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ABSTRACT
Some building performance simulation programs
compute the volume flow rate in ducts and pipe net-
works for a given fan speed, which may be computed
by a feedback controller, based on the intersection
of the flow resistance and fan curve. We show ana-
lytically and based on numerical simulations that fan
models that use affinity laws and polynomials for the
fan curve can lead to equations that become singular,
have no, one, multiple or an infinite number of solu-
tions. In experiments in which we used such a model,
the simulations failed due to non-convergence or the
time integration algorithm stalled due to oscillatory
behavior. We therefore developed a new fan model,
presented in this paper, that is a composition of a fan
model that is used for low speeds and normal speeds.
In each region, the model has a unique solution and
eliminates the previously discussed numerical prob-
lems. The composite model is differentiable in all in-
puts. The approach for developing this model was to
enforce constraints in each region that are mathemati-
cally sufficient to ensure the existence and uniqueness
of a solution. The fan model is implemented in the free
open-source Modelica Buildings library version 1.3.

INTRODUCTION
This paper describes a numerically robust implemen-
tation of a fan model that can be simulated for any
speed and as a component of an arbitrary duct net-
work. For brevity, we only write fan and ducts, but the
discussions are also applicable for pumps and pipes.
The motivation for this work is that affinity laws for
fans are not applicable for system simulation with vari-
able speed fans, as they yield singular equations as the
speed goes to zero. Furthermore, polynomials that ex-
press the fan pressure raise as a function of the volume
flow rate, as is customarily used in building perfor-
mance simulation programs, can be shown to cause
numerical problems: If such polynomials are com-
bined with the pressure drop curve of the duct network,
then the combined equation that is used to resolve the
fan flow rate and associated pressure raise can have no,
multiple or an infinite number of solutions. To compli-
cate matters, existence of a solution cannot be checked
statically for general polynomial fan curves. If a solu-
tion vanishes, a convergence error occurs during run-
time.
It turns out that such polynomial equations and affin-

ity laws are used in EnergyPlus 7.2 (EnergyPlus En-
gineering Reference, 2012) and in the Modelica Stan-
dard Library 3.2 (Modelica Association, 2010). CON-
TAM 2.4 (Walton and Dols, 2010) also uses polyno-
mial equations but issues a warning if a user enters
data that lead to an inflection point in the polynomial.
Polynomial equations and affinity laws have also been
used in the prerelease version 0.12 of the Modelica
Buildings library (Wetter et al., 2013). In the mean-
time, they have been reimplemented in a robust way
as described in this paper because experimental re-
sults revealed these convergence problems for which
we present a mathematically sound reformulation in
this paper.
Convergence problems with the implementation of fan
curves based on polynomials and affinity laws have
also been observed in other tools. For example, the En-
ergyPlus 7.2 Engineering Reference, p. 346, states that
“the resolver [i.e., the solver that computes the flow
and pressure drop distribution] finds the intersection of
the two curves by successive substitution with 0.9 as a
damping factor. If the flow rate is outside (or if in any
iteration move out of) the range for which pump curve-
fit is suggested, the resolver will bring the value within
range...” This suggests that there are indeed conver-
gence problems in EnergyPlus. On p. 343, the En-
gineering Reference states that “Pressure drop curves
must not be placed on branches which only contain a
pump.” We show in this paper that for parallel pumps,
or in our case parallel fans, such branches do require a
pressure drop to avoid an infinite number of solutions.

CONVENTIONS AND NOMENCLATURE
1. We denote by R the set of real numbers, by R+

the set of positive, non-zero real numbers, and by
N the set of natural numbers N , {1, 2, . . .}.

2. We write a , b to denote that a is equal to b by
definition.

3. For s, t 2 R, we write s # t to denote s ! t with
s > t. We write s ⇡ t if |s � t| is small. We write
s / t if s is proportional to t.

4. f(·) denotes a function where (·) stands for the
undesignated variable. f(x) denotes the value of
f(·) for the argument x. f : A ! B indicates that
the domain of f(·) is in the space A, and that the
image of f(·) is in the space B.

