
FUNCTIONAL MOCK-UP UNIT IMPORT IN ENERGYPLUS FOR                         
CO-SIMULATION  

 
Thierry Stephane Nouidui1, Michael Wetter1, Wangda Zuo2* 
1Lawrence Berkeley National Laboratory, Berkeley, U.S.A. 

2University of Miami, Miami, U.S.A. 
 
 
 
 

ABSTRACT 

This paper describes how to use the recently 
implemented Functional Mock-up Unit (FMU) for 
co-simulation import interface in EnergyPlus to link 
EnergyPlus with simulation tools packaged as FMUs. 
The interface complies with the Functional Mock-up 
Interface (FMI) for co-simulation standard version 
1.0, which is an open standard designed to enable 
links between different simulation tools that are 
packaged as FMUs. This article starts with an 
introduction of the FMI and FMU concepts. We then 
discuss the implementation of the FMU import 
interface in EnergyPlus. After that, we present two 
use cases. The first use case is to model a HVAC 
system in Modelica, export it as an FMU, and link it 
to a room model in EnergyPlus. The second use case 
is an extension of the first case where a shading 
controller is modeled in Modelica, exported as an 
FMU, and used in the EnergyPlus room model to 
control the shading device of one of its windows. In 
both cases, the FMUs are imported into EnergyPlus 
which models the building envelope and manages the 
data-exchange between the envelope and the systems 
in the FMUs during run-time. 

INTRODUCTION 
EnergyPlus (Crawley et al., 2001) is a well 
established whole building energy simulation 
program which has been used for various 
applications such as building design (Wang et al., 
2009) and fault detection and diagnostics (Pang et al., 
2012). EnergyPlus was primarily developed for 
annual building energy simulations as opposed to 
investigating controls performance of HVAC systems 
or detailed daylighting simulations.  
To extend the capability of EnergyPlus for building 
simulation, EnergyPlus has been linked for co-
simulation with various programs from other 
domains, such as multizone airflow network (Huang 
et al., 1999), Computational Fluid Dynamics (CFD) 
(Zhai and Chen, 2005), and HVAC system and 
controls (Wetter, 2011). 

The coupling of EnergyPlus with these external 
programs were realized either by creating specific  
interfaces for the external programs in the 
EnergyPlus source code (Huang et al., 1999, Zhai 
and Chen, 2005) or using the Buildings Controls 
Virtual Test Bed (BCVTB) middleware (Wetter, 
2011). The major limitation of the former is the lack 
of reusability since the interface is only for a specific 
program. For the latter, having an additional 
transaction layer into the communication increases 
the complexity of the co-simulation. A more 
promising approach to link EnergyPlus with external 
programs would be to communicate through a 
standardized interface where all simulation tools can 
communicate directly using the same standard.  As a 
result, the direct link and the elimination of the 
transaction layer will facilitate and enhance the co-
simulation of EnergyPlus with external simulation 
tools. This contribution describes the standard 
interface which has been implemented in EnergyPlus. 
This interface is based on the Functional Mockup 
Interface (FMI) version 1.0, an open standard 
designed to link simulation programs during runtime 
(MODELISAR-Consortium, 2008-2012a).  

FMI Related Work 
Recently, the Energy Conservation in Buildings and 
Community Systems program of the International 
Energy Agency has approved a 5-year project 
(Annex 60) to develop the next generation 
computational tools based on the Modelica (Mattsson 
and Elmqvist, 1997) and the FMI standards. An FMI 
for co-simulation has been implemented in WUFI 
Plus (Pazold et al., 2012), a whole building 
simulation program, to extend its capabilities to be 
linked to external Modelica based simulation 
programs. The Institute for the Sustainable 
Performance of Buildings has been developing a 
web-based eLearning tool in which a Web interface 
communicates with a Functional Mock-up Unit 
(FMU) for co-simulation that simulates heat transfer 
through building envelope, HVAC systems, control 
systems and equipment faults of a building, and 
visualizes this response at an  interactive web 
browser through WebGL (Deringer et al., 2012). 
Work is in progress at UC Berkeley and Lawrence 
Berkeley National Laboratory to integrate an FMU 
import interface in Ptolemy II (Brooks et al., 2007). 

 
*The work was performed while the author was at the   
   Lawrence Berkeley National Laboratory 

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3275 -



Work is also in progress to export EnergyPlus as an 
FMU for co-simulation. 

