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Abstract 

This paper presents the validation method and results of an inverse model of zone air heat 

balance. The inverse model, implemented in EnergyPlus and published in a previous article [1], 

calculates highly uncertain model parameters such as internal thermal mass and infiltration 

airflow by inversely solving the zone air heat balance equation using the easy-to-measure zone 

air temperature data. The paper provides technical details of validation from the experiments 

using LBNL’s Facility for Low Energy eXperiment in Buildings (FLEXLAB) that measures 

zone air temperature under the controlled experiment of two levels of internal mass and four 

levels of infiltration airflow. The simulation results of the zone infiltration airflow and internal 

thermal mass from the inverse model agree well with the measured data from the FLEXLAB 

experiments. The validated inverse model in EnergyPlus can be used to enhance the energy 

modeling of existing buildings that enables energy performance assessments for energy 

efficiency improvements.  
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1. Introduction 

Buildings in the United States consume 40% of primary energy. It is critical to reducing 

energy use in the building sector through improving their operations or retrofitting with energy-

efficient technologies, which supports the energy and environmental goals of federal, state and 

local governments. Retrofit of existing buildings offers an opportunity to improve building 

energy performance. Building simulation has been widely used as a powerful tool to support the 

design of new buildings and evaluate retrofit measures for existing buildings. However, there is a 

challenge in simulating the energy performance of existing buildings, because model inputs that 

have significant impacts on simulation results may be unknown or have high uncertainty. There 

are various energy modeling methods covering a wide spectrum of model fidelity, including the 

detailed physics-based dynamic simulations [2–4], reduced-order models [5–7], and data-driven 

statistical methods [8–10], which offer many building energy performance analysis applications 

[11,12]. High-fidelity physics-based dynamic simulations can offer the most accurate energy 

performance analysis. However, drawbacks are they require a significant number of building 

parameters as input, and some of them are difficult to obtain in practice. Moreover, some input 

parameters are highly unknown and hard to measure, leading to large uncertainty in energy 

saving estimates [12–15].  

An inverse modeling approach, that can help reduce these uncertainties, was introduced in a 

previous article [1]. The inverse model calculates highly uncertain input parameters such as 

internal thermal mass and infiltration airflow with easily measurable zone air temperature data. 

The inverse modeling approach takes advantage of the more widely available data streams from 

IoT devices such as smart thermostats in buildings. Thermal mass plays a key role in the 

transient behavior and thermal inertia of a building [16]. Many of energy modeling applications 



take into account the thermal inertia of the envelope and the floors more importantly. However, 

internal thermal mass related inputs such as furniture, partitions, and books have not been treated 

well in building energy simulation. Typically internal zones are treated as an empty space filled 

with air only in energy models [17–19]. Zone air infiltration airflow is another important input 

that has significant impacts on the cooling and heating energy demand [20]. The infiltration 

airflow is dynamically influenced by the indoor and outdoor climatic conditions. Infiltration is 

difficult to measure and characterize. Blower door testing is usually applied to residential 

buildings while hard for commercial buildings. Specifying the sizes and distribution of cracks in 

the building envelope, the permeability of the envelope, the airflow to the building, and the 

pressure distribution in and around the building is impractical [21]. Difficulties in measuring 

internal thermal mass and infiltration airflow rates contribute to the uncertainty of simulated 

results, which hinders an accurate estimate of energy savings in retrofit projects.  

The inverse modeling approach derives physical characteristics of the internal thermal mass 

and infiltration by inversely solving the zone air heat balance equations using the measured zone 

air temperatures, which renders solutions as alternatives to direct measurements from the use of 

inverse modeling techniques [22]. This inverse model was implemented in EnergyPlus version 

8.7 and details of inverse model algorithms were introduced in [1]. EnergyPlus is DOE’s open 

source building energy simulation engine that enables a whole building energy performance 

analysis for engineers, architects, and researchers [23] and enables testing of new features, which 

makes it ideal for the implementation and verification of the inverse models.  

Using EnergyPlus, the internal thermal mass can be modeled in two approaches. One way is 

to use EnergyPlus input object, InternalMass, which enables specifying construction materials 

and their surface areas. The Internalmass object participates in the zone air heat balance and the 



longwave radiant exchange. The geometry of the internal mass construction is greatly simplified 

due to the difficulty of measurement. They do not directly interact with the solar heat gain 

because the internal mass objects do not have a specific location in space. Internal mass objects 

can represent multiple pieces of interior mass (furniture, partitions) with different constructions.  