Throughout this paper, we will have to make the dis-
tinction between the solution to an equation and its nu-
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Figure 1: Schematic diagram for pressure boundary condition, pressure source of fan, and flow resistance.

merical approximation. Let x 2 Rn, for some n 2 N.
We will write x

⇤
(✏) 2 Rn to denote the numerical ap-

proximation to x obtained with solver precision con-
trol parameter ✏ 2 R+. For example, for f(x) = 0,
x 2 Rn is a solution to the equation. If obtaining this
solution requires an iterative solver, then one computes
an approximate solution x

⇤
(✏) 2 Rn that satisfies, for

some K > 0,

kx � x

⇤
(✏)k  K ✏. (1)

PROBLEM DEFINITION
We consider the system shown in Figure 1 at some
arbitrary time instant t 2 R. The boundary condi-
tions of the system are an input signal for the nor-
malized fan speed r(t) 2 [0, 1] and pressure states
p

a

(t) 2 R+ and p

b

(t) 2 R+. The flow resistance
can be described by a function �p

r

: R⇥R that maps
volume flow rate to pressure drop. From fluid dynam-
ics, we know that this function is continuously differ-
entiable and strictly monotone increasing.1 Without
loss of generality, �p

r

(·) could also be a function of
time, for example, in case of a controlled damper. The
fan model implements an algebraic equation that com-
putes the pressure raise �p

�
r(t),

˙

V (t)

�
. Fan curves

that relate volume flow rate to pressure raise are not
strictly decreasing if a fan has a stall region. However,
below we will show that strict decrease is required to
prove existence of a solution. A numerical solver then
computes for some r(t), p

a

(t) and p

b

(t) a numerical
approximation to the flow rate ˙

V (t) that satisfies

0 = �p(r(t),

˙

V (t))��p

r

(

˙

V (t))+p

a

(t)�p

b

(t). (2)

We are interested in how to formulate the fan curve
�p(·, ·) such that (2) has always a unique solution.
Now, continuous time system simulation programs
can compute for any time instant t 2 R and speed
r 2 [0, 1], and for any solver tolerance ✏ 2 R+,
an approximate solution ˙

V

⇤
(✏, t) to (2). In cases

where no solution exists, the iterative solution will
never converge, in case of multiple solutions, it
may converge to an arbitrary solution and in cases
of an infinite number of solutions, ˙

V

⇤
(✏, t) may

show oscilattory behavior in time. Hence, a careful
implementation that replaces the affinity laws and the
polynomial equations for the fan curve with a more

1Some building simulation programs, e.g., EnergyPlus, use

�pr(V̇ ) = k sgn(V̇ )
q

|V̇ | for some K > 0 even in a neigh-
borhood around V̇ = 0. This should however be avoided as the first
derivative is unbounded.

suited formulation is required for a robust simulation.

Note that even if the fan is controlled to be either on or
off, the speed r(t) may attain any value between 0 and
1. For example, a user may compute the speed as an
output of a second order filter for two reasons: First,
this provides a continuous change in flow rate, which
can be faster and more robust to simulate compared
to a step change. Second, the second order filter may
be used to approximate the transient response of the
fan. For this reason, the fan models in the Modelica
Buildings library have a parameter that allows users to
enable or disable such a second order filter.

FAN MODEL
This section explains how the volume flow rate versus
pressure performance curve for a fan is implemented
in the Modelica Standard Library 3.2, in the Buildings
library 0.12, and in the Buildings library 1.3. The sec-
tion also describes the numerical problems of the im-
plementations in Modelica 3.2 and in Buildings 0.12.
It then describes a new model, and proves that with the
new model, a unique solution exists for the flow rate
versus pressure relation if the model is part of a duct
network.

Implementation in Modelica Standard Library 3.2
The Modelica Standard Library implements a model
for a fan that computes the pressure rise as

�p(r(t),

˙

V (t)) = r(t)

2
nX

i=1

c

i

 
˙

V (t)

r(t)

!
i�1

, (3)

where r(t) is the normalized speed, defined as r(t) =
N(t)/N0, where N(t) is the revolution, ˙

V (t) is
the volume flow rate, {c

i

}n
i=1 are polynomial coeffi-

cients that are determined from user-provided operat-
ing points { ˙

V

i

, �p

i

}n
i=1 at r = 1, and ˙

V (t) is the
volume flow rate. This implementation is motivated
by the fan similarity laws that state that �p / r

2 and
˙

V / r. However, this is problematic for three reasons:
1. Even if the term N(t)/N0 in (3) were to be mul-

tiplied into the summation, the equation (3) is un-
defined for r(t) = 0 if n � 4.

