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ABSTRACT

This paper introduces new models of the Modelica Buildings Library for thermo-fluid simulation
of steam-based district heating systems in support of design, operation, and energy analysis. Steam
represents a prominent and indispensable form of energy, providing energy for 97% of district heating
and upwards of 84% for some manufacturing industries in the United States. Our primary contribution
is to enable modeling and simulation of complete steam heating districts that was not previously
possible at large scales for industry practices. We implemented open-source models using the
Modelica standard, with models ranging from base classes through complete systems. In this paper,
we present the newly developed models, including their main assumptions and physical relations, and
demonstrate their application for complete district heating systems featuring N ∈ [10, 200] number
of buildings. Compared to district models with the commonly-adopted IF97 water/steam model
and equipment models from the Modelica Standard Library, the new implementation eliminates
costly nonlinear systems of equations, significantly improving the scaling rate for large districts from
O(N3.5) to O(N1.7). For an annual simulation with 180 buildings, this translates to a computing
time reduction from 3.4 hours to 3.6 minutes. These results are critically important for thermo-fluid
simulations of large steam heating systems.
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Figure 1: Water and steam modeling approaches. The liquid water model from the MBL calculates density ρ as a
function of temperature T .

1 Introduction

For industrial and heating processes, steam provides an “indispensable means of delivering energy” due to its low
toxicity, ease of transport, high efficiency, high heat capacity, and relatively low cost [1]. For these reasons, steam
is commonly used in industrial and energy-intensive applications, representing 47% to 84% of the total energy used
in some major manufacturing industries [2]. Further, steam is common in district heating (DH) applications, where
waste heat can be recovered from energy-intensive processes (i.e., manufacturing or electric power generation) and used
for space and domestic hot water heating applications. This waste heat recovery with DH provides multiple benefits,
including decreased fuel consumption, energy costs, and operational costs, while also reducing the need for heating
equipment and associated maintenance at individual buildings [3]. Indeed, steam is the most common heat transfer
medium for DH in the United States, representing 97% of all installations [4].

Our application domain is thermo-fluid simulation of steam DH systems in support of design, operation, and energy
analysis. Despite its prominence and energy efficiency benefits, existing tools fall short in supporting complete steam
DH system simulations. This is particularly true when considering the usability standards and quick simulation timelines
required for industry adoption. As such, past literature on steam DH modeling and simulation have predominantly
focused on the central plant [5], distribution network [6], or interconnected buildings [7], but not complete systems [8].
In terms of modeling approaches, the International Association for the Properties of Water and Steam (IAPWS) 95[9]
and IF97[10] formulations for water/steam thermodynamic properties are most commonly adopted. In the Modelica
domain, ThermoSysPro [11] and ThermoPower [12] libraries are suitable for steam plants, while the Modelica Buildings
Library (MBL) [13] and IDEAS library [14] are suitable for buildings connected to district networks, among other
applications. However, complete steam DH system modeling tools and studies are generally lacking. To enable
simulation of steam DH systems at large district scales (e.g., 100+ buildings), two principle challenges need to be
addressed. First, complete district simulations contain multiple parallel closed loops in the thermo-fluid system that
grow linearly with the number of buildings N . These thermo-fluid lops can create coupled systems of nonlinear
equations, which require the application of iterative, nonlinear solvers that can be computationally costly. Second,
steam heating systems involve phase changes that cross the two-phase wet steam region. With this, discontinuities in
the thermodynamic functions at the phase change boundary can cause significant challenges (e.g., chattering [15]) and
at times failure when simulating large-scale thermo-fluid systems.

To address these challenges, we develop (1) a novel “split-medium” approach for water and steam thermodynamics
and (2) computationally efficient component models for steam DH systems. The objectives of these developments are
to eliminate nonlinear systems of equations by decoupling the mass and energy balance equations and to minimize
numerical challenges at the phase-change transition. Shown in Figure 1, the “split-medium” approach divides the
liquid and vapor phases between two separate medium models, rather than implementing a single medium model as
typically done. This allows several models for water/steam thermodynamics to be coupled with a numerically-efficient
liquid water model from the MBL. The liquid model used here calculates density as a function of temperature only
(i.e., incompressible), thus decoupling density from pressure. Further, our new steam vapor model replaces key
thermodynamic property functions (e.g., specific enthalpy and entropy) with accurate polynomial approximations in a
reduced pressure-temperature range. While this reduced range (0.1-0.55 MPa, 0-160◦C) does not apply to all steam
systems, its intention is to address the numerical challenges caused by the IF97 formulation in the superheated vapor
region. When suitable for the intended application, these secondary simplifications may further reduce computing time
and numerical challenges. More information about our approach and evaluations of the accuracy and computing speed
for thermodynamic property calculations, individual component model simulations, and complete DH simulations
is available in Hinkelman et al. [8]. While our previous publication focused on several water/steam thermodynamic
modeling approaches across multiple scales, this paper presents the new open-source models not previously available.
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Figure 2: Class inheritance and instance diagram for the new steam district heating models in the MBL. Complete
references to existing MBL models are not included due to space constraints. Note that the DHC package is located
within the Buildings.Experimental package while it remains under development. This will later be moved to the
Buildings.Applications package.

