
FUNCTIONAL MOCK-UP UNIT IMPORT IN ENERGYPLUS FOR
CO-SIMULATION

Thierry Stephane Nouidui1, Michael Wetter1, Wangda Zuo2*
1Lawrence Berkeley National Laboratory, Berkeley, U.S.A.

2University of Miami, Miami, U.S.A.

ABSTRACT

This paper describes how to use the recently
implemented Functional Mock-up Unit (FMU) for
co-simulation import interface in EnergyPlus to link
EnergyPlus with simulation tools packaged as FMUs.
The interface complies with the Functional Mock-up
Interface (FMI) for co-simulation standard version
1.0, which is an open standard designed to enable
links between different simulation tools that are
packaged as FMUs. This article starts with an
introduction of the FMI and FMU concepts. We then
discuss the implementation of the FMU import
interface in EnergyPlus. After that, we present two
use cases. The first use case is to model a HVAC
system in Modelica, export it as an FMU, and link it
to a room model in EnergyPlus. The second use case
is an extension of the first case where a shading
controller is modeled in Modelica, exported as an
FMU, and used in the EnergyPlus room model to
control the shading device of one of its windows. In
both cases, the FMUs are imported into EnergyPlus
which models the building envelope and manages the
data-exchange between the envelope and the systems
in the FMUs during run-time.

INTRODUCTION
EnergyPlus (Crawley et al., 2001) is a well
established whole building energy simulation
program which has been used for various
applications such as building design (Wang et al.,
2009) and fault detection and diagnostics (Pang et al.,
2012). EnergyPlus was primarily developed for
annual building energy simulations as opposed to
investigating controls performance of HVAC systems
or detailed daylighting simulations.
To extend the capability of EnergyPlus for building
simulation, EnergyPlus has been linked for co-
simulation with various programs from other
domains, such as multizone airflow network (Huang
et al., 1999), Computational Fluid Dynamics (CFD)
(Zhai and Chen, 2005), and HVAC system and
controls (Wetter, 2011).

The coupling of EnergyPlus with these external
programs were realized either by creating specific
interfaces for the external programs in the
EnergyPlus source code (Huang et al., 1999, Zhai
and Chen, 2005) or using the Buildings Controls
Virtual Test Bed (BCVTB) middleware (Wetter,
2011). The major limitation of the former is the lack
of reusability since the interface is only for a specific
program. For the latter, having an additional
transaction layer into the communication increases
the complexity of the co-simulation. A more
promising approach to link EnergyPlus with external
programs would be to communicate through a
standardized interface where all simulation tools can
communicate directly using the same standard. As a
result, the direct link and the elimination of the
transaction layer will facilitate and enhance the co-
simulation of EnergyPlus with external simulation
tools. This contribution describes the standard
interface which has been implemented in EnergyPlus.
This interface is based on the Functional Mockup
Interface (FMI) version 1.0, an open standard
designed to link simulation programs during runtime
(MODELISAR-Consortium, 2008-2012a).

FMI Related Work
Recently, the Energy Conservation in Buildings and
Community Systems program of the International
Energy Agency has approved a 5-year project
(Annex 60) to develop the next generation
computational tools based on the Modelica (Mattsson
and Elmqvist, 1997) and the FMI standards. An FMI
for co-simulation has been implemented in WUFI
Plus (Pazold et al., 2012), a whole building
simulation program, to extend its capabilities to be
linked to external Modelica based simulation
programs. The Institute for the Sustainable
Performance of Buildings has been developing a
web-based eLearning tool in which a Web interface
communicates with a Functional Mock-up Unit
(FMU) for co-simulation that simulates heat transfer
through building envelope, HVAC systems, control
systems and equipment faults of a building, and
visualizes this response at an interactive web
browser through WebGL (Deringer et al., 2012).
Work is in progress at UC Berkeley and Lawrence
Berkeley National Laboratory to integrate an FMU
import interface in Ptolemy II (Brooks et al., 2007).