2. Since the polynomial coefficients {c
i

}n
i=1 are de-

termined by solving (3) for given flow rates and
pressure rise { ˙

V

i

,�p

i

}n
i=1 (for r = 1), there is no

guarantee that (3) is monotone decreasing in the
volume flow rate.

In the Modelica Standard Library, the first two
problems are avoided by replacing r(t) by
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max(r(t), 0.001/N0). However, this introduces
a non-differentiability at r(t) = 0.001/N0. Moreover,
it causes �p(r(t),

˙

V (t)) to be non-zero even if
˙

V (t) = 0 and r(t) = 0. Hence, the fan cannot be
switched off completely, and volume flow occurs even
if the HVAC system is off. This may introduce outside
air when heaters are off, thereby causing subfreezing
temperatures in heat exchangers which in turn can
cause the simulation to stop. The third point has
been shown to cause two solutions to exist for certain
configurations of flow networks and fan curves. This
caused non-physical results and divergence of the
solver.

Implementation in Buildings Library 0.12
We will now explain how the first two problems were
avoided in the Buildings library version 0.12. We will
then explain why the new implementation was also
not robust. Finally, after this section, we will explain
how we reimplemented the fan model to circumvent
all three problems.

In the Buildings library version 0.12, the first two
problems are avoided by reformulating (3) as

�p(r(t),

˙

V (t)) = c1 r(t)
2
+ c2 r(t)

˙

V (t), (4a)
�p(r(t),

˙

V (t)) = c1 r(t)
2
+ c2 r(t)

˙

V (t)

+c3
˙

V

2
(t), (4b)

�p(r(t),

˙

V (t)) =

nX

i=1

c

i

r(t)

n�i

˙

V

i�1
(t),

for n � 4. (4c)

This implementation has shown to be numerically
problematic in a large system model in which the fan
curve was modeled as a linear function.2 The reason
was that Dymola selected ˙

V (t) as an iteration vari-
able, and computing r(t) and �p(r(t),

˙

V (t)) required
an iterative solution, i.e., they were approximated us-
ing some r

⇤
(✏, t) and some �p

⇤
(✏, t). The governing

equation was

˙

V

⇤
(✏, t) =

�p

⇤
(✏, r

⇤
(✏, t),

˙

V

⇤
(✏, t)) � r

⇤
(✏, t)

2
c1

r

⇤
(✏, t) c2

⇡ �p

⇤
(✏, r

⇤
(✏, t),

˙

V

⇤
(✏, t))

r

⇤
(✏, t) c2

. (5)

Thus, computing ˙

V

⇤
(✏, t) required dividing numerical

noise by numerical noise.
Moreover, since, in the system model, the fans were
connected as shown in Figure 2, the fluid volumes
of two fan models were coupled. Due to the model
parameterization, multiple volumes were connected
without a flow resistance in between, forming a se-
quence of connected volumes. Within this sequence,
the mass flow rate became oscillatory and unstable, as

2This problem was observed in https://corbu.lbl.

gov/svn/bie/branches/mwetter/dev-zeroFlow/

bie/modelica/Buildings, revision 2721.
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Figure 3: Instability of ṁ(t)/ṁ0 for the fan inlet mass

flow rate at location (a) in Figure 2.

shown in Figure 3, because at r = 0 (and �p = 0),
any value of ˙

V (t) satisfied the governing equation (4a)
for the fan in the lower flow path. That is, there were
an infinite number of solutions to (4a)! Not surpris-
ingly, this eventually led, for the fan configuration
shown in Figure 2, to the oscillatory behavior shown
in Figure 3. Consequently, the solver stalled as it was
required to make very small time steps to control the
integration error of the conservation equations of the
volumes that participated in the mass exchange shown
in Figure 3.