Alternatively, ZoneCapacitanceMultiplier:ResearchSpecial object can be used to sidestep 

challenges in determining volumes and thermal properties of individual internal thermal mass 

objects. Temperature capacitance multipliers from the special object can equivalently represent 

the effective storage capacity of the zone internal thermal mass [4]. The default capacitance 

multiplier of 1.0 implies the capacitance comes only from the air in the zone. This multiplier can 

be increased if the zone air capacitance needs to be increased for the stability of the simulation, 

which represents the actual internal thermal mass including the furniture and interior partition 

walls. The previous article [1] described these two internal mass modeling approaches using 

EnergyPlus in detail, as well as the derivation of the temperature capacitance multiplier from the 

inverse model.  

The validation of new energy algorithms can be achieved using dynamic testing and data 

analysis to characterize the actual energy performance of building components and whole 

buildings comparing with the model outcomes [24]. Validation of the developed inverse model 

uses data collected from experiments conducted at the Facility for Low Energy Experiment in 

Buildings (FLEXLAB), a testbed for building energy efficiency research located at the Lawrence 

Berkeley National Lab (LBNL) [25]. FLEXLAB provides researchers a flexible facility to study 

energy efficiency of building systems. Eight test cells (including two high bay test cells and two 

rotating test cells) can test HVAC, lighting, fenestration, facade, control systems and plug loads 

under real-world conditions. By providing the ability to install customized systems into a test 



cell, FLEXLAB allows users to test the functionality and performance of a specific building 

configuration. FLEXLAB experiments offer a better understanding of real-world performance 

than can be achieved through simulation alone. FLEXLAB customization options include 

building systems such as lighting, HVAC and controls and architectural elements including 

external shading, fenestration, interior shading, ceiling, floors, furniture, and finishes [26]. 

FLEXLAB provides a controlled, highly instrumented building technology testbed that enables 

assessing the indoor environment and energy savings potential under a range of conditions 

expected to occur in the real world [27–31]. FLEXLAB is used to support the ASHRAE 140 

framework to improve characterization of building energy modeling engine accuracy and to 

provide a consistent validation framework that provides confidence in energy simulations [32]. 

The paper provides technical details of the inverse model validation using the EnergyPlus 

simulation and measured data from the FLEXLAB experiment.  

2. FLEXLAB Experiment 

LBNL’s FLEXLAB enables testing of building systems individually or as an integrated 

system under real-world conditions for flexible, comprehensive, and advanced experiments 

[33,34]. The facility comprises four testbeds, each with two identical thermally isolated cells. 

Cells are heavily instrumented with numerous sensors and meters that monitor the performance 

of HVAC systems, lighting, windows, building envelope, control systems, and plug loads [35]. 

The validation task used FLEXLAB testbed cell 3A for 50 days from April 4 to May 23, 2016. 

Figure 1 shows the exterior view of the testbed, Figure 2 for the floor plan and the elevation 

view, and Table 1  provides details of the cell envelope. 

 



 

Figure 1 Exterior View of the FLEXLAB Testbed Cell 3A  

 

 

                                   (a)                                                                               (b) 

Figure 2 FLEXLAB Testbed Cell 3A Floor Plan and Elevation View 

Table 1 FLEXLAB Testbed Cell 3A Envelope Specification 

Depth (South-North) 30 ft (9.1 m)  
Width (East-West) 21.9 ft (6.7 m)  
Height (floor-ceiling) 12 ft (3.7 m) 
Floor area 657 ft2 (61 m2) 

3A

3A 3B

3A 3B
Temperature 
Stratification 

Tree



Envelope 
South, North 

Metal stud with R-13 batt insulation & R-3.8 
continuous rigid insulation 

East, West Adiabatic 

Glazing South 138 ft2 (12.8 m2) with 10 panels (SHGC-0.25, 
U-0.60 BTU/(h⋅°F⋅ft2) (3.4 W/(K⋅m2)) 

 

The accurate measurement of the indoor zone air temperature under various infiltration air flow 

rates and internal mass configurations was the key to the experiment for the inverse model 

validation. Four stratification temperature sensor trees with a total of 28 temperature sensors 

were installed at the corner points of the test cell to measure the indoor zone air temperature. 

