line). (d) Optimal supply
air mass flow rate. Infeasible
area for the control signal (red
area).

Simulation-based optimization To assess the performances of the
collocation-based method we now compare it with a simulation-
based optimization approach. For the latter, we used the JModelica
implementation of the Nelder-Mead (NM) algorithm. The NM al-
gorithm can be applied to nonlinear optimization problems where
derivatives are not available, as is the case with conventional building
simulation programs. See Wetter and Wright (2004) for a comparison
with other derivative free methods.

The optimization variables in the NM optimization problem are
the initial temperature of the air in the zone, the control signal for the
blinds, and the supply air mass flow rate. To reduce the size of the
optimization problem, we simplified it for the NM optimization as
follows: We set the heating power to Phea(t) = 0 for all t ∈ [t0, t f ],
and we discretized both the supply air mass flow rate ṁair(t) and the
blind control signal uwin(t) using one-hour rather than 30 minutes
intervals. The decision to choose no heating is appropriate for this
hot day. Therefore, the optimization variables are

z = [Tair(t0), ṁhvac(t0), ṁhvac(t0 + ∆t), . . . , ṁhvac(t0 + 24 ∆t),

uwin(t0), uwin(t0 + ∆t), . . . , uwin(t0 + 24 ∆t)], (12)

and the total number of variables to optimize is nz = 51. Let τ =

{t0 + i ∆t}24
i=0. The cost function minimized by the NM algorithm is

fNM(z) = Eγ(t f ) + µj (∆Terr + ∆Tinit) , (13a)

∆Terr = max
t∈τ

(0, Tair(t)− Tu
air(t), Tl

air(t)− Tair(t)), (13b)

∆Tinit = (Tair(t0)− Tair(t f ))
2, (13c)



4 APPLICATIONS 20

0 6 12 18 24
Time [hours]

18
20
22
24
26
28
30
32
34
36

Te
m

pe
ra

tu
re

 [
◦
C]

Tair(t)

Tout(t)

Tsup(t)

(a)

0 6 12 18 24
Time [hours]

0

15

30

45Po
w

er
 d

en
si

ty
 [W

/m
2

]

Psup(t)

Phea(t)

(b)

0 6 12 18 24
Time [hours]

0.0

0.2

0.4

W
in

do
w

 c
on

tr
ol

 s
ig

na
l [

1]

(c)

0 6 12 18 24
Time [hours]

0.0

0.2

0.4

0.6

0.8

Ai
r m

as
s 

flo
w

 ra
te

 [k
g/
s]

(d)
Figure 7: (a) Resulting optimal
zone air temperature (black
line) and its successive approx-
imations for different values
of the penalty function multi-
plier µi (gray lines). (b) Optimal
cooling power provided by
the HVAC system through
the VAV box (blue line) and
its successive approximations
for different values of µi (light
blue lines), and optimal heating
power provided by the VAV box
(red line). (c) Optimal control
signal for the blind (black line)
and its successive approxima-
tions for different values of µi

(gray lines). (d) Optimal supply
air mass flow rate (black line)
and its successive approxima-
tions for different values of
µi (gray lines). The red areas
indicate the infeasible regions.

where µj = 1.5j/10, for the iteration counter j ∈ N, are penalty
function multipliers, ∆Terr penalizes thermal comfort constraint vi-
olations, and ∆Tinit forces initial and final zone air temperature to
be equal. The NM algorithm accepts upper and lower limits for the
optimization variables. We used the limits Tair(t0) ∈ [20, 26]◦C, and
ṁair(t) ∈ [ṁl

air, ṁu
air] and uwin(t) ∈ [0, uu

win(t)] for all t ∈ τ. These
constraints are equivalent to the ones of problem (11).

The blue lines in Figure 7(b) show the optimal cooling load com-
puted during successive iterations of the NM algorithm. Each line
corresponds to a different penalty function multiplier µi, with the
bold line being the final optimal solution. Figure 7(a) shows a similar
plot for the resulting optimal zone air temperature. As µi increases,
the solutions converge towards an optimal trajectory that satisfy the
constraints.