We note that this oscillatory behavior is avoided in
CONTAM 3.0 by replacing the fan model with an ori-
fice model if the control signal satisfies r(t)  � for
some 0 < � < 1. We did not use this approach as
it would yield a hybrid model. Switching from one
model to another leads to a state event that can increase
the simulation time. Furthermore, if r(t) is the output
of a controller whose input depends on the fan volume
flow rate, then the following problems can occur: For
an algebraic hybrid model, there may not be a solution.
For a dynamic hybrid model, the dynamics can intro-
duce oscillatory behavior (chattering) which in turn
can cause very slow progress of the time integration.
As an example, consider the contaminant problem be-
low that describes a volume with fresh air supply, con-
stant contaminant source and feedback control on the
fresh air supply flow rate. Let

V

dC(t)

dt

=

(
˙

C

s

, if u(t) < 0.2,

˙

C

s

� ˙

V C(t)u(t), otherwise,
(6a)

C(0) = 0, (6b)
u(t) = K

p

C(t), (6c)

where V = 1m

3 is the control volume, C(·)
is the contaminant concentration in kg/m

3, ˙

C

s

=

0.999 kg/s is a contaminant source, K
p

= 0.2m

3
/kg

is a control gain, ˙

V = 5m

3
/s is the fan volume flow

rate and u(·) is the fan control input. By (6a), the
fan only operates if the control input signal satisfies
u(t) � 0.2. The control law has no hysteresis.
When simulated in Dymola 2013 FD01, which has
event detection, and the DASSL solver is used, which
is an adaptive time step solver, C(t) increases to
1 kg/m

3 at t = 1 s, and then the control u(t) chatters,
causing the simulation to make very slow progress.
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heating coil, consisting
of volumes in series

fan, consisting of a volume (circle)

flow resistance

Solid lines indicate flow paths with zero volume flow rate;

and a pressure source (triangle)

dashed lines indicate flow paths in which volume flow rates oscillate.

volume

(a)

Figure 2: Schematic diagram of configuration of fans that caused unstable simulation.
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Figure 4: Contaminant concentration C(t) and com-

puting time t
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for equation (6).

This is illustrated in Figure 4. A test without hystere-
sis on the fan input signal that switches the fan on and
off below a certain control signal, as in (6a), is also
implemented in CONTAM 3.0.

Implementation in Buildings Library 1.3
To avoid the problems that we encountered in the
Modelica Standard Library 3.2 and in the Buildings
library 0.12, we reformulate the model as follows. To
deduce a new fan model that always has a unique so-
lution if it is part of a flow network, we first consider
the thermodynamic system that contains the fan. Con-
sider the system shown in Figure 1, where the pres-
sures p

a

(t) and p

b

(t) are not a function of the volume
flow rate.3 For example, p

a

(t) may be the atmospheric
pressure and p

b

(t) may be the room air pressure. The
flow resistance �p

r

(

˙

V (t)) may be composed of mul-
tiple branches. Without loss of generality, because
the fan model �p(r(t),

˙

V (t)) has pressure only as an
algebraic variable, any flow resistance between p

a

(t)

and the pressure source of the fan can conceptually be
lumped into the function �p

r

(·). For the configuration
in Figure 1, we show in Figure 5 the volume flow rate

3However, their value can change as time progresses due to the
flow exchanged with the control volume.

0

0

p

b

(t) � p

a

(t)

�p(r,

˙

V )

�p

r

(

˙

V )

˙

V

p
(

˙

V
)

Figure 5: Pressure distribution in system shown in

Figure 1.

versus the pressures.

This flow configuration has the following proper-
ties: Because the function for the flow resistance
�p

r

: R ! R is regularized near the origin, it follows
that there exists a � > 0 so that for all ˙

V 2 R, either
@�p

r

(

˙

V )/@

˙

V > � or, for the special case of no
flow resistance, @�p

r

(

˙

V )/@

˙

V = 0. Furthermore, the
difference of the state variables p

b

(t)� p

a

(t) can have
any sign.

To construct a fan model that has a unique solution for
the volume flow rate, we use the following approach:
First, we define a residual function that takes the
volume flow rate ˙

V (t) as an independent variable.
The speed r(t), and the pressures p

a

(t) and p

b

(t) are
assumed to be known when solving for ˙

V (t) as they
are typically inputs or state variables of the system.
We will construct this residual function so that it is
continuously differentiable, and that the derivative is
bounded away from zero. Continuity of the residual
function, together with the bound on the derivative,
ensures that the residual function eventually crosses
zero for some ˙

V (t), which will be the solution to our
volume flow rate versus pressure equation. Bounding
the derivative away from zero also ensures that the
residual function has no inflection points that may
cause multiple solutions.
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Figure 6: Flow resistance and fan curve that shows the

situation where two solutions exist (with �p(r1,
˙

V ))

which collapse into one solution as r1 ! r2. This

solution ceases to exist for r3 < r2.