*The work was performed while the author was at the
 Lawrence Berkeley National Laboratory

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3275 -

Work is also in progress to export EnergyPlus as an
FMU for co-simulation.

OVERVIEW OF FMI AND FMU

The FMI is the result of the Information Technology
for European Advancement (ITEA2) project
MODELISAR. It is a tool independent and non-
proprietary standard to support both model exchange
and co-simulation of dynamic models using a
combination of XML-file, C-header files, and C-code
in source or binary form. The FMI standard version
1.0 consists of three parts:

1. The first part is FMI for model exchange. This

part of the standard specifies how a modeling
environment can generate C-code of a dynamic
system model that can be utilized by other
modeling and simulation environments
(MODELISAR-Consortium, 2008-2012c).

2. The second part is FMI for co-simulation which
provides an interface standard for coupling two
or more simulation tools in a co-simulation
environment (MODELISAR-Consortium, 2008-
2012b). Co-simulation refers in this context to a
technique that allows individual component
models described by differential algebraic or
discrete equations to be simulated by different
simulation programs running simultaneously and
exchanging data during run-time.

3. The third part is FMI for Product Lifecycle
Management (PLM) which provides a generic
way to handle FMI related data needed in a
simulation of systems in a PLM system
(MODELISAR-Consortium, 2008-2012d).

The FMI standard defines a set of C-functions that
are needed to perform co-simulation with other
simulation programs. The FMI also defines an
XML-file (model description file) which contains all
information required by the importing tool to inquire
information about the model and its interface
variables. Tools that support FMI can import and/or
export a simulator for co-simulation.
The exported simulator or model is called an FMU.
An FMU is distributed in form of a zip file. This file
may contain

 The FMI model description file.

 The C sources of the FMU, including the needed
run-time libraries used in the model, and/or
binaries for one or several target machines

 Additional FMU data (such as tables, diagram)
in FMU specific file formats.

There are currently more than 34 modeling and
simulation environments which support or plan to
support FMI (MODELISAR-Consortium, 2008-
2012a).

Since the interface described in this contribution
leverages the FMI for co-simulation Application
Programming Interface (API), FMI and FMU will
refer from now on to the second part of the FMI
standard. For the co-simulation, the FMU must
contain the model and its solver.

FMU IMPORT INTERFACE IN
ENERGYPLUS

Implementation

Pre-processing

To support the co-simulation of EnergyPlus with
FMU, we developed a utility called FMUParser. This
utility is a code written in C. It includes Expat (Clark
et al., 2011) which is an XML parser library written
in C. The FMUParser can facilitate the set-up of the
EnergyPlus input file by extracting relevant
information from the FMU and writing it in a
temporary EnergyPlus input file.

Figure 1 shows the workflow for pre-processing.
First, the FMUParser parses an FMU file (i.e.
xxx.fmu) and generates a temporary EnergyPlus
input file (i.e. xxxtmp.idf). The temporary
EnergyPlus input file is not complete as it just
contains information related to the FMU, such as the
name of the FMU and properties of the FMU variable
including their names and input/output types. The
user then needs to manually copy the FMU
information from xxxtmp.idf into the EnergyPlus
input file xxx.idf. The user finally needs to modify
the xxx.idf file to link the FMU variables with
EnergyPlus variables.

Figure 1 Workflow for the pre-processing.

In the pre-processing step, the FMUParser will be
called with the command option --printidf. This will
request the parser to unzip the FMU, parse the XML-
file with the model description of the FMU and write
the FMU information in a format of the EnergyPlus
input file (*.idf). The parser will check if all the
required fields from the FMU (see next section for
details) in the *.idf file are correctly specified. If the
check succeeds, the parser will successfully close.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3276 -

Otherwise, the parser will stop with an error
message. The FMUParser is distributed with
EnergyPlus and can be found in the PreProcess folder
(FMUParser) of the EnergyPlus installation.

Co-simulation

For the co-simulation with EnergyPlus, we developed
a shared library written in C, which contains all
functions needed to interface with FMUs. The
primary functions in the shared library are called at
runtime to instantiate, initialize, set, and get values of
defined variables and execute single time steps.