The new models introduced with this paper are open-source in the MBL, available at commit ee9000f [16]. In the
following sections, we present the new models, starting with the package structure in section 2 before the content details
in section 3. The example model and simulation results of complete steam DH systems featuring 10 to 200 buildings
are in section 4. Lastly, conclusions are in section 5.

2 Package Structure

In Modelica, models are collected in packages, which are organized hierarchically. Consistent with the MBL design, a
class hierarchy is used with the new steam DH models, as shown in Figure 2. This structure allows users to reuse base
classes and replace models, using Modelica’s redeclaration constructs. These base classes also define standardized
interfaces. In Figure 2, white components are existing models, red components are new base classes, and blue
components can be instantiated by users to construct complete system models. While some new models are integrated
with existing packages of the MBL, most are included in the new Experimental.DHC package, which contains models
from several ongoing projects to enable district heating and cooling (DHC) simulations from steam through combined
heating and cooling (cold network). For more information on DHC types and generations see [17].

3 Model Contents

Due to space limitations, we only present some selected new models. In this section, base classes and models of
key equipment are described, including the underlying physics and assumptions. Further modeling details, including
subsystem and system examples, are available in the MBL documentation and Hinkelman et al. [8].

https://github.com/lbl-srg/modelica-buildings/tree/ee9000ff95bba3b606d9516ec063922d5b0e655e
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3.1 Base Classes

3.1.1 PartialTwoPortTwoMedium

This base class provides a basic interface for all models utilizing the split-medium design for phase-change processes. It
allows separate medium model assignments at each fluid port. Medium packages are replaceable to allow liquid water
and steam vapor models to be assigned depending on the phase-change process that occurs in the component, such as
condensation for a heat emitting device or evaporation for a boiler. In addition, this base class sets the mass flow as
positive from port_a to port_b, pressure drop dp between the ports, and defines several parameters common to all
models (i.e., energy balance type).

3.1.2 PartialSaturatedControlVolume

This partial control volume represents evaporation or condensation phase change processes with the liquid and vapor
states in equilibrium. Two principal assumptions are made: First, we assume that the water is always saturated, and fluid
leaves the volume as either saturated vapor (quality χ = 1) for evaporation or saturated liquid (χ = 0) for condensation.
Second, we assume that the liquid and vapor components are at equilibrium (i.e., a single pressure-temperature (p, T )
state). With these assumptions, any superheating or subcooling can occur in up- or down-stream components, such as
with heat exchangers or superheaters. Models that extend this base class must assign the boundary conditions at the
ports, including the mass flow rate and specific enthalpy, as done with the components in sections 3.2.1 and 3.2.2.

The fundamental equations are as follows. The fluid mass m in the volume is calculated as

m = ρsVs + ρwVw, (1)

where ρ is density, V is volume, and subscripts s and w represent the steam and liquid water components, respectively.
The total internal energy U is

U = ρsVshs + ρwVwhw − pV, (2)
where h is specific enthalpy, p is pressure, and the total volume of fluid is V = Vs + Vw.

This model allows both steady state and dynamic mass and energy balances. The dynamic mass balance is
dm

dt
= ṁs + ṁw, (3)

where ṁs and ṁw are the mass flow rates of steam and liquid water, respectively. The dynamic energy balance is
dU

dt
= Q̇+ ṁshs + ṁwhw, (4)

where Q̇ is the net heat flow rate into the volume.

It is important to note that the new PartialSaturatedControlVolume is similar to Modelica.Fluid.Examples.DrumBoiler.
BaseClasses.EquilibriumDrumBoiler [18], except:

1. It is a reusable base class that can be applied for both evaporation and condensation processes;
2. Rather than a single medium model, the split-medium approach is implemented; and
3. The metal drum is excluded from the mass and energy balances.

3.2 Components

Two component models extend the PartialSaturatedControlVolume base class to add equations for evaporation and
condensation. These two implementations are as follows.

3.2.1 ControlVolumeEvaporation

Extending the PartialSaturatedControlVolume, this instantiable model assigns mass flow rate and enthalpy at the ports
as shown in Listing 1. With the control volume at a saturated state, leaving fluid is either saturated vapor (normal
forward flow) or saturated liquid (reverse flow).

