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� A pattern-based automated calibration approach was developed.
� Includes logic linking parameter tuning with bias pattern identification.
� There are two types of bias patterns, Universal and Seasonal Bias.
� The model calibration approach is implemented in a web-based platform.
� The pattern-based calibration approach can be universally adopted.
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Building model calibration is critical in bringing simulated energy use closer to the actual consumption.
This paper presents a novel, automated model calibration approach that uses logic linking parameter tun-
ing with bias pattern recognition to overcome some of the disadvantages associated with traditional cal-
ibration processes. The pattern-based process contains four key steps: (1) running the original pre-
calibrated energy model to obtain monthly simulated electricity and gas use; (2) establishing a pattern
bias, either Universal or Seasonal Bias, by comparing load shape patterns of simulated and actual monthly
energy use; (3) using programmed logic to select which parameter to tune first based on bias pattern,
weather and input parameter interactions; and (4) automatically tuning the calibration parameters
and checking the progress using pattern-fit criteria. The automated calibration algorithm was imple-
mented in the Commercial Building Energy Saver, a web-based building energy retrofit analysis toolkit.
The proof of success of the methodology was demonstrated using a case study of an office building
located in San Francisco. The case study inputs included the monthly electricity bill, monthly gas bill,
original building model and weather data with outputs resulting in a calibrated model that more closely
matched that of the actual building energy use profile. The novelty of the developed calibration method-
ology lies in linking parameter tuning with the underlying logic associated with bias pattern identifica-
tion. Although there are some limitations to this approach, the pattern-based automated calibration
methodology can be universally adopted as an alternative to manual or hierarchical calibration
approaches.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The building industry is facing ambitious goals of aggressively
reducing energy use. Currently, buildings consume more than
one third of the world’s total primary energy [1]. Measurement
and simulation are two of the most common approaches used to
monitor and evaluate building energy use [2,3]. Building perfor-
mance simulation (BPS) provides (i) a quick and reliable assess-
ment of building energy and environmental performance,
supporting a building’s life cycle including design, construction,
operation and retrofit [4,5]; (ii) is often a more cost effective way
to get detailed information about a building’s energy use and,
(iii) affords researchers the ability to easily assess the implications
of different input variables on energy flows.

Despite the maturity of BPS, large discrepancies exist between
predicted energy performance and the actual metered data [6–8].
This discrepancy can vary as much as a factor of 11 even in high-
performance buildings that rely heavily on passive design, forcing
architects to question the validity of simulation [9]. Some driving
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factors contributing to simulation uncertainty include (i) the
intrinsic randomness of occupant behavior [10–12], (ii) climate
impacts [13,14], (iii) operation and maintenance changes, (iv)
alterations in the indoor environmental conditions, (v) internal
heat gains, or (vi) building equipment [15]. This uncertainty under-
mines user confidence in model prediction and curtails the adop-
tion of BPS tools during design, commissioning, operation and
retrofit. To better ensure the validity of building simulation results,
it is necessary that the existing models closely represent the actual
behavior of the building. Building energy model calibration, the
process of comparing building energy measurement data with sim-
ulated data, is one method to adjust input parameters to ensure a
closer likeliness.

In general, model calibration is an over-parameterized process
with an immense amount of inter-dependent input parameters
that represent the complexity of building systems. Three critical
reasons to conduct model calibration are to provide improved
accuracy of building energy performance models [16], provide
insights into a building’s thermal or electric hourly load shapes
[17], and better predict the potential energy savings of energy con-
servation measures [18]. The calibration target is to match the sim-
ulated energy consumption [11,19–21], indoor air temperature
[6,22], operation conditions of HVAC equipment [18], and/or cool-
ing/heating loads [6,18,23] to the actual measured data of the
building, on a specific time scale. The calibration time scale usually
depends on the calibration purpose and the accuracy level of avail-
able inputs. A smaller time scale calibration, such as hourly or even
sub-hourly, is more difficult to achieve than a larger time scale
such as monthly or annually. Usually more realistic inputs from
measurements or audits are required to calibrate energy models
at finer time scales. This study focuses on calibration method using
the monthly building energy consumption data which are the most
readily available.

A large amount of work has been done on the area of building
energy model calibration. Pan et al. [11] presented a methodology
for the calibration of building simulation models based on several
re-evaluations of the internal loads to decrease uncertainty. West-
phal and Lamberts [23] used sensitivity analysis to calibrate a
building energy model using EnergyPlus. The technique first cali-
brates deterministic loads such as lighting and plug loads, then
performs sensitivity analysis over input parameters, and finally
adjusts input parameters which are more uncertain and have sig-
nificant influences on energy consumption. The technique was
applied to the modeling process of a public office building, and
achieved about 1% difference between simulated and actual annual
electric energy consumption. Pedrini et al. [19] conducted walk-
through audits in 15 office buildings and monitored their hourly
energy end uses to perform monthly calibrations. Following cali-
bration the modeling uncertainties dropped from 130% to 10%
[19]. Despite the effectiveness of calibration, many energy retrofit
tools depend on manual iteration for calibration or do not provide
the option to perform model calibration [24]. Therefore, research is
needed in the area of expert or automated calibration and the
development of new approaches that use logic, uncertainty
and risk analysis, to advance the capabilities of building simulation
[5].