This shared library is accessed by EnergyPlus
through the ExternalInterface module (EnergyPlus,
2012a). The ExternalInterface is a module in
EnergyPlus and was originally developed to support
the co-simulation of EnergyPlus with the BCVTB.
To support the interface with FMUs, EnergyPlus has
been extended with four new objects. These objects
are used to map the input/output signals that are
exchanged between the FMUs and EnergyPlus.

The ExternalInterface can map to three EnergyPlus
input objects called

 ExternalInterface:FunctionalM
ockupUnitImport:To:Schedule

 ExternalInterface:FunctionalM
ockupUnitImport:To:Actuator

 ExternalInterface:FunctionalM
ockupUnitImport:To:Variable.

The
ExternalInterface:FunctionalMockupU
nitImport:To:Schedule can be used to
overwrite schedules, and the other two objects can be
used in place of Energy Management System (EMS)
actuators and EMS variables. The objects have
similar functionality as the objects
Schedule:Compact,
EnergyManagementSystem:Actuator and
EnergyManagementSystem:GlobalVariab
le, except that their numerical value is obtained
from the external interface at the beginning of each
zone time step, and will remain constant during this
zone time step.
The external interface also uses the
ExternalInterface:FunctionalMockupU
nitImport:From:Variable object which
maps to EnergyPlus objects Output:Variable
and
EnergyManagementSystem:OutputVariab
le to send data from EnergyPlus to FMUs at each
zone time step.

Mathematics of data-exchange
This section describes the algorithm for exchanging
data between EnergyPlus and a simulation program
packaged as an FMU.

Suppose we have a system with two simulation
programs. Simulation program 1 is the slave
simulation program, which is packaged as an FMU
for co-simulation; and simulation program 2 is
EnergyPlus, which is the master simulation program
and imports the FMU for co-simulation. Each
program solves an initial-value ordinary differential
equation that is coupled to the differential equations
of the other program.

Let N  ℕ denote the number of time steps and let
k  {0,...,N} denote the time steps. We will use the
subscripts 1 and 2 to denote the simulation program 1
and 2, respectively.

Then programs 1 and 2 compute, for
k  {0,...,N-1} the sequence

 x1(k+1) = f1(x1(k), x2(k)), (1)

 x2(k+1) = f2(x2(k), x1(k)), (2)

with initial conditions x1(0) = x1,0 and x2(0) = x2,0.

To advance from time k to k+1, each program uses
its own integration algorithm. At the end of the time
step, program 1 sends its new state x1(k+1) to
program 2, and receives the updated state x2(k+1)
from program 2. The same procedure is done with
the program 2. Program 2, which is the master
simulation program, manages the data-exchange
between the two programs.

In comparison to numerical methods of differential
equations, this coupling scheme resembles an explicit
Euler integration that solves an ordinary differential
equation with specified initial values

dx/dt = h(x), (3)

x(0) = x0, (4)

on the time interval t [0, 1]. The integration
sequence is as follows:

Step 0: Initialize counter k=0 and number of
steps N  ℕ.

 Set initial state x(k) = x0 and set
time step t = 1/N.

Step 1: Compute new state x(k+1) = x(k) +
h(x(k)) t.

 Replace k by k+1.
Step 2: If k=N stop, else go to Step 1.

The above scheme does not require each simulation
tool to use explicit Euler for its internal time-
stepping; the analogy to explicit Euler applies only to
the data exchange between programs. In the situation
where the differential equation is solved using co-
simulation, the above algorithm becomes

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3277 -

Step 0: Initialize counter k=0 and number of
communication steps N  ℕ.

 Set initial state x1(k) = x1,0 and x2(k) = x2,0.
Set the communication time step t = 1/N.

Step 1: Compute new states
 x1(k+1) = x1(k) + f1(x1(k), x2(k)) t, and
 x2(k+1) = x2(k) + f2(x2(k), x1(k)) t.

 Replace k by k+1.
Step 2: If k=N stop, else go to Step 1.