OVERVIEW OF FMI AND FMU 

The FMI is the result of the Information Technology 
for European Advancement (ITEA2) project 
MODELISAR. It is a tool independent and non-
proprietary standard to support both model exchange 
and co-simulation of dynamic models using a 
combination of XML-file, C-header files, and C-code 
in source or binary form. The FMI standard version 
1.0 consists of three parts: 
 
1. The first part is FMI for model exchange. This 

part of the standard specifies how a modeling 
environment can generate C-code of a dynamic 
system model that can be utilized by other 
modeling and simulation environments 
(MODELISAR-Consortium, 2008-2012c).  
 

2. The second part is FMI for co-simulation which 
provides an interface standard for coupling two 
or more simulation tools in a co-simulation 
environment (MODELISAR-Consortium, 2008-
2012b). Co-simulation refers in this context to a 
technique that allows individual component 
models described by differential algebraic or 
discrete equations to be simulated by different 
simulation programs running simultaneously and 
exchanging data during run-time. 
 

3. The third part is FMI for Product Lifecycle 
Management (PLM) which provides a generic 
way to handle FMI related data needed in a 
simulation of systems in a PLM system 
(MODELISAR-Consortium, 2008-2012d). 

 
The FMI standard defines a set of C-functions that 
are needed to perform co-simulation with other 
simulation programs.  The FMI also defines an 
XML-file (model description file) which contains all 
information required by the importing tool to inquire 
information about the model and its interface 
variables. Tools that support FMI can import and/or 
export a simulator for co-simulation. 
The exported simulator or model is called an FMU. 
An FMU is distributed in form of a zip file. This file 
may contain  

 The FMI model description file. 

 The C sources of the FMU, including the needed 
run-time libraries used in the model, and/or 
binaries for one or several target machines 

 Additional FMU data (such as tables, diagram) 
in FMU specific file formats.  

 
There are currently more than 34 modeling and 
simulation environments which support or plan to 
support FMI (MODELISAR-Consortium, 2008-
2012a). 
 

Since the interface described in this contribution 
leverages the FMI for co-simulation Application 
Programming Interface (API), FMI and FMU will 
refer from now on to the second part of the FMI 
standard. For the co-simulation, the FMU must 
contain the model and its solver. 

FMU IMPORT INTERFACE IN 
ENERGYPLUS 

Implementation 

Pre-processing 

To support the co-simulation of EnergyPlus with 
FMU, we developed a utility called FMUParser. This 
utility is a code written in C. It includes Expat (Clark 
et al., 2011) which is an XML parser library written 
in C. The FMUParser can facilitate the set-up of the 
EnergyPlus input file by extracting relevant 
information from the FMU and writing it in a 
temporary EnergyPlus input file. 
 

Figure 1 shows the workflow for pre-processing. 
First, the FMUParser parses an FMU file (i.e. 
xxx.fmu) and generates a temporary EnergyPlus 
input file (i.e. xxxtmp.idf). The temporary 
EnergyPlus input file is not complete as it just 
contains information related to the FMU, such as the 
name of the FMU and properties of the FMU variable 
including their names and input/output types. The 
user then needs to manually copy the FMU 
information from xxxtmp.idf into the EnergyPlus 
input file xxx.idf. The user finally needs to modify 
the xxx.idf file to link the FMU variables with 
EnergyPlus variables. 
 

 

Figure 1 Workflow for the pre-processing. 
 
In the pre-processing step, the FMUParser will be 
called with the command option --printidf. This will 
request the parser to unzip the FMU, parse the XML-
file with the model description of the FMU and write 
the FMU information in a format of the EnergyPlus 
input file (*.idf). The parser will check if all the 
required fields from the FMU (see next section for 
details) in the *.idf file are correctly specified. If the 
check succeeds, the parser will successfully close. 
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Otherwise, the parser will stop with an error 
message. The FMUParser is distributed with 
EnergyPlus and can be found in the PreProcess folder 
(FMUParser) of the EnergyPlus installation. 

Co-simulation 

For the co-simulation with EnergyPlus, we developed 
a shared library written in C, which contains all 
functions needed to interface with FMUs. The 
primary functions in the shared library are called at 
runtime to instantiate, initialize, set, and get values of 
defined variables and execute single time steps. 
 