Now, let

�ep(r(t), ˙V (t)) , �p(r(t),

˙

V (t)) � �p

r

(

˙

V (t))

+p

a

(t) � p

b

(t) (7)

be the residual function. Then, we seek a function
�p : R ⇥ R ! R, which is representative for the fan
pressure rise, so that for any r

⇤ 2 R, there exists a
unique ˙

V

⇤ that satisfies �ep(r⇤, ˙V ⇤
) = 0. By con-

tinuity, a unique solution ˙

V

⇤ exists if the derivative
@�ep(r⇤, ·)/@ ˙

V exists, is continuous and is bounded
away from zero. Thus, a sufficient condition for a
unique solution to exist is if, for any r

⇤ 2 R, the func-
tion �ep(r⇤, ·) has a continuous derivative and there
exists a � > 0 so that for all ˙

V 2 R,

@�ep(r⇤, ˙V )

@

˙

V

< �. (8)

Since for all ˙

V 2 R,

@(��p

r

(

˙

V ) + p

a

� p

b

)

@

˙

V

 0, (9)

a sufficient condition is that for all r 2 R, the function
�p(r, ·) has a continuous derivative and there exists a
� > 0 so that, for all ˙

V 2 R,

@�p(r,

˙

V )

@

˙

V

< �. (10)

The condition (10) will be used below to construct a
model for a fan.

However, we first show that a solution may not exist
if condition (10) is not satisfied. Consider Figure 6
which shows a fan with a stall region that works
against a positive pressure. For �p(r1,

˙

V ), there
are two solutions. This situation can happen in a
real system. If r1 is reduced towards r2, the locus
of possible operating points move along the curve
�p

r

(

˙

V ), where they eventually collapse into one
point. If r2 is further reduced, this solution vanishes.
In actual systems, the fan operating point will become
unstable. However, the pressure dynamics needed to

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

y

polynomial
cubic hermite splines
support points

Figure 7: Fan curve obtained by using a polynomial

and by using a cubic hermite spline.

represent this phenomenon is not modeled in a static
fan model such as the one implemented here, and
hence it cannot be expected that the solver will find
the new solution.

Polynomials to represent fan pressure raise are com-
monly used in building simulation programs. Unfortu-
nately, polynomials can have inflection points even if
their coefficients are computed for support points that
are strictly decreasing. For example, consider the 2nd
order polynomial

y = 0.45 + 0.4x � 0.8x

2
, (11)

obtained from the support points {(x
i

, y

i

)}3
i=1 =

{(0.25, 0.5), (0.5, 0.45), (0.75, 0.3)}. As shown in
Figure 7, the support points are strictly decreasing,
but the polynomial is increasing for small volume
flow rates. Such an inflection point can be avoided
by using cubic hermite splines that are computed
using the algorithm of Fritsch and Carlson (1980).
This algorithm guarantees strict descent of the cubic
hermite spline if the data are strictly decreasing.
Figure 7 shows such a cubic hermite spline that is
computed for the above support points, and linearly
extrapolated outside the range of the support points.

We will now create a fan model that satisfies condi-
tion (10) and the fan affinity laws in the typical re-
gion of operation. To simplify notation, let S

n

=

{( ˙V
i

,�p

i

)}n
i=1, with ˙

V

i

� 0 and �p

i

� 0 for all
i 2 {1, . . . , n}, denote the user-supplied performance
data for the pressure rise between the fan inlet and out-
let at full speed r = 1. Let � = 0.05, which we
selected as a small number that is below the typical
normalized fan speed.4
Then, we impose the following conditions:
1. For r > �, the affinity laws �p / r

2 and ˙

V / r

need to be satisfied.
4The value of � = 0.05 was chosen to be just below the typical

normalized speed during the operation of the fan, which may be
around 0.1 and 1.
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2. For any r 2 R, there exists a � > 0 so that