In this algorithm, there is no iteration between the
two simulation programs within one time step.

It is worth mentioning that the current
implementation of the FMU import interface assumes
that there are no direct dependencies between input
and output of any FMU. Moreover, the coupling
scheme used in the implementation is based on loose
coupling which, compared to strong coupling, is
easier to implement, requires shorter synchronization
time steps, is numerically more robust, and computed
faster in the experiments reported in (Trcka et al.,
2009).

COUPLING AN HVAC SYSTEM
MODEL, IMPLEMENTED IN AN FMU,
WITH A ROOM MODEL IN
ENERGYPLUS

In this example, a room with its HVAC system are
simulated in EnergyPlus version 7.2. The building
envelope of the room is modeled in EnergyPlus
whereas the HVAC system is implemented in
Modelica. Figure 2 shows the system configuration
with the HVAC system modeled in an FMU and the
room model modeled in EnergyPlus.

Figure 2 System with an HVAC system modeled in an

FMU and a room modeled in EnergyPlus.

The HVAC system model has been developed using
component models of the Modelica Buildings library
(Wetter et al., 2013). This model computes sensible
and latent heat gain required to maintain a room set
point temperature and humidity. Figure 3 shows the
Modelica implementation of the HVAC system.

Figure 3 Modelica implementation of the HVAC

system model.

The Modelica model of the HVAC system is
exported as an FMU with the name of MoistAir.fmu.
The FMU is an input/output block (Figure 4) which
contains the simulation model and exposes inputs,
outputs and events indicators of the model which can
be interfaced using the FMI API.

Figure 4 Modelica model of the HVAC system

exported as an FMU for co-simulation.

This FMU is then imported into Energylus using the
FMU import interface. The FMU needs as input the
outdoor dry-bulb (TDryBul) temperature, outdoor
air relative humidity (outRelHum), the room dry-
bulb temperature (TRooMea) and the room air
relative humidity (rooRelHum). The outputs of the
FMU are the latent (QLatent) and sensible
(QSensible) heat transported across the
thermodynamic boundary of air inlet and outlet of the
thermal zone.

In this example, we use the
ExternalInterface:FunctionalMockupU
nitImport:To:Schedule to send the latent and
sensible heat gain from the FMU to EnergyPlus. We
also use the
ExternalInterface:FunctionalMockupU
nitImport:From:Variable object to send
outdoor dry-bulb temperature, outdoor air relative
humidity, room dry-bulb temperature and room air
relative humidity from EnergyPlus to the FMU. The
data exchange between the FMU and EnergyPlus
occurs at the zone time step of EnergyPlus.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3278 -

The following section gives a step-by-step instruction
on how to set-up and run the simulation in
EnergyPlus.

Pre-processing – Creating the EnergyPlus input file

An FMU comes along with a model description file,
which contains among other information the input
and output variables of the FMU. Figure 5 shows a
snippet of a section of the model description file of
MoistAir.fmu.
<?xml version="1.0" encoding="UTF-8"?>
<fmiModelDescription fmiVersion="1.0"
modelName="Buildings.Utilities.IO.BCVTB.Examples.MoistAir"
modelIdentifier="Buildings_Utilities_IO_BCVTB_Examples_Mois
tAir"guid="{814b15aa-dcbb-4adf-b55b-f5f841fafad1"
description="MoistAir" version="1.1" generationTool="Dymola
Version 2012 FD01 (32-bit), 2011-11-22"
 generationDateAndTime="2012-02-16T22:57:53Z"
 variableNamingConvention="structured"
 numberOfContinuousStates="13"
 numberOfEventIndicators="68">
 <UnitDefinitions>
 <BaseUnit
 unit=""/>
 <BaseUnit
 unit="K">
 <DisplayUnitDefinition
 displayUnit="degC"
 offset="-273.15"/>
 </BaseUnit>
 …
 <ScalarVariable
 name="TDryBul"
 valueReference="352321536"
 causality="input">
 <Real
 declaredType="Modelica.Blocks.Interfaces.RealInput"
 min="-273.15"
 start="0.0"/>
 </ScalarVariable>
 …
 <ScalarVariable
 name="QSensible"
 valueReference="335544320"
 causality="output">
 <Real
 declaredType="Modelica.Blocks.Interfaces.RealOutput"/>
 </ScalarVariable>
 …

Figure 5 modelDescription.xml of FMU
(MoistAir.fmu).