Comparison This section compares the results of the two optimiza-
tion algorithms. Both algorithms were run on Ubuntu 14.04 64 bits
hosted on a Virtual Box virtual machine with 2 GB of memory and
four processors.

We initialized both algorithms with a sub-optimal feasible solution
computed by a PI controller that maintains the temperature of the
zone at a fixed value of 24◦C. The selection of initial conditions of the
optimization problem play an important role, in particular for col-
location based methods40 because the trajectories of the state, input, 40 Magnusson and Åkesson, 2012

output and algebraic variables are used to create the initial polyno-
mial approximations and to place the collocation points. Hence, the
initial conditions have to be feasible.
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Both algorithms converge to solutions that minimize the energy
consumption with a similar strategy. The strategy is to maintain the
zone temperature close to the upper boundary of the thermal comfort
zone during the peak hours. Both algorithms compute an optimal
solution that reaches a maximum cooling power density of approxi-
mately 45 W/m2 around 4 PM. The trajectories computed by the two
algorithms are different because of the different discretization mecha-
nisms, implementations of the cost and constraint functions, and the
numerical methods. The optimized total energy consumption E(t f )

is 15.721 kWh/day and 16.543 kWh/day for the optimization with
the collocation and NM method, respectively. Hence, the collocation
methods reduces the cost by an additional 5.2%.

Tables 1 and 2 show the statistics of the two optimization meth-
ods. Despite the fact that the optimization problem solved with the
collocation method is larger and has a finer temporal resolution, it
was solved approximately 2, 200 times faster than the problem solved
using Nelder-Mead.

Number of variables 10385

Number of equality constraints 9953

Number of inequality constraints 1160

Number of Iterations 72

Initialization time 0.93 s
Solution time 6.79 s
Post-processing time 0.04 s
Total computing time 7.75 s

Table 1: Statistics of the
collocation-based optimiza-
tion method.

µi Computing Function Iterations
time [s] evaluations

0.150 2673 25033 447

0.225 1461 13605 242

0.337 1877 16853 300

0.506 2829 25033 447

0.759 2276 20773 370

1.139 1768 16517 294

1.709 1498 13829 246

2.563 1793 15957 284

3.844 1222 10805 192

Total 17401 158405 2822

Table 2: Statistics of the
simulation-based optimiza-
tion method.
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5 Conclusions

The use of equation-based languages allows symbolically manipulat-
ing the model equations. We listed in Section 2 numerical methods
for simulation that benefit from this capability. We also discussed
in Section 3 how having access to the model equations aids in au-
tomatically discovering mathematical properties that are important
if the models are used to simulate stiff systems, hybrid systems or
used within a model predictive controller. Finally, we presented two
applications. First, we showed how equation-based languages can be
used to model a multi-physics problem to assess physical limits and
control strategies for building to electrical distribution grid integra-
tion. For this purpose, we combined in a schematic graphical editor
models of electrical distribution networks, PV and wind turbines, PV
inverter with reactive power control, and prototypical buildings to
develop a controller that maintains the voltage within the admissible
region. Second, we showed how equation-based languages can be
combined with optimal control methods that use computer algebra
to speed up the solution by a factor of 2, 200 compared to using a
conventional gradient-free optimization method.

Related work41 shows other aspects of these technologies and 41 Wetter, 2009; Zimmer, 2013; Wetter
et al., 2014; Jorissen et al., 2015; Casella,
2015; Schuchart et al., 2015; and Bergero
et al., 2015

identifies research and development needs in order to advance it
to a state where it can become an integral part of building energy
simulation.
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7 Nomenclature

Symbol Description
Rn Euclidean space of n-tuples of real numbers
f (·) function, with the dot standing for the undesignated variable
f (x) value of f (·) evaluted for the variable x
f : A→ B function with domain in space A and range in space B
x ∈ A x is an element of space A
ẋ(·) time derivative of variable x
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