This shared library is accessed by EnergyPlus 
through the ExternalInterface module (EnergyPlus, 
2012a). The ExternalInterface is a module in 
EnergyPlus and was originally developed to support 
the co-simulation of EnergyPlus with the BCVTB. 
To support the interface with FMUs, EnergyPlus has 
been extended with four new objects. These objects 
are used to map the input/output signals that are 
exchanged between the FMUs and EnergyPlus. 
 
The ExternalInterface can map to three EnergyPlus 
input objects called 

 ExternalInterface:FunctionalM
ockupUnitImport:To:Schedule 

 ExternalInterface:FunctionalM
ockupUnitImport:To:Actuator 

 ExternalInterface:FunctionalM
ockupUnitImport:To:Variable. 

The 
ExternalInterface:FunctionalMockupU
nitImport:To:Schedule can be used to 
overwrite schedules, and the other two objects can be 
used in place of Energy Management System (EMS) 
actuators and EMS variables. The objects have 
similar functionality as the objects 
Schedule:Compact, 
EnergyManagementSystem:Actuator and 
EnergyManagementSystem:GlobalVariab
le, except that their numerical value is obtained 
from the external interface at the beginning of each 
zone time step, and will remain constant during this 
zone time step. 
The external interface also uses the 
ExternalInterface:FunctionalMockupU
nitImport:From:Variable object which  
maps to EnergyPlus objects Output:Variable 
and 
EnergyManagementSystem:OutputVariab
le to send data from EnergyPlus to FMUs at each 
zone time step. 

Mathematics of data-exchange 
This section describes the algorithm for exchanging 
data between EnergyPlus and a simulation program 
packaged as an FMU. 

Suppose we have a system with two simulation 
programs.  Simulation program 1 is the slave 
simulation program, which is packaged as an FMU 
for co-simulation; and simulation program 2 is 
EnergyPlus, which is the master simulation program 
and imports the FMU for co-simulation. Each 
program solves an initial-value ordinary differential 
equation that is coupled to the differential equations 
of the other program.  

Let N  ℕ denote the number of time steps and let     
k  {0,...,N} denote the time steps. We will use the 
subscripts 1 and 2 to denote the simulation program 1 
and 2, respectively. 

Then programs 1 and 2 compute, for                          
k  {0,...,N-1} the sequence 

 x1(k+1) = f1(x1(k), x2(k)),  (1) 
 
 x2(k+1) = f2(x2(k), x1(k)),  (2)
    
with initial conditions x1(0) = x1,0 and x2(0) = x2,0. 

To advance from time k to k+1, each program uses 
its own integration algorithm. At the end of the time 
step, program 1 sends its new state x1(k+1) to 
program 2, and receives the updated state x2(k+1) 
from program 2. The same procedure is done with 
the program 2. Program 2, which is the master 
simulation program, manages the data-exchange 
between the two programs.  

In comparison to numerical methods of differential 
equations, this coupling scheme resembles an explicit 
Euler integration that solves an ordinary differential 
equation with specified initial values 

dx/dt = h(x),                         (3) 

x(0)  = x0,                             (4) 

on the time interval t  [0, 1]. The integration 
sequence is as follows: 

Step 0: Initialize counter k=0 and number of 
steps N  ℕ. 

 Set initial state x(k) = x0 and set 
time step t = 1/N. 

Step 1: Compute new state x(k+1) = x(k) + 
h(x(k)) t. 

 Replace k by k+1. 
Step 2: If k=N stop, else go to Step 1. 

The above scheme does not require each simulation 
tool to use explicit Euler for its internal time-
stepping; the analogy to explicit Euler applies only to 
the data exchange between programs.  In the situation 
where the differential equation is solved using co-
simulation, the above algorithm becomes 
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Step 0: Initialize counter k=0 and number of  
communication steps N  ℕ. 
 

 Set initial state x1(k) = x1,0 and x2(k) = x2,0.  
Set the communication time step t = 1/N. 

Step 1: Compute new states 
  x1(k+1) = x1(k) + f1(x1(k), x2(k)) t, and 
  x2(k+1) = x2(k) + f2(x2(k), x1(k)) t. 

 Replace k by k+1. 
Step 2: If k=N stop, else go to Step 1. 