The model description file can contain more than
thousand lines of information depending on the
complexity of the model, but we are just interested in
the input and output variables that must be mapped to
the EnergyPlus variables. Here, we use the
FMUParser to extract the relevant information from
the FMU by calling from a DOS or Unix/Linux shell
the command:

parser --printidf MoistAir.fmu

This calls the parser to process the FMU and generate
a temporary idf file as shown in Figure 6.

The first object in the temporary input file instructs
EnergyPlus that the FMU import interface should be
activated. The second object specifies the FMU that
will be imported in EnergyPlus. The next four objects
are used by the ExternalInterface to read data from
EnergyPlus and and send data to the inputs of the
FMU. The last two objects are used by the
ExternalInterface to get data from the FMU output
variables and write them to EnergyPlus.

More details on the input fields of the EnergyPlus
objects can be found in the Input/Output Reference
of EnergyPlus (EnergyPlus, 2012b).

ExternalInterface,
 FunctionalMockupUnitImport; !- Name of External Interface

ExternalInterface:FunctionalMockupUnitImport,
 MoistAir.fmu, !- FMU Filename
 , !- FMU Timeout in milli-seconds
 ; !- FMU LoggingOn Value

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 , !- EnergyPlus Key Value
 , !- EnergyPlus Variable Name
 MoistAir.fmu, !- FMU Filename
 , !- FMU Instance Name
 TDryBul; !- FMU Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 , !- EnergyPlus Key Value
 , !- EnergyPlus Variable Name
 MoistAir.fmu, !- FMU Filename
 , !- FMU Instance Name
 TRooMea; !- FMU Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 , !- EnergyPlus Key Value
 , !- Energyplus Variable Name
 MoistAir.fmu, !- FMU Filename
 , !- FMU Instance Name
 outRelHum; !- FMU Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 , !- EnergyPlus Key Value
 , !- Energyplus Variable Name
 MoistAir.fmu, !- FMU Filename
 , !- FMU Instance Name
 rooRelHum; !- FMU Variable Name

ExternalInterface:FunctionalMockupUnitImport:To:,
 , !- EnergyPlus Variable Name
 MoistAir.fmu, !- FMU Filename
 , !- FMU Instance Name
 QSensible, !- FMU Variable Name
 ; !- Initial Value

ExternalInterface:FunctionalMockupUnitImport:To:,
 , !- EnergyPlus Variable Name
 MoistAir.fmu, !- FMU Filename
 , !- FMU Instance Name
 QLatent, !- FMU Variable Name
 ; !- Initial Value

Figure 6 Temporary idf input file generated by the
FMUParser.

The next step in the pre-processing consists of

 copying the temporary idf information into
the full idf input file, and

 modifying the full idf file to link the FMU
variables with EnergyPlus variables.

The idf excerpts below shows how the objects look
like in the complete EnergyPlus input file.

To activate the external interface, we use
ExternalInterface,
 FunctionalMockupUnitImport; !- Name of external interface

To define the FMU that will be linked to EnergyPlus,
we use
ExternalInterface:FunctionalMockupUnitImport,
 MoistAir.fmu, !- FMU Filename
 15, !- FMU Timeout in milli-seconds
 0; !- FMU LoggingOn Value

To enter output variables from which the external
interface reads data from and sends data to FMUs,
we use

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 Environment, !- EnergyPlus Key Value
 Outdoor Dry Bulb, !- EnergyPlus Variable Name
 MoistAir.fmu, !- FMU Filename
 Model1, !- FMU Instance Name
 TDryBul; !- FMU Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 ZONE ONE, !- EnergyPlus Key Value
 Zone Mean Air Temperature, !- EnergyPlus Variable Name
 MoistAir.fmu, !- FMU Filename