@�p(r,

˙

V )

@

˙

V

< ��, (12a)

for all ˙

V 2 R, if the points in S
n

satisfy the de-
scent condition

�p

i+1 � �p

i

˙

V

i+1 � ˙

V

i

< ��p

max

˙

V

max

�

2

10

, (12b)

for all i 2 {1, . . . , n � 1}, where the maximum
values are obtained by linear extrapolation as

˙

V

max

=

˙

V

n

�
˙

V

n

� ˙

V

n�1

�p

n

� �p

n�1
�p

n

, (12c)

and

�p

max

= �p1 � �p2 � �p1

˙

V2 � ˙

V1

˙

V1. (12d)

3. For r  �/2, a different model is used that satisfies
the following conditions:

(a) If both, r = 0 and ˙

V = 0, then �p(r,

˙

V ) =

0.
(b) r = 0 shall not imply that ˙

V = 0.
(c) If r = 0 and ˙

V > 0, then �p(r,

˙

V ) < 0

and conversely, if r = 0 and ˙

V < 0, then
�p(r,

˙

V ) > 0.

4. For r 2 [�/2, �], the two models are combined so
that the combined model is differentiable for any
r 2 R.

Condition [2] ensures that there is only one intersec-
tion of the fan curve and the flow resistance curve.
In equation (12b), the term on the right-hand side
has been added to allow constructing a model that
exactly reproduces the user-provided fan operating
points, and that has an internal flow resistance that is
needed to avoid an overspecified system of equations
if p

b

(t) � p

a

(t) 6= 0 and �p

r

(

˙

V ) = 0 for all ˙

V 2 R.
Note that the correction of the descent condition (12b)
due to the flow resistance is small, because for
� = 0.05, we have �2/10 = 2.5 ·10�4. Condition [3a]
simply states that if the fan is off and has no flow, then
it should have no pressure difference. Condition [3b]
states that if the fan is off, there can be flow through
the fan. Condition [3c] states that if the fan is off
and there is flow, then the fan should have a flow
resistance.

We implemented these conditions as follows: Let

�bp( ˙V (t)) =

˙

V (t)

�p

max

˙

V

max

�

2

10

, (13)

be a model of the flow resistance of the fan, approxi-
mated as a linear function of the volumetric flow rate.
We define the fan model as the combination of a flow
resistance and a pressure rise due to the fan revolution.

If the user provides two operating points (n = 2), then
we set

S 0
n

, {( ˙V
i

, �p

i

+�bp( ˙V
i

)) | ( ˙V
i

, �p

i

) 2 S
n

}, (14)

i.e., we correct the performance data for the fan-
internal pressure drop �bp(·) in order for the fan to
reproduce exactly the user-supplied performance data
S
n

.
If n > 2, we add the points (0,�p

max

) and (

˙

V

max

, 0)

in order to ensure that the extrapolation of the fan per-
formance curve is strictly decreasing. (If points for
˙

V = 0 or �p = 0 already exist in S
n

, then these
points will not be added.) We set

S 0
n

, {(0,�p

max

)}
[{( ˙V

i

, �p

i

+�bp( ˙V
i

)) | ( ˙V
i

, �p

i

) 2 S
n

}
[{( ˙V

max

, 0)}. (15)

With this construction, if the points in S
n

satisfy
the descent condition (12b), then the points in S 0

n

are strictly decreasing. It should now be clear that
because of the addition of the term �bp( ˙V

i

) in (14)
and (15), we added the term on the right-hand side
in (12b).

For r(t) > �, we define this combined equation as fol-
lows: First, let h(·,S 0

n

) be a cubic hermite spline that
maps volume flow rate to pressure rise. Let h(·,S 0

n

) be
strictly decreasing if S 0

n

defines a strictly decreasing
sequence. This is achieved by using the algorithm of
Fritsch and Carlson (1980), which guarantees strict de-
scent of the cubic hermite spline if the data are strictly
decreasing. For ˙

V (t) 62 [0,

˙

V

max

], we linearly extrap-
olate the cubic hermite spline. For r(t) > �, we define
the performance curve as

�p

+
(r(t),

˙

V (t)) = ��bp( ˙V (t))

+r(t)

2
h

�
˙

V (t)/r(t),S 0
n

�
. (16)