In this algorithm, there is no iteration between the 
two simulation programs within one time step. 

It is worth mentioning that the current 
implementation of the FMU import interface assumes 
that there are no direct dependencies between input 
and output of any FMU.  Moreover, the coupling 
scheme used in the implementation is based on loose 
coupling which, compared to strong coupling,  is 
easier to implement, requires shorter synchronization 
time steps, is numerically more robust, and computed 
faster in the experiments reported in (Trcka et al., 
2009). 

 
 
COUPLING AN HVAC SYSTEM 
MODEL, IMPLEMENTED IN AN FMU, 
WITH A ROOM MODEL IN 
ENERGYPLUS 
 
In this example, a room with its HVAC system are 
simulated in EnergyPlus version 7.2. The building 
envelope of the room is modeled in EnergyPlus 
whereas the HVAC system is implemented in 
Modelica. Figure 2 shows the system configuration 
with the HVAC system modeled in an FMU and the 
room model modeled in EnergyPlus. 

 
Figure 2 System with an HVAC system modeled in an 

FMU and a room modeled in EnergyPlus. 

 

The HVAC system model has been developed using 
component models of the Modelica Buildings library 
(Wetter et al., 2013). This model computes sensible 
and latent heat gain required to maintain a room set 
point temperature and humidity. Figure 3 shows the 
Modelica implementation of the HVAC system.   

 
Figure 3 Modelica implementation of the HVAC 

system model. 

 

The Modelica model of the HVAC system is 
exported as an FMU with the name of MoistAir.fmu. 
The FMU is an input/output block (Figure 4) which 
contains the simulation model and exposes inputs, 
outputs and events indicators of the model which can 
be interfaced using the FMI API.  

 
Figure 4 Modelica model of the HVAC system 

exported as an FMU for co-simulation. 

 

This FMU is then imported into Energylus using the 
FMU import interface. The FMU needs as input the 
outdoor dry-bulb (TDryBul) temperature, outdoor 
air relative humidity (outRelHum), the room dry-
bulb temperature (TRooMea) and the room air 
relative humidity (rooRelHum). The outputs of the 
FMU are the latent (QLatent) and sensible 
(QSensible) heat transported across the 
thermodynamic boundary of air inlet and outlet of the 
thermal zone. 

In this example, we use the  
ExternalInterface:FunctionalMockupU
nitImport:To:Schedule to send the latent and 
sensible heat gain from the FMU to EnergyPlus. We 
also use the  
ExternalInterface:FunctionalMockupU
nitImport:From:Variable object to send 
outdoor dry-bulb temperature, outdoor air relative 
humidity, room dry-bulb temperature and room air 
relative humidity from EnergyPlus to the FMU. The 
data exchange between the FMU and EnergyPlus 
occurs at the zone time step of EnergyPlus. 
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The following section gives a step-by-step instruction 
on how to set-up and run the simulation in 
EnergyPlus. 

Pre-processing – Creating the EnergyPlus input file 

An FMU comes along with a model description file, 
which contains among other information the input 
and output variables of the FMU. Figure 5 shows a 
snippet of a section of the model description file of 
MoistAir.fmu. 
<?xml version="1.0" encoding="UTF-8"?> 
<fmiModelDescription fmiVersion="1.0" 
modelName="Buildings.Utilities.IO.BCVTB.Examples.MoistAir" 
modelIdentifier="Buildings_Utilities_IO_BCVTB_Examples_Mois
tAir"guid="{814b15aa-dcbb-4adf-b55b-f5f841fafad1" 
description="MoistAir" version="1.1" generationTool="Dymola 
Version 2012 FD01 (32-bit), 2011-11-22" 
  generationDateAndTime="2012-02-16T22:57:53Z" 
  variableNamingConvention="structured" 
  numberOfContinuousStates="13" 
  numberOfEventIndicators="68"> 
  <UnitDefinitions> 
    <BaseUnit 
      unit=""/> 
    <BaseUnit 
      unit="K"> 
      <DisplayUnitDefinition 
        displayUnit="degC" 
        offset="-273.15"/> 
    </BaseUnit> 
   … 
  <ScalarVariable 
      name="TDryBul" 
      valueReference="352321536" 
      causality="input"> 
      <Real 
        declaredType="Modelica.Blocks.Interfaces.RealInput" 
        min="-273.15" 
        start="0.0"/> 
    </ScalarVariable> 
    … 
    <ScalarVariable 
      name="QSensible" 
      valueReference="335544320" 
      causality="output"> 
      <Real      
     declaredType="Modelica.Blocks.Interfaces.RealOutput"/> 
    </ScalarVariable> 
    … 

Figure 5 modelDescription.xml of FMU 
(MoistAir.fmu). 