Common techniques used to perform model calibration include
[20,25]: (i) calibration based on manual, iterative and pragmatic
intervention, (ii) calibration based on a suite of informative graph-
ical comparative displays, (iii) calibration based on special tests
and analytical procedures, and (iv) analytical/mathematical meth-
ods of calibration. These approaches can more broadly be catego-
rized as manual and automated techniques [26]. Manual
calibration is based on the iterative and pragmatic intervention
of the modeler. It involves tuning or refining initial input parame-
ters in a heuristic manner, relying heavily on the experience and
expertise of the modeler [27,28]. Manual calibration utilizes build-
ing characteristics data from audits, energy use and zone condition
monitoring, or active functional testing, to gain an intimate knowl-
edge of the physical and operational characteristics of the building
[19,21,29]. Graphical techniques have been widely used in manual
calibration to visually show the differences between measured and
computed results, following manual parameter tuning [28,30–33].
The main advantage of the manual calibration is that it combines
human intelligence, expertise and experience into a trial-and-
error process often making the calibrated model more reliable
and closer to the actual building [33–35]. However, since manual
calibration requires hand-operated skill, it is a time consuming
and costly process. Also, poor data quality, due to inadequate
maintenance and sensor calibration, may result in low resolution
information for attuning models. Moreover, the credibility of the
process can be questioned because calibrated models often depend
upon modeler expertise and subjectivity. Lastly, the manual
approach cannot be easily scaled up as every model may be differ-
ent (e.g. building type, characteristics, operations, climate, etc.) and
dependent upon the modeler for completion.

Unlike manual calibration, automated calibration commonly
relies on mathematical and statistical techniques, which usually
utilize some form of optimization function to reduce the difference
between measured and simulated data. An objective function may
be used to set a target of minimization, for example, the mean
square error between measure and simulated data. Conversely, a
penalty function may also be employed to reduce the likelihood of
deviating too far from the base-case [36–38]. Sanyal and New [39]
proposed a methodology in their ‘‘auto-tune” project, leveraging
supercomputing, large databases of simulations, and machine
learning to implement automatic model calibration. The state-of-
the-art automated calibration is more akin to solving a problem of
multi-objective optimization, which is more mathematical-based
rather thanphysical-based [38,40,41]. In otherwords, the calibrated
simulation results are able tomatchwell numericallywith themea-
sured data, but may not necessarily match the actual building
physically. At the same time, current automated calibration
requires large amounts of computation bringing the need of super-
computing to complete the calibration process in an acceptable
time scale. This restricts the widely spread and adoption of auto-
mated calibration.

In the current literature, there is no single methodology gener-
ally adopted for calibration of building energy models [42,43]. The
lack of formal methodology can result in findings that are ‘‘highly
dependent on the personal judgment of the analyst doing the cal-
ibration” [25]. Additionally, model calibration is often dependent
upon the various uncertainties associated with building simula-
tions and specific idiosyncrasies of a building system configuration
[44,45]. To address these shortcomings, this paper presents a novel
methodology for conducting automated model calibration based
on pattern recognition. The approach combines the strengths of
both manual and automated calibration with the aim that the
pattern-based approach can be widely used. The paper provides
insights into the following questions:

(1) Can an automated model calibration process be developed to
encompass more intelligence than just using mathematical
optimization based methods? For example, can the auto-
matic tuning of parameters be developed by examining pat-
terns of comparisons between simulated and measured
energy use?

(2) If the automated model calibration can be accomplished
using comparison patterns, how would these patterns be
identified?

(3) What would be the logic flow of this automated model
calibration and how would the methodology work?
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2. Methods

An automated calibration process was developed by comparing
a sequence of differences between monthly electricity and gas con-
sumption profiles generated from building simulations versus
actual utility data. The novelty of this methodology relies on the
auto-identification of patterns and the logic in selecting to-be-
tuned parameters according to the specific patterns. One objective
in the development of this pattern based calibration approach was
to generate a calibrated model using minimal inputs. The only
inputs required for the building model calibration process were
the monthly electricity bill, monthly natural gas bill, weather data
and the to-be-calibrated model. The process begins using the input
information and relies on parameter auto-tuning that iteratively
alleviates discrepancies between the simulated and actual energy
use profiles. The selection of the parameter and the parameter
range for tuning was dependent upon the specific characteristics
of the pattern mismatch. This iterative process of shape identifica-
tion, parameter selection and parameter tuning occurs until pat-
tern convergence within a specified tolerance. Fig. 1 shows an
overview of the general logic of the automated calibration process.