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3279 -

 Model1, !- FMU Instance Name
 TRooMea; !- FMU Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 Environment, !- EnergyPlus Key Value
 Outdoor Relative Humidity, !- EnergyPlus Variable Name
 MoistAir.fmu, !- FMU Filename
 Model1, !- FMU Instance Name
 outRelHum; !- FMU Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 ZONE ONE, !- EnergyPlus Key Value
 Zone Air Relative Humidity, !- EnergyPlus Variable Name
 MoistAir.fmu, !- FMU Filename
 Model1, !- FMU Instance Name
 rooRelHum; !- FMU Variable Name

The output variables that will be mapped to the input
of the FMU also need to be specified in the idf file:
Output:Variable,
 Environment, !- Key Value
 Outdoor Dry Bulb, !- Variable Name
 TimeStep; !- Reporting Frequency

Output:Variable,
 ZONE ONE, !- Key Value
 Zone Mean Air Temperature, !- Variable Name
 TimeStep; !- Reporting Frequency

Output:Variable,
 Environment, !- Key Value
 Outdoor Relative Humidity, !- Variable Name
 TimeStep; !- Reporting Frequency

Output:Variable,
 ZONE ONE, !- Key Value
 Zone Air Relative Humidity, !- Variable Name
 TimeStep; !- Reporting Frequency

To enter schedules to which the external interface
writes, we use
ExternalInterface:FunctionalMockupUnitImport:To:Schedule,
 FMU_OthEquSen_ZoneOne, !- EnergyPlus Variable Name
 Any Number, !- Schedule Type Limits Names
 MoistAir.fmu, !- FMU Filename
 Model1, !- FMU Instance Name
 QSensible, !- FMU Variable Name
 0; !- Initial Value

ExternalInterface:FunctionalMockupUnitImport:To:Schedule,
 FMU_OthEquLat_ZoneOne, !- EnergyPlus Variable Name
 Any Number, !- Schedule Type Limits Names
 MoistAir.fmu, !- FMU Filename
 Model1, !- FMU Instance Name
 QLatent, !- FMU Variable Name
 0; !- Initial Value

This completes the configuration that is required to
simulate EnergyPlus with the FMU.

Co-simulation

In the co-simulation process, EnergyPlus which is the
co-simulation master called the methods
implemented and stored in the shared library. The
main steps involved in the co-simulation processes
are

 unpacking the FMU,
 creating an instance of the FMU,
 initializing the FMU,
 setting the input variables of the FMU,
 getting the output variables of the FMU,
 conducting the time integration,
 terminating and freeing the memory of the

FMU.

Figure 7 shows how the room dry-bulb temperature
in the EnergyPlus model changes with the sensible
and latent heat gains, which are computed in the
HVAC system model packaged as an FMU.

Figure 7 Simulation results showing the sensible heat

gain, the latent heat gain, and the room dry-bulb
temperature reported by EnergyPlus.

COUPLING A HVAC SYSTEM AND A
SHADING CONTROLLER,
IMPLEMENTED IN FMUS WITH A
ROOM MODEL IN ENERGYPLUS

In this example, a shading device is added to one of
the window of the room model discussed before. The
shading device is controlled by a finite state machine.
The shading controller is developed in Modelica and
exported as an FMU.

Figure 8 shows the new system configuration which
consists of EnergyPlus which is linked to two FMUs.
The inputs of the shading controller’s FMU are the
room dry-bulb temperature (TRoo) and the solar
irradiation (ISolExt) that is incident on the
window. The output of the FMU is the shading
actuation signal (yShade).

Figure 8 System with a HVAC system and a shading

controller in FMUs and a room model with a shading
device modeled in EneryPlus.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3280 -

Figure 9 shows the finite state machine which
switches between the states nightShadeDeployed,
noShade and dayShadeDeployed if guards defined in
the transitions evaluate to true.

Figure 9 Finite state machine of the shading

controller.

Figure 10 shows the Modelica implementation of the
finite state machine.