The model description file can contain more than 
thousand lines of information depending on the 
complexity of the model, but we are just interested in 
the input and output variables that must be mapped to 
the EnergyPlus variables. Here, we use the 
FMUParser to extract the relevant information from 
the FMU by calling from a DOS or Unix/Linux shell 
the command: 

parser --printidf MoistAir.fmu  

This calls the parser to process the FMU and generate 
a temporary idf file as shown in Figure 6. 

The first object in the temporary input file instructs 
EnergyPlus that the FMU import interface should be 
activated. The second object specifies the FMU that 
will be imported in EnergyPlus. The next four objects 
are used by the ExternalInterface to read data from 
EnergyPlus and and send data to the inputs of the 
FMU. The last two objects are used by the 
ExternalInterface to get data from the FMU output 
variables and write them to EnergyPlus. 

More details on the input fields of the EnergyPlus 
objects can be found in the Input/Output Reference 
of EnergyPlus (EnergyPlus, 2012b). 

ExternalInterface, 
  FunctionalMockupUnitImport; !- Name of External Interface 
 
ExternalInterface:FunctionalMockupUnitImport, 
  MoistAir.fmu, !- FMU Filename 
   ,  !- FMU Timeout in milli-seconds 
   ;  !- FMU LoggingOn Value 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
   ,  !- EnergyPlus Key Value 
   ,  !- EnergyPlus Variable Name 
   MoistAir.fmu, !- FMU Filename 
   ,  !- FMU Instance Name 
   TDryBul; !- FMU Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
   ,  !- EnergyPlus Key Value 
   ,  !- EnergyPlus Variable Name 
   MoistAir.fmu, !- FMU Filename 
   ,  !- FMU Instance Name 
   TRooMea; !- FMU Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
   ,  !- EnergyPlus Key Value 
   ,  !- Energyplus Variable Name 
   MoistAir.fmu, !- FMU Filename 
   ,  !- FMU Instance Name 
   outRelHum; !- FMU Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
   ,  !- EnergyPlus Key Value 
   ,  !- Energyplus Variable Name 
   MoistAir.fmu, !- FMU Filename 
   ,  !- FMU Instance Name 
   rooRelHum; !- FMU Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:To:, 
   ,  !- EnergyPlus Variable Name 
   MoistAir.fmu, !- FMU Filename 
   ,  !- FMU Instance Name 
   QSensible, !- FMU Variable Name 
   ;  !- Initial Value 
 
ExternalInterface:FunctionalMockupUnitImport:To:, 
   ,  !- EnergyPlus Variable Name 
   MoistAir.fmu, !- FMU Filename 
   ,  !- FMU Instance Name 
   QLatent, !- FMU Variable Name 
   ;  !- Initial Value 
 

Figure 6 Temporary idf input file generated by the 
FMUParser. 

 

The next step in the pre-processing consists of  

 copying the temporary idf information into 
the full idf input file, and 

 modifying the full idf file to link the FMU 
variables with EnergyPlus variables. 

The idf excerpts below shows how the objects look 
like in the complete EnergyPlus input file. 

To activate the external interface, we use 
ExternalInterface,  
  FunctionalMockupUnitImport; !- Name of external interface  
 

To define the FMU that will be linked to EnergyPlus, 
we use 
ExternalInterface:FunctionalMockupUnitImport,  
  MoistAir.fmu,          !- FMU Filename  
  15,                    !- FMU Timeout in milli-seconds  
  0;                     !- FMU LoggingOn Value  
 