Each tree, Figure 3 (a) has seven temperature sensors placed at equal intervals from the floor to 

the ceiling. Temperature data were recorded at a one-minute interval and stored in an sMAP 

(Simple Measurement and Actuation Profile) system. Figure 3 (b) shows an example of the 

measured temperature data from the 28 temperature sensors for three days. Each color indicates 

the temperature data from each sensor, and each legend represents one of the seven temperature 

sensor trees to capture the stratification effect. The controlled internal heat loads were used for 

the experiment, which represents a typical office of 21 W/m2 (2 W/ft2) with the operation 

schedule between 8 am and 6 pm and off for other hours [36]. The air mixing fans were 

programmed to operate for 24 hours to ensure a well-mixing of zone air during the whole 

experiment. The HVAC system was turned off for the entire experiment. 

 



 

 

                    (a)                                                                                  (b) 

Figure 3 Stratification sensor tree to measure zone air temperature 

The experiment measured the air temperatures under a range of interior environmental 

configurations of light and heavy internal mass and tight and leaky air infiltration as below:  

• Internal mass:  
o Light mass (IM0): represents a very light office configuration with six sets of light-

mass desks, chairs, cotton manikins, desktop computers, and monitors (Figure 4) 
o Heavy mass (IM1): represents an office configuration with books (For experiment 

about 1000 library books in 50 boxes are added to the cell space) (Figure 5) 
• Infiltration air flow rates:  

o Tight infiltration rate (INF0): 0.1 air change per hour (ACH), a natural cell condition 
with doors, windows, and air dampers closed  

o Medium infiltration rate (INF1): 0.4 ACH controlled with a designated exhaust fan 
o High infiltration rate (INF2): 2.0 ACH controlled with a designated exhaust fan 
o Infiltration with a schedule (INF3): 0.18 ACH (6 am – 10 pm) and 0.7 ACH(10 pm – 

6 am) controlled with a designated exhaust fan 

Infiltration levels were selected to represent typical office settings defined by ASHRAE 90.1 

in terms of infiltration flow rate per surface area. To represent a poor infiltration level, ASHRAE 



90.1-2004 office model is used, which has the infiltration rate of 0.00102 m3/s/m2 (surface area) 

[37], about 2 ACH in the FLEXLAB testbed cell. To represent a good infiltration level, 

ASHRAE 90.1-2016 office model is used, which has an infiltration rate of 0.00057 m3/s/m2 

(surface area) [37], about 0.4 ACH for the testbed. 0.7 and 0.18 ACHs are selected based on the 

practical building operation considering ASHRAE 90.1 2004 infiltration rate assumption with 

two exposed walls facing South and North.   

 

 

Figure 4 Experiment cell space with an office configuration representing light internal thermal 
mass  

 



 

Figure 5 Experiment cell with about 1000 added books representing heavy internal thermal mass 

A designated fan was installed to control the amount of exhaust air, which could introduce 

the same amount of outdoor air through the supply duct with an open damper and the door and 

window gap. This makes the internal space pressure negative; thus the equal amount of exhaust 

air be infiltrated through the supply air duct as well as cracks, door, window frame gaps. The 

controlled experiment measured the amount of the exhaust air amount through for the accurate 

infiltration airflow calculation. The tracer gas decay method was used to measure the air change 

per hour in the testing cell. The tracer gas concentration decay method is commonly used to 

calculate the air change rate under conditions of less than 10 ACH. The tracer gas (CO2) was 

injected into the testbed cell for a short period of time until the equilibrium concentration level is 

achieved, i.e., the room air was well mixed. The tracer gas concentration was measured at one-

minute interval. As the decay of the tracer gas concentration includes old air as well as a certain 

amount of fresh air from infiltration, the logarithmic equations introduced in [38–40] were used 

to calculate ACH from a correlation between the tracer gas concentration and the time. Figure 6 



shows (a) the tracer gas release using a CO2 gas tank, (b) the CO2 concentration level from the 

equilibrium status to a full decay showing the exponential curve, and (c) the calculated ACH, for 

example, 2.0 for the high infiltration scenario.   

 

                    (a)                                                 (b)                                                             (c) 

Figure 6 ACH measurement using CO2 tracer gas. (a) CO2 gas release, (b) CO2 concentration in 
the testbed,  and (c) Calculated 2.0 ACH for the high infiltration scenario 

 Figure 7 shows infrared images of the experimental cell under the high infiltration level of 

2.0 ACH at 1 pm, which illustrates the significance of the infiltration for the zone air heat 

balance. The image (a) shows that window frames introduce unwanted cold air into the cell. The 

image (b) shows significant heat transfer from the direct infiltration through gaps in the entrance 

door and mechanical system closet door. The infiltration is an unknown and hard-to-get input to 

energy modeling unless the tracer gas concentration testing is conducted. The inverse model 

calculates the overall infiltration rate using the indoor measured temperature.    
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                                          (a)                                                                               (b)    

Figure 7 Infrared images of window frames (a) and Entrance door and mechanical closet door (b) 

The experiment recorded sensor data for energy model development and model validation. 