To see that for all r > �, there exists a � > 0 so that for
all ˙

V 2 R, the expression �p

+
(r(t),

˙

V (t)) satisfies

@�p

+
(r,

˙

V )

@

˙

V

< ��, (17)

we note that without loss of generality, the term
��bp( ˙V (t)) can be absorbed in �p

r

(

˙

V (t)) since it is
also a resistance. Hence, we require that

@(r(t)

2
h

�
˙

V (t)/r(t),S 0
n

)

@

˙

V

< ��. (18)

From condition (12b) follows that the points S 0
n

define a strictly decreasing sequence and hence
h

�
˙

V (t)/r(t), S 0
n

) is also strictly decreasing due the
algorithm of Fritsch and Carlson. Furthermore, since
h(·,S 0

n

) is linearly extrapolated using the derivatives
at ˙

V = 0 or ˙

V =

˙

V

max

, which both are nonzero due
to h(·,S 0

n

) being strictly decreasing on the compact
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0

˙

V

�

˙

V

max

0

�p

�

= �p

+
(�, 0)

�p

+
(1, 0) = �p

max

�p

+
(1,

˙

V )

�p

+
(�,

˙

V )

�p

�
(�,

˙

V )

⇣
˙

V

max

,

�

2 �p

max

10

⌘
�bp( ˙V )

Figure 8: Construction of fan model near origin. (For better visibility, � is not to scale.)

interval I = [0,

˙

V

max

], there exists a ˙

V

⇤ 2 I so that
@h(

˙

V

⇤
,S 0

n

)/@

˙

V � @h(

˙

V ,S 0
n

)/@

˙

V for all ˙

V 2 I.
Hence, we can pick � = 1/2 @h(

˙

V

⇤
,S 0

n

)/@

˙

V . This
proves that (18) is satisfied.

For r(t)  �, we proceed as follows: Define �p

�

=

�p

+
(�, 0) and ˙

V

�

as the solution to 0 = �p

+
(�,

˙

V

�

),
which is ˙

V

�

= �

˙

V

max

, because

0 = �p

+
(�,

˙

V

�

) = �

2
h(

˙

V

�

/�, S 0
n

)

= h(

˙

V

�

/�, S 0
n

) = h(

˙

V

max

, S 0
n

). (19)

Next, for r < �/2, we define the fan curve

�p

�
(r(t),

˙

V (t)) = r(t)�p

�

+ r(t)

2
(c̄1 + c̄2

˙

V (t))

��bp( ˙V (t)), (20)

where c̄1 and c̄2 are obtained from the linear system of
equations

0 = �p

�
(�,

˙

V

�

), (21a)
�p

�

= �p

�
(�, 0), (21b)

from which follows that c̄1 > 0 and c̄2 < 0.
With this construction, we obtain

@�p

�
(r(t),

˙

V (t))

@

˙

V

= r(t)

2
c̄2 � �p

max

˙

V

max

�

2

10

< 0,

(22)
for all r(t) 2 R and ˙

V (t) 2 R, because c̄2 < 0 by
construction. Note that the derivative in (22) does not
depend on ˙

V (t) and hence for all r(t) 2 R, there exists
a � > 0 so that @�p

�
(r(t),

˙

V (t))/@

˙

V < �� for all
˙

V (t) 2 R.

Remark 1.1 In (20), the term r(t)�p

�

has been
added to ensure that

@�p

�
(r(t), 0)

@r

= �p

�

+ 2 r(t) c̄1 > 0, (23)

for all r(t) > ��p

�

/(2 c̄1). In our experience, adding
this term yields faster convergence when the fan is off.

⇤

Finally, for the region r 2 [�/2, �], we combined the
two functions using

�p(r(t),

˙

V (t)) = R
�
r(t) � 3

4

�,

�p

+
�
r(t),

˙

V (t)

�
,

�p

��
r(t),

˙

V (t)

�
,

�

4

�
, (24)

where R : R⇥R⇥R⇥R+ ! R is a once continuously
differentiable function, defined as

R(x, y1, y2, �) =8
>><

>>:

y1, if x > �,

y2, if x < ��,

x

�

⇣�
x

�

�2 � 3

⌘
y2�y1

4 +

y1+y2

2 , otherwise.
(25)

In Modelica, this function is called regStep and
provided by the Modelica.Fluid library. This
construction yields a once continuously differentiable
function for the fan pressure raise for the whole
domain of operation.