Figure 10 Modelica implementation of the shading

controller system model.

To simulate the current system model in EnergyPlus,
we extend the idf input file by defining a new FMU
object for our shading controller.
ExternalInterface:FunctionalMockupUnitImport,
 ShadingController.fmu, !- FMU Filename
 15, !- FMU Timeout in milli-seconds
 0; !- FMU LoggingOn Value

We enter output variables from which the external
interface reads data from and sends data to the
FMU’s shading controller.

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 ZONE SUBSURFACE 1 EAST WINDOW,!- EnergyPlus Key Value
 Surface Ext Solar Incident, !- EnergyPlus Variable Name
 ShadingController.fmu, !- FMU Filename
 Model1, !- FMU Instance Name
 ISolExt; !- FMU Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
 ZONE ONE, !- EnergyPlus Key Value
 Zone Mean Air Temperature, !- EnergyPlus Variable Name
 ShadingController.fmu, !- FMU Filename
 Model1, !- FMU Instance Name
 TRoo; !- FMU Variable Name

We specify these output variables in the idf file.
Output:Variable,
 ZONE SUBSURFACE 1 EAST WINDOW, !- Key Value
 Surface Ext Solar Incident, !- Variable Name
 TimeStep; !- Reporting Frequency

Output:Variable,
 ZONE ONE, !- Key Value
 Zone Mean Air Temperature, !- Variable Name
 TimeStep; !- Reporting Frequency

To write data from the external interface to an
EnergyPlus EMS variable, we use the following item
in idf file:
ExternalInterface:FunctionalMockupUnitImport:To:Variable,
 Shade_Signal, !- EnergyPlus Variable Name
 ShadingController.fmu, !- FMU Filename
 Model1, !- FMU Instance Name
 yShade, !- FMU Variable Name
 1; !- Initial Value

which declares a variable with name yShade that
can be used in an Energy Runtime Language (Erl)
program to actuate the shading control of the window
ZONE SUBSURFACE 1 EAST WINDOW as follows:
! EMS program. The first assignments sets the shading
! status and converts it into the
! EnergyPlus signal (i.e., replace 1 by 6).
! The second assignment sets yShade to
! an EnergyManagementSystem:OutputVariable
! which will be read by the external
! interface.
EnergyManagementSystem:Program,
 Set_Shade_Control_State, !- Name
 Set Shade_Signal = 6*yShade, !- Program Line 1

! Declare an actuator to which the
EnergyManagementSystem:Program ! will write
EnergyManagementSystem:Actuator,
Shade_Signal, !- Name
ZONE SUBSURFACE 1 EAST WINDOW,!- Actuated Component Unique
!Name
Window Shading Control, !- Actuated Component Type
Control Status; !- Actuated Component Control Type

! Declare a global variable to which the
! EnergyManagementSystem:Program will write

This completes the configuration that is required to
simulate EnergyPlus with the two FMUs.
Figure 11 shows how the shading controller sets the
night shade to be active during time when the
incident solar radiation on the windows is smaller
than the threshold of 5 W/m2, which is defined in the
transition of the shading controller’s model.

Figure 11 Simulation results showing the solar

radiation incident on the shading device, and the
shade actuation signal computed in the FMU (1

means that the shade is deployed).

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3281 -

CONCLUSION & DISCUSSION

The FMU import interface developed in EnergyPlus

extends the capability of EnergyPlus to import any

simulation program, which is exported as an FMU

for co-simulation. The FMI approach is very

promising since it standardizes the co-simulation and

model exchange between simulators. Future work

should include the evaluation of the performance of

the co-simulation approach versus mono-simulation

where the entire simulation is done in a single

environment.

ACKNOWLEDGEMENT

This research was supported by the Assistant

Secretary for Energy Efficiency and Renewable

Energy, Office of Building Technologies of the U.S.

Department of Energy, under Contract No. DE-

AC02-05CH11231.

REFERENCES

Brooks, C., Lee, E. A., Liu, X., Neuendorffer, S.,

Zhao, Y. & Zheng, H. 2007. Heterogeneous

Concurrent Modeling and Design in Java.