3.2.2 ControlVolumeCondensation

The condensation control volume involves the same mathematical formulation and assumptions as ControlVolumeEvap-
oration except that a condensation process occurs rather than an evaporation process. In the implementation (Listing 2),
the differences are in the boundary condition assignments.
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model ControlVolumeEvaporation
extends PartialSaturatedControlVolume;

equation
// boundary conditions
port_a.m_flow = mWat_flow; // Assign ṁw to inlet port
port_a.h_outflow = hWat; // Assign hw to inlet port
port_b.m_flow = mSte_flow; // Assign ṁs to outlet port
port_b.h_outflow = hSte; // Assign hs to outlet port

end ControlVolumeEvaporation;

Listing 1: ControlVolumeEvaporation.

model ControlVolumeCondensation
extends PartialSaturatedControlVolume;

equation
// boundary conditions
port_a.m_flow = mSte_flow; // Assign ṁs to inlet port
port_a.h_outflow = hSte; // Assign hs to inlet port
port_b.m_flow = mWat_flow; // Assign ṁw to outlet port
port_b.h_outflow = hWat; // Assign hw to outlet port

end ControlVolumeCondensation;

Listing 2: ControlVolumeCondensation.

3.3 Equipment

3.3.1 BoilerPolynomial

Figure 3 shows the schematic model view of the steam boiler that discharges saturated steam and has an efficiency
curve defined by a polynomial. The rate of heat transferred to the water medium Q̇ is

Q̇ = y Q̇0
η

η0
, (5)

where y ∈ [0, 1] is the load ratio, Q̇0 is the nominal heat capacity, η is the total efficiency at the current operating point,
and η0 is the total efficiency at y = 1 and boiler output temperature T = T0, where T0 is the nominal temperature.
With efficiency η = Q̇/Q̇f and Q̇f representing the rate of heat released by the fuel combustion, the three polynomial
options to compute η are

η = a1, (6)
η = a1 + a2y + a3y

2 + ...+ any
n−1, and (7)

η = a1 + a2y + a3y
2 + (a4 + a5y + a6y

2)T, (8)

where a1 through an are regression coefficients.
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Figure 3: Modelica diagram for the steam boiler with an efficiency curve defined by a polynomial. Components in
the green shaded region (including the heat port for the control volume, but not the volume itself) are conditionally
removed if the boiler is configured with steady mass and energy balances.
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Figure 4: (a) Schematic diagram of the steam DH system with a central plant, distribution network, and N number of
interconnected buildings and (b) Modelica diagrams of the complete DH system and central plant. The optional PRV in
the building model is not included in this case study example.

The steam boiler model can have steady or dynamic mass and energy balances. If the boiler is configured in steady
state, then several components (highlighted in green in Figure 3) are conditionally removed to maintain a consistent
set of equations. This is unique to the saturated steam boiler because the thermodynamic state of steam is constrained
at the outlet port at pressure p = psat with T = Tsat(psat) and enthalpy h = hv(psat), where subscript sat is the
saturated state. Therefore, if the mass and energy balances are steady, then prescribing the heat flow into the fluid
over-constrains the problem, and thus they are removed. Conversely, dynamic balances enable the heat flow rate into
the control volume to be calculated based on the heat transfer from the fuel and through the boiler’s enclosure with the
external environment.

3.3.2 ValveSelfActing

In DH systems, plants generate high pressure steam, which often needs to be reduced before being used on the building
side due to functional and safety requirements. A common way of reducing the steam pressure is by isenthalpically
throttling the steam passageway through a pressure reducing valve (PRV). These are self-acting control valves that
automatically adjust the diameter of the valve orifice to reduce the unregulated inlet pressure to a constant, reduced
outlet pressure. In the model, we assume a valve with ideal pressure reduction that discharges steam at a user-defined
low pressure of pb0. This allows the pressure drop in the valve model to be independent of mass flow rate, which
improves simulation efficiency.

3.3.3 SteamTrap

A required component of steam heating systems, steam traps effectively ensure that only liquid condensate leaves
components (e.g., steam heat exchanger), while any flashed steam is returned to a liquid state before discharge. This
prevents the loss of steam while protecting pipes for water from damage by hot and high pressure steam vapor. In this
model, we assume steady state mass and energy balances. The steam trap represents an isenthalpic thermodynamic
process that transforms liquid water from an upstream high pressure (state 1) to atmospheric pressure (state 2a), followed
by an isobaric condensation process to return flashed steam to a saturated liquid (state 2). The heat loss in the trap Q̇l is

Q̇l = ṁ(h2a − h2), (9)

where ṁ is the steady state mass flow rate, and h2a and h2 are the specific enthalpies at states 2a and 2, respectively.