We can now make the following important conclusion:

Remark 1.2 Let the fan pressure rise be defined
by (24) and let the fan be a component of the sys-
tem that is shown in Figure 1, with volume flow rate
versus pressure rise performance data S

n

that satisfy
the decrease condition (12b). Then, we proved that
for any given r(t) 2 R and any given pressure differ-
ence p

b

(t)�p

a

(t), there exists a unique solution to the
flow versus pressure relation. Furthermore, the resid-
ual function (7) is once continuously differentiable and
its derivative is bounded away from zero. Therefore, it
is possible to reliably solve for the volume flow rate or
the pressure drop.
If the points in S

n

do not satisfy the decrease condi-
tion (12b), then multiple solutions can exist, and solu-
tions can vanish as r(t) # 0. This can, of course, cause
a numerical solver to fail. In our implementation of the
fan model, we allow the points in S

n

to violate the de-
crease condition (12b) as users may want to simulate
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0 � 0.75 1
V̇ /V̇max

0

�2

0.752

1
�

p/
�

p m
ax

r = 1

r = 0.75

r = � = 0.5

r = �/2

(V̇ , �p) 2 Sn

Figure 9: Fan volume flow rate versus pressure rise

for different values of r. For better illustration, we set

� to a large value of 0.5 instead of the more typical

value of 0.05.

the stall region, but for these parameters, the model
will write a warning prior to the simulation. ⇤

Figure 9 shows the volume flow rate versus pres-
sure rise for different values of r according to (24).
Note that for r = �/2, the performance curve is
linear in the volume flow rate. The diamonds mark
the four user-provided support points. The curves
for r 2 {1, 0.75, �} do not exactly intersect at
(

˙

V /

˙

V

max

,�p/�p

max

) 2 {(1, 0), (0.75, 0), (�, 0)}
because of the contribution of �bp( ˙V ) that emulates
the internal flow resistance of the fan. This is of no
concern because the difference is small and the affinity
laws are an idealization that do not take into account
the flow resistance of the fan casing.

SUMMARY
We showed in Figure 6 and in Figure 7 that the widely
used representation of a fan curve as a polynomial is
an unfortunate choice as even for descending support
points, the resulting fan curve can have an inflection
point that causes numerical problems. To remedy this
problem, we present a mathematically better suited
representation of the fan curve. We also showed an-
alytically by (5) and experimentally by Figure 3 that
fan models that lack a flow resistance can cause the
simulation to produce unrealistic flow rates and to fail.
Such a flow resistance is therefore built into our fan
model. As affinity laws lead to a singularity near zero
speed, we present another formulation for low speeds
that does not suffer from this problem. This led to two
models, one for low speeds and one for normal speeds.
In (12b), we present a sufficiency condition that can
be tested prior to simulation to see whether a unique
point of intersection between the fan curve and an ar-
bitrary flow resistance curve, possibly with an added
static pressure, exists for both of these models. In (6),

we showed that a hybrid fan model can lead solvers to
stall when used in conjunction with a feedback control
loop. Therefore, we presented a formula that combines
these two models in such a way that the combined fan
model is differentiable, and hence avoids the need for
a hybrid model.

CONCLUSIONS
Textbook equations for thermofluid systems are, in
general, not applicable for system simulations. Nev-
ertheless, they are used in many building simulation
programs. However, it is well known that solvers in
building simulation programs often fail to converge if
models are large. In view of the singularities that can
arise if textbook equations are used in a system simu-
lation program, and due to the lack of rigor in imple-
menting numerical solvers, this should not be a sur-
prise. Mathematics cannot be fooled. To implement
model equations such that the resulting coupled sys-
tem of equations can be solved robustly, it is important
that equations are implemented with care to avoid (i)
singularities, (ii) solutions that vanish or (iii) multiple
solutions for certain boundary conditions. The current
practice in many building simulation programs is that
values that do not satisfy the model equations are ac-
cepted if convergence is not achieved, and the simula-
tion proceeds. Wetter and Wright (2004) showed that
this leads to undesirable effects.
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