The sensor data include:  

• Zone air temperature from 28 sensors (four stratification trees, each with seven sensors). The 
average temperature from the 20 sensors is used as the zone air temperature data. The top 
(underneath the ceiling tile) and bottom (above the floor) temperature sensors from each 
stratification tree were excluded from the average calculation 

• Electric power from individual outlets for electric heaters, air mixing fans, exhaust air fan, 
and control systems (computers, sensor connection hubs).  

• CO2 PPM decay data for each zone infiltration case 

• Outside air inlet temperature from the supply air duct 

• Internal wall surface and slab temperature 

• Outdoor air dry-bulb temperature, global solar irradiation, diffuse solar radiation, and wind 
speed 

3. EnergyPlus model for the inverse model validation  

An EnergyPlus model that represents the FLEXLAB testbed cell was developed to validate 

the results from the inverse model against the measured data from the experiment. Figure 8 

shows screenshots of the Testbed 3 EnergyPlus model. The developed EnergyPlus model reflects 

the physical properties of the testbed structure, real measurement of internal heat gain, and 



outdoor airflow designed to simulate free-floating zone air temperature. FLEXLAB measures 

local climate data including the outdoor air dry-bulb temperature, the global solar irradiation, the 

diffuse solar radiation, and the wind speed and direction, which were compiled into EnergyPlus 

weather (epw) file for the simulation using the actual outdoor environment.  

 

Figure 8 Schematic view of the EnergyPlus model for the FLEXLAB Testbed 3 

To capture these internal mass for the light internal thermal mass and the heavy mass 

configuration with 1000 library books in 50 boxes, we used forward EnergyPlus simulations to 

empirically determine the zone capacitance multipliers corresponding to these two 

configurations. The internal mass multiplier was set to 3.0 and 5.0 representing the best for the 

light and heavy internal thermal mass respectively from the FLEXLAB EnergyPlus simulations. 

The initial EnergyPlus model has an internal mass multiplier of 1.0, which represents no internal 

mass object. We iteratively tested different multipliers to find the best multipliers representing 

the internal mass of the experiment design for the light mass and the heavy mass with books of 

typical office settings. Normalized Mean Bias Error (NMBE) and Coefficient of Variance of 

Root Mean Square Error (CVRMSE) are commonly used, as defined in ASHRAE 14 Guideline, 

to determine the goodness of fit between the simulation results and the measured data [41].  

NMBE =
∑ (𝑦𝑦𝑖𝑖 −𝑛𝑛
𝑖𝑖=1 𝑦𝑦�𝑖𝑖)
𝑦𝑦� × 𝑛𝑛

× 100 

South North



CVRMSE =
(∑ (𝑦𝑦𝑖𝑖 −𝑛𝑛

𝑖𝑖=1 𝑦𝑦�𝑖𝑖)2/𝑛𝑛)1/2

𝑦𝑦�
 

Where y represents the simulation temperature, y� for the measured temperature, ȳ for the 

mean of the simulated temperature, n for the number of data points. Two sets of results, 

simulated and measured temperature show that the NMBE and CVRMSE are no greater than 2% 

for the 10-minute timestep results as shown in Table 2, which indicates the EnergyPlus model 

well represents the experiment conditions. 

Table 2 Zone Air Temperature from the Calibrated EnergyPlus Model Compared to the 
Measured Air Temperature 

 
 IM0- 
INF0  

 IM0- 
INF1  

 IM0- 
INF2  

 IM0- 
INF3 

 IM1- 
INF0  

 IM1- 
INF1  

 IM1- 
INF2 

 IM1- 
INF3  

NMBE 0.50% -0.03% 0.13% -0.33% 0.12% 0.10% 0.68% -0.26% 
CVRMSE 0.85% 0.99% 1.20% 0.82% 1.45% 1.11% 1.50% 1.08% 

 

When conducting an energy performance analysis of the existing buildings for retrofit 

projects, energy model calibration is one of the critical tasks. The calibration of the forward 

physics-based energy simulation models involves thousands of input parameters, which yields 

multiple non-unique solutions [14,42,43]. The conventional calibration uses an unmodified 

simulation engine and multiple runs to tune multiple input parameters. As a result, mathematical 

and statistical methods have been of interest in calibration research for automated calibrated 

building energy models [44,45]. The inverse modeling enables calibrating a building energy 

model that combines inverse and forward physics-based calculations and essentially performs 

targeted calibration on specific inputs. The targeted calibration uses the inverse zone air heat 

balance algorithms to calculate infiltration and internal thermal mass, while in traditional model 

calibration, users rely on rules-of-thumb or default values provided by the simulation software. 