To enter output variables from which the external 
interface reads data from and sends data to FMUs, 
we use 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    Environment,              !- EnergyPlus Key Value 
    Outdoor Dry Bulb,         !- EnergyPlus Variable Name 
    MoistAir.fmu,             !- FMU Filename 
    Model1,                   !- FMU Instance Name 
    TDryBul;                  !- FMU Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    ZONE ONE,                   !- EnergyPlus Key Value 
    Zone Mean Air Temperature,  !- EnergyPlus Variable Name 
    MoistAir.fmu,               !- FMU Filename 
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    Model1,                     !- FMU Instance Name 
    TRooMea;                    !- FMU Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    Environment,                !- EnergyPlus Key Value 
    Outdoor Relative Humidity,  !- EnergyPlus Variable Name 
    MoistAir.fmu,               !- FMU Filename 
    Model1,                     !- FMU Instance Name 
    outRelHum;                  !- FMU Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    ZONE ONE,                   !- EnergyPlus Key Value 
    Zone Air Relative Humidity, !- EnergyPlus Variable Name 
    MoistAir.fmu,               !- FMU Filename 
    Model1,                     !- FMU Instance Name 
    rooRelHum;                  !- FMU Variable Name  
 

The output variables that will be mapped to the input 
of the FMU also need to be specified in the idf file: 
Output:Variable, 
    Environment,                 !- Key Value 
    Outdoor Dry Bulb,            !- Variable Name 
    TimeStep;                    !- Reporting Frequency 
 
Output:Variable, 
    ZONE ONE,                    !- Key Value 
    Zone Mean Air Temperature,   !- Variable Name 
    TimeStep;                    !- Reporting Frequency  
 
Output:Variable, 
    Environment,                 !- Key Value 
    Outdoor Relative Humidity,   !- Variable Name 
    TimeStep;                    !- Reporting Frequency 
 
Output:Variable, 
    ZONE ONE,                    !- Key Value 
    Zone Air Relative Humidity,  !- Variable Name  
    TimeStep;                    !- Reporting Frequency 
 

To enter schedules to which the external interface 
writes, we use 
ExternalInterface:FunctionalMockupUnitImport:To:Schedule, 
    FMU_OthEquSen_ZoneOne,   !- EnergyPlus Variable Name 
    Any Number,              !- Schedule Type Limits Names 
    MoistAir.fmu,            !- FMU Filename 
    Model1,                  !- FMU Instance Name 
    QSensible,               !- FMU Variable Name 
    0;                       !- Initial Value 
 
ExternalInterface:FunctionalMockupUnitImport:To:Schedule, 
    FMU_OthEquLat_ZoneOne,   !- EnergyPlus Variable Name 
    Any Number,              !- Schedule Type Limits Names 
    MoistAir.fmu,            !- FMU Filename 
    Model1,                  !- FMU Instance Name 
    QLatent,                 !- FMU Variable Name 
    0;                       !- Initial Value 

 
This completes the configuration that is required to 
simulate EnergyPlus with the FMU. 

Co-simulation  

In the co-simulation process, EnergyPlus which is the 
co-simulation master called the methods 
implemented and stored in the shared library. The 
main steps involved in the co-simulation processes 
are 

 unpacking  the FMU,  
 creating an instance of the FMU, 
 initializing the FMU, 
 setting the input variables of the FMU, 
 getting the output variables of the FMU, 
 conducting the time integration, 
 terminating and freeing the memory of the  

FMU. 
 

Figure 7 shows how the room dry-bulb temperature 
in the EnergyPlus model changes with the sensible 
and latent heat gains, which are computed in the 
HVAC system model packaged as an FMU. 
 

 
Figure 7 Simulation results showing the sensible heat 

gain, the latent heat gain, and the room dry-bulb 
temperature reported by EnergyPlus. 

 
 
COUPLING A HVAC SYSTEM AND  A 
SHADING CONTROLLER, 
IMPLEMENTED IN FMUS WITH A 
ROOM MODEL IN ENERGYPLUS 
 
In this example, a shading device is added to one of 
the window of the room model discussed before. The 
shading device is controlled by a finite state machine.  
The shading controller is developed in Modelica and 
exported as an FMU.  
 
Figure 8 shows the new system configuration which 
consists of EnergyPlus which is linked to two FMUs. 
The inputs of the shading  controller’s  FMU are the 
room dry-bulb temperature (TRoo) and the solar 
irradiation (ISolExt) that is incident on the 
window. The output of the FMU is the shading 
actuation signal (yShade). 

 
Figure 8 System with a HVAC system and a shading 

controller in FMUs and a room model with a shading 
device modeled in EneryPlus. 
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Figure 9 shows the finite state machine which 
switches between the states nightShadeDeployed, 
noShade and dayShadeDeployed if guards defined in 
the transitions evaluate to true. 