4 Example

We now present an example that demonstrates how the new steam DH models can be assembled into a complete system
with N buildings. The new implementation involving models presented in this paper is referred as “New”, while a
physically-comparable system involving existing models from the Modelica Standard Library is referred to as “MSL”.
The MSL case includes the EquilibriumDrumBoiler and two-phase Modelica.Media.Water.StandardWater based on the
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Table 1: Linear and nonlinear systems of equations after Dymola’s built-in model manipulation.

N Linear Systems Nonlinear Systems

MSL New MSL New

1 {2, 2} {2} {2, 4} {3}
2 {2, 2, 2} {2} {3, 4} {3}
...

...
...

...
...

n {2, 2, ..., 2(n+1)} {2} {n+ 1, 4} {3}

IF97 formulation. In [8], we demonstrated that compared to the MSL case, the New models produce similar accuracy
and a significantly improved computing speed for DH systems with variable heating load profiles at the buildings. The
simulation objective in this paper’s example is to evaluate the accuracy and computing speed of the MSL and New
example models when the buildings contain constant heating load profiles. Further, the model versions of this paper are
the open-source releases [16], which were previously not available. Simulations ran in Dymola 2021 with the DASSL
solver (simulation tolerance of 10−6) on a Windows 10 workstation with a Intel® Xeon® 3.60GHz CPU and 32.0GB of
RAM.

4.1 System Description

Figure 4 depicts (a) the schematic diagram and (b) Modelica diagrams for the top-level system and central plant,
composed of models from section 3. This DH system is broken into three subsystems: a central plant, the distribution
network, and buildings. At the plant, the feedwater pump and boiler both have dynamic energy and mass balances,
and PI controllers are used to maintain the water level and pressure setpoints. While there are several mechanical and
control designs seen in central plants [19], this configuration was selected because it is a simple yet common design
found in practice. Saturated steam is discharged from the boiler at 300 kPa. The boiler model has a constant efficiency
of η = 0.9. For this example, we assume that heat losses across the boiler’s enclosure with the ambient environment are
included in η. In the distribution network, this example includes pressure drop in the condensate return pipes, but does
not include mass nor heat losses in either supply or return pipes.

The building model represents the district-side thermo-fluid system with a heating load Q̇b prescribed using tabulated
data at the energy transfer station (i.e., the complete building-side piping is not modeled). We assume heat losses
at the buildings are included in this tabulated data. A condensate return pump prescribes the mass flow rate of
steam/condensate at the building as ṁb = Q̇b/(h1 − h2), where h1 and h2 are the measured inflowing and outflowing
specific enthalpy values, respectively. For this example, we assume constant heating loads of Q̇b = 19.3 kW, with
the nominal heat flow rate of the plant’s boiler being Q̇0 = N Q̇b. The DH system is simulated for 15 days with
N = [10, 20, 30, ..., 200] buildings. Simulations are repeated 5 times for each set of MSL and New cases, for a total of
200 simulation runs. Average computing times across the 5 repeated simulations are reported.

4.2 Results

As shown in Table 1, the linear and nonlinear systems of equations differ between the MSL and New MBL cases. The
number of linear systems of equations increases linearly with N for the MSL case, while it is constant in the New case.
More importantly, the dimension of the nonlinear system of equations increases linearly with N for the MSL case,
while it is constant for the New case. We achieve this constant result because density and pressure are decoupled with
the split-medium approach and the numerically-efficient water models of the MBL. This allows the Modelica tools
to decouple the energy from the mass balance equations, eliminating algebraic loops that require iterative, nonlinear
solvers.

However more important are the scaling results. Figure 5 shows the log-log plot of the computing time versus the
number of buildings. For large N , the computing time is expected to scale as tcpu = kNp, where k is some constant
and p is the order of the scaling. In a log-log plot, this curve becomes log(tCPU ) = log(k) + p logN . Making a
data fit for N ≥ 110, which is where we see the expected linear behavior reproduced in the data, we obtain for MSL
p = 3.5 and for New p = 1.7. Thus, while the MSL implementation scales as O(N3.5), the New implementation scales
as O(N1.7). For an example of an annual simulation with 180 buildings, this result correlates to a computing time
improvement from 3.4 hours with the MSL case to 3.6 minutes with the New case.
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5 Conclusion

We present new modeling capabilities of the open-source MBL to enable fast and accurate simulation of complete
steam-based DH systems. These models include base classes, components, equipment, and complete system examples
to aid user adoption for their own project purposes. Compared to a typical steam heating implementation featuring
the two-phase IF97 steam/water model and existing open-source components of the MSL, our new implementation
eliminates costly nonlinear systems of equations by decoupling pressure and density calculations. This decoupling is
critical for large-scale steam DH simulations, as the simulation time of the implementation that uses models from the
MSL scales as O(N3.5), while our implementation scales as O(N1.7). This significantly increases the size of systems
that can be simulated in practical applications.
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