Figure 9 illustrates the concept of calibration using the inverse model. The inverse modeling 



approach uses a single run of the simulation engine to tune selected parameters to derive the 

target input parameters and input them in the regular energy models. The EnergyPlus object 

implemented in 8.7, HybridModel:Zone, enables the inverse model simulation triggered by the 

input flag of “Calculate Zone Air Infiltration Rate” or “Calculate Zone Internal Thermal Mass.” 

Then, the derived values, i.e., the calibrated values from the inverse simulation, are added to the 

forward model; this offers a more advanced calibration of energy models for existing buildings.  

 
Figure 9 The calibration workflow that integrates the inverse and forward modeling 

 

4. Inverse model validation  

The FLEXLAB experiment measured the zone air temperature for three days for each 

scenario. It is important to consider sufficient time for the indoor air temperature to stabilize due 

to interactions of the cell structure with the dynamic environmental conditions when calculating 

the internal mass using the inverse model. Zone air heat capacity needs to be derived from the 

stabilized internal zone air temperature data that fully captures the stored heat in the air and the 

internal thermal mass. As discussed in the previous paper [1] that describes the derivation of the 

Calibrated Internal thermal mass

Calibrated Air infiltration

Energy use
Measured zone 
air temperature

Inverse Model 
Simulation

Physics-based
Forward
Energy

Simulation

Geometry
HVAC system

Schedule
Internal heat gain

Other inputs



inverse model algorithm, an underlying assumption of the inverse model is that the zone heat 

capacity is treated as constant for the equilibrium of the inversed zone air heat balance model. 

However, in a mathematical point of view, the calculated heat capacity of zone air and internal 

thermal mass will vary with the actual dynamic conditions, leading to the varying internal mass 

multiplier values for different time steps. The inverse model determines a time span that the zone 

air temperature difference between two adjacent time steps are large enough, to avoid the 

anomaly or overflow results due to the division term of the inverse model. The inverse model 

derived more reliable infiltration rates for time steps when the difference between the indoor 

zone air and outdoor air temperature is greater than 5°C.  Considering this, it is recommended 

that the zone air temperature needs to be measured for at least one week to ensure we have 

adequate time periods of needed measured data. However, in our experiments, measured 

temperature data was limited to three days for each case. To overcome this limitation, four days 

of simulated temperature data, from the calibrated model, were added to the dataset. Such seven 

days of the zone air temperature data were then used to derive the infiltration airflow rate and 

internal mass multiplier under the inverse model simulation mode.  

Table 3 shows the summary of the inverse modeling results that used the measured zone air 

temperature for each test case. The table presents the average calculated infiltration and internal 

mass multipliers. Further details of the inverse modeling results are presented in Figure 10 for 

the low internal mass case (IM0) with the infiltration airflow rate 0.42 ACH case (INF1) and in 

Figure 11 for the heavy internal mass case (IM1) with the scheduled infiltration (INF3). Each 

chart includes the calculated infiltration airflow rate converted to ACH and the internal mass 

multipliers at each timestep. The rectangular box in the chart indicates three days of the inverse 

simulation using the real measured zone air temperature. There are noises in the calculated 



infiltration airflow rates and internal mass multipliers for the period when the measured zone air 

temperature data were used. Although the energy model reflects the dynamics of the indoor 

environment, differences in the zone air temperature add uncertainties to the model parameters.  