 
Figure 9 Finite state machine of the shading 

controller. 
 

Figure 10 shows the Modelica implementation of the 
finite state machine. 
 

 
Figure 10 Modelica implementation of the shading 

controller system model. 

To simulate the current system model in EnergyPlus, 
we extend the idf input file by defining a new FMU 
object for our shading controller.   
ExternalInterface:FunctionalMockupUnitImport,  
  ShadingController.fmu, !- FMU Filename  
  15,                    !- FMU Timeout in milli-seconds  
  0;                     !- FMU LoggingOn Value  

 
We enter output variables from which the external 
interface reads data from and sends data to the 
FMU’s shading controller. 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
  ZONE SUBSURFACE 1 EAST WINDOW,!- EnergyPlus Key Value 
   Surface Ext Solar Incident,  !- EnergyPlus Variable Name 
   ShadingController.fmu,       !- FMU Filename 
   Model1,                      !- FMU Instance Name 
   ISolExt;                     !- FMU Variable Name 
 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    ZONE ONE,                   !- EnergyPlus Key Value 
    Zone Mean Air Temperature,  !- EnergyPlus Variable Name 
    ShadingController.fmu,      !- FMU Filename 
    Model1,                     !- FMU Instance Name 
    TRoo;                       !- FMU Variable Name 

 

We specify these output variables  in the idf file. 
Output:Variable, 
    ZONE SUBSURFACE 1 EAST WINDOW,  !- Key Value 
    Surface Ext Solar Incident,     !- Variable Name 
    TimeStep;                       !- Reporting Frequency 
 
Output:Variable, 
    ZONE ONE,                         !- Key Value 
    Zone Mean Air Temperature,        !- Variable Name 
    TimeStep;                           !- Reporting Frequency  

 
To write data from the external interface to an 
EnergyPlus EMS variable, we use the following item 
in idf file: 
ExternalInterface:FunctionalMockupUnitImport:To:Variable, 
    Shade_Signal,            !- EnergyPlus Variable Name 
    ShadingController.fmu,   !- FMU Filename 
    Model1,                  !- FMU Instance Name 
    yShade,                  !- FMU Variable Name 
    1;                       !- Initial Value 

 
which declares a variable with name yShade that 
can be used in an Energy Runtime Language (Erl) 
program to actuate the shading control of the window 
ZONE SUBSURFACE 1 EAST WINDOW as follows: 
! EMS program. The first assignments sets the shading  
! status and converts it into the 
!              EnergyPlus signal (i.e., replace 1 by 6). 
!              The second assignment sets yShade to  
!              an EnergyManagementSystem:OutputVariable 
!              which will be read by the external  
!              interface. 
EnergyManagementSystem:Program, 
 Set_Shade_Control_State,          !- Name 
 Set Shade_Signal = 6*yShade,      !- Program Line 1 
 
! Declare an actuator to which the 
EnergyManagementSystem:Program ! will write 
EnergyManagementSystem:Actuator, 
Shade_Signal,           !- Name 
ZONE SUBSURFACE 1 EAST WINDOW,!- Actuated Component Unique 
!Name 
Window Shading Control, !- Actuated Component Type 
Control Status;         !- Actuated Component Control Type 
 
! Declare a global variable to which the  
! EnergyManagementSystem:Program will write 
 

This completes the configuration that is required to 
simulate EnergyPlus with the two FMUs. 
Figure 11 shows how the shading controller sets the 
night shade to be active during time when the 
incident solar radiation on the windows is smaller 
than the threshold of 5 W/m2, which is defined in the 
transition of the shading controller’s model. 
 

 
Figure 11 Simulation results showing the solar 

radiation incident on the shading device, and the 
shade actuation signal computed in the FMU (1 

means that the shade is deployed). 

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3281 -



CONCLUSION & DISCUSSION 

The FMU import interface developed in EnergyPlus 

extends the capability of EnergyPlus to import any 

simulation program, which is exported as an FMU 

for co-simulation. The FMI approach is very 

promising since it standardizes the co-simulation and 

model exchange between simulators. Future work 

should include the evaluation of the performance of 

the co-simulation approach versus mono-simulation 

where the entire simulation is done in a single 

environment.  
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