Clark, J., Cooper, C. & Drake, F. 2011. Expat XML

Parser [Online]. Available:

http://sourceforge.net/projects/expat

[Accessed January 14 2013].

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C.,

Buhl, W. F., Huang, Y. J., Pedersen, C. O.,

Strand, R. K., Liesen, R. J., Fisher, D. E.,

Witte, M. J. & Glazer, J. 2001. EnergyPlus:

creating a new-generation building energy

simulation program. Energy and Buildings,

33, 319-331.

Deringer, J. J., Nahman, J. E., Heming, K., Wetter,

M., Pang, X. F. & Konstantoglou, M. 2012.

LearnHPB and eLAD – Two Related Online

eLearning Platforms for High Performance

Buildings. 2012 ACEEE Summer Study on

Energy Efficiency in Buildings. Pacific

Grove, CA.

Energyplus 2012a. External Interface(s) Application

Guide, Guide for using EnergyPlus with

External Interface.

Energyplus 2012b. Input Output Reference - The

Encyclopedic Reference to EnergyPlus

Input and Output.

Huang, J., Winkelmann, F., Buhl, F., Pedersen, C.,

Fisher, D., Liesen, R., Taylor, R., Strand, R.

& Lawrie, L. Linking the COMIS multizone

airflow model with the EnergyPlus building

simulation program. Building Simulation

1999, 1999 Kyoto, Japan. 1065-1070.

Mattsson, S. E. & Elmqvist, H. 1997. An

international effort to design the next

generation modeling language. 7th IFAC

Symposium on Computer Aided Control

Systems Design. Gent, Belgium.

Modelisar-Consortium. 2008-2012a. Functional

Mock-up Interface [Online]. Available:

https://fmi-standard.org/ [Accessed January

14 2013].

Modelisar-Consortium. 2008-2012b. Functional

Mock-up Interface for Co-Simulation

[Online]. Available:

https://svn.modelica.org/fmi/branches/publi

c/specifications/FMI_for_CoSimulation_v1.

0.pdf [Accessed January 14 2013].

Modelisar-Consortium. 2008-2012c. Functional

Mock-up Interface for Model-Exchange

[Online]. Available:

https://svn.modelica.org/fmi/branches/publi

c/specifications/FMI_for_ModelExchange_

v1.0.pdf [Accessed January 14 2013].

Modelisar-Consortium. 2008-2012d. Functional

Mock-up Interface for Product Lifecycle

Management [Online]. Available:

https://svn.modelica.org/fmi/branches/publi

c/specifications/FMI_for_PLM_v1.0.pdf

[Accessed January 14 2013].

Pang, X. F., Wetter, M., Bhattacharya, P. & Haves,

P. 2012. A framework for simulation-based

real-time whole building performance

assessment. Building and Environment, 54,
100-108.

Pazold, M., Burhenne, S., Radon, J., Herkel, S. &

Antretter, F. 2012. Integration of Modelica

models into an existing simulation software

using FMI for Co-Simulation. 9th

International Modelica Conference,

September 03 2012 Munich, Germany.

Trcka, M., Hensen, J. L. M. & Wetter, M. 2009. Co-

simulation of innovative integrated HVAC

systems in buildings. Journal of Building

Performance Simulation, 2, 209-230.

Wang, L. P., William, J. & Jones, P. 2009. Case

study of zero energy house design in UK.

Energy and Buildings, 41, 1215-1222.

Wetter, M. 2011. Co-simulation of building energy

and control systems with the Building

Controls Virtual Test Bed. Journal of

Building Performance Simulation, 4, 185-

203.

Wetter, M., Zuo, W., Nouidui, T. S. & Pang, X.

2013. Modelica Buildings library. To

appear: Journal of Building Performance

Simulation.

Zhai, Z. & Chen, Q. 2005. Performance of coupled

building energy and CFD simululations.

Energy and Buildings, 33, 319-331.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3282 -

http://sourceforge.net/projects/expat