Table 3 The Calculated Infiltration and Internal Mass Multiplier using the Measured Zone Air 
Temperature 

  Infiltration  ACH  Internal Mass Multiplier  
 

 EnergyPlus  
input  

Inverse modeling results  EnergyPlus 
input  

Inverse modeling results 
  1 week 

average  
 3 days 
average  

 1 week 
average  

 3 days 
average  

IM0-INF0 0.10 0.11 0.13 3.00 3.24 3.33 

IM0-INF1  0.42 0.42 0.42 3.00 3.32 3.53 

IM0-INF2 2.00 1.97 1.93 3.00 3.92 4.53 

IM0-INF3 0.7 nighttime, 0.18 
daytime 

0.69 nighttime, 
0.18 daytime 

0.66 nighttime, 
0.19 daytime 3.00 3.17 3.23 

IM1-INF0 0.10 0.10 0.10 5.00 4.90 3.60 

IM1-INF1 0.42 0.42 0.42 5.00 4.99 4.04 

IM1-INF2 2.00 2.02 2.05 5.00 5.70 5.98 

IM1-INF3 0.7 nighttime, 0.18 
daytime 

0.65 nighttime, 
0.19 daytime 

0.7 nighttime, 
0.17 daytime 5.00 5.07 4.20 

 



 

Figure 10  The Calculated Infiltration and Internal Mass Multiplier for the IM0-INF1 Experiment 
Case using the Measured Zone Air Temperature 
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Figure 11 The Calculated Infiltration and Internal Mass Multiplier for the IM1-INF3 Experiment 
Case using the Measured Zone Air Temperature 

An underlying assumption is that the zone heat capacity is treated as a constant variable for 

the equilibrium in the inversed zone air heat balance model. However, it should be noted that the 

calculated internal thermal mass multiplier varies with dynamic conditions, leading to the 

varying multipliers in a mathematical point of view. The internal mass multiplier calculations are 

only done when the zone air temperature differences for two adjacent time steps are greater than 

0.  This avoids the anomaly or overflow results from incorrect use of the inverse model. The 

inverse equation derives more reliable infiltration flowrates for time steps when the difference 

between the indoor zone air and outdoor air temperature is greater than 5°C [1]. Figure 10 and 

Figure 11 show timesteps that the inverse simulation was able to calculate internal mass 

multipliers and infiltration ACH values.  

The validation using the FLEXLAB experiment data enlightened the guideline on how to use 

the inverse model implemented in EnergyPlus. The internal thermal mass is an important 

component for building performance as it stabilizes internal temperature. Thus a certain period of 

the measured zone air temperature is needed to capture the thermal inertia of the building 

structure and interior furnishing equipment. It is recommended to measure the zone air 

temperature for at least seven days.  

The accuracy of the inverse model is dependent on the completeness of the energy model. 

The infiltration airflow rate and internal mass multipliers are inversely derived using the energy 

model with the new input of measured air temperature data. Thus, other uncertain parameters 

will have impacts on the infiltration and internal mass multipliers, because there are multiple 

combinations of the parameter values that can lead to the environmental condition of the 

measured zone air temperature. The actual weather data is also needed for the period of the 



inverse simulation. Future research is needed to investigate how the inverse model can be 

integrated with the traditional model calibration process to improve the accuracy of the 

simulation. 

The current implementation of the inverse model applies to operation periods when HVAC 

systems are off, i.e., spaces are in a free-floating mode. However, this is not a limitation of the 

inverse model but rather based on the assumption that measured energy delivered by HVAC 

systems (from the air side or water side of the coil) is not easily available in practice. When the 

measured energy at timestep from the HVAC systems (delivered energy or supply airflow and 

temperature) is known, the inverse model also applies. 

5. Conclusions 

This paper provides details of the validation method and the results of the inverse model 

using the data collected from the controlled experiments conducted at FLEXLAB. The 

experiments were designed to collect zone air temperature data under eight controlled testing 

configurations including two internal mass levels and four infiltration airflow rates. The 

measured zone air temperature was used to inversely calculate the internal thermal mass 

multipliers and infiltration airflows for each validation scenario using the inverse model feature 

implemented in EnergyPlus. The inverse model simulation results show good agreements with 

the measured data from the FLEXLAB experiments. Insights learned from the validation using 

the FLEXLAB experiments inform the application of the inverse model. It is expected that the 

inverse model implemented in EnergyPlus enables more accurate energy performance 

predictions to inform energy-efficiency retrofit decision making for existing buildings.  

A limitation is noted on the use of the combined 3-day measured data and the 4-day 

simulation data for the validation. Ideally, a seven-day or longer period of measured data would 



be needed for a cleaner validation, which is a future work when the dataset is available. The 

inverse model is not intended to replace the traditional energy model calibration methods. 

Instead its use in combination with the traditional energy model calibration methods would 

provide the optimal benefit, which will be described in a future publication. 
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