2.1. Establishing a pattern bias

Generic pattern biases are identified and used at the start of
each calibration process. A pattern bias, in this case, refers to the
difference between simulated results and the measured data. The
two distinctly different generic biases are the Universal Bias and
the Seasonal Bias. The Universal Bias theoretically occurs when
the monthly electricity or natural gas bill is consistently higher
or lower than simulated results (Fig. 2). Due to the fact that simu-
lations often can’t capture all extraneous factors, that can cause
unexpected fluctuations in patterns, a tolerance level of 10% was
added to the definition of the Universal Bias. In other words, a pat-
tern will be identified a Universal Bias pattern if the simulated data
was consistently higher or lower than the measured data for 11 or
more months. A factor which could lead to a positive Universal Bias
in the monthly electricity consumption, regardless of climate con-
ditions, would be an increase in the lighting power density. Addi-
tionally, an increase in the cooling COP can lead to a negative
Universal Bias in the monthly electricity consumption when cool-
ing is supplied year round.

A Seasonal Bias has the common characteristics of the monthly
electricity or natural gas bill being partially higher and lower than
simulated results, throughout the year. This more complicated pat-
tern recognition results in multiple variations and shapes, making
the algorithm for identification more complex. The three most
common Seasonal Bias shapes were when: (i) simulation results
were partially higher and lower than the actual profiles and con-
tained interception points, (ii) miss-matched peaks occurred or
(iii) miss-matched tails occurred (Fig. 3). The seasonal variation
of electricity usage is mainly affected by cooling and occasionally
by heating (or reheat). Meanwhile, the seasonal variation of gas
is mainly affected by heating or reheating. Therefore, the Seasonal
Bias commonly occurs in climate conditions that have distinct sea-
sons. For example, an increase in the outdoor air flow rate can lead
(1) Monthly electricity bill
(2) Monthly gas bill
(3) Original model
(4) Weather data
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Fig. 1. The inputs, calibration process and
to a positive Seasonal Bias in the hot summer as well as negative
Seasonal Bias in the cold winter for monthly electricity consump-
tion. Such conditions are illustrated in Fig. 3(a), where monthly
electricity bill in the summer (May to October) is higher than sim-
ulated results while lower during the winter (November to March).

Depending on different climate types, either a Universal Bias
pattern or a Seasonal Bias pattern can appear, when tuning the
same parameter. For example, tuning the building’s cooling set
point with a slight increase, can lead to a negative Universal Bias
for the monthly electricity consumption of a building in a hot all
year round climate, but often results in a Seasonal Bias for climate
types with distinct seasons. Regardless of how parameters are
changed the resulting profiles will always reflect a generic Univer-
sal or Seasonal Bias pattern.

2.2. Selection of to-be-tuned parameters

The automated calibration approach uses the intelligence of the
generic patterns to determine which parameters to tune. This is a
different approach than most conventional techniques that only
use a hierarchical process that often depends on a predefined clas-
sification schema [44]. However, both processes use an initial pre-
defined inclusive set of parameters to be selected for adjustment.
The question becomes which parameters out of the many different
options should be selected as potential parameters to-be-tuned.

A parameter selection process to list all possible parameters for
potential selection during auto-tuning, was determined through a
sensitivity analysis using EnergyPlus and coupled with engineering
judgement. This technique broadly followed O’Neill et al. [46] who
identified which calibration parameters would influence the cali-
bration process the most using a Department of Energy (DOE) ref-
erence medium office building as a baseline model. In the
sensitivity analysis, a medium-size, three story, rectangular office
building (4982 m2 conditioned area), with 5-zones per floor (one
central zone and four perimeter zones) was simulated [47]. By tun-
ing different input parameters using EnergyPlus version 8.0, for
different climate types, and with different heating/cooling systems,
the priority list of parameter selection was established. The param-
eters that exhibited the widest uncertainty following minor modi-
fications were selected. This trait indicated that the original input
values may have an associated higher uncertainty and perhaps
be more likely in need of tweaking, which can be done through
the calibration process. Table 1 shows the general list of 17 change-
able parameters. However, depending on the bias patterns and
input parameters, not all of the to-be-tuned parameters are tuned.
The specific parameter selection and tuning is unique for each
building calibration.

2.3. Establishing the logic behind which parameter to tune first

To establish logics behind which parameter to tune first, guide-
lines on the impact of climate conditions were established. Cooling
and heating was targeted primarily because (i) it represents a sig-
nificant portion of electricity and natural gas consumption for most
small and medium commercial buildings, and (ii) more broadly the
weather considerably affects thermal loads and thus energy
Calibrated model
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Fig. 2. Examples of a Universal Bias existing between simulated vs. actual profiles for (a) electricity use and (b) natural gas use.
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Fig. 3. Examples of the three most common Seasonal Bias shapes (a) being partially higher and lower than simulated results with interception points, (b) miss-matched peak,
(c) miss-matched tails for an electricity profile and (d) the miss-matched tails for a natural gas profile.

Table 1
List of parameters that potentially can be adjusted during the calibration process.

Category Parameters

Internal loads Occupant density
Lighting power density
Electric equipment power density
Outdoor air flow rate
Infiltration rate

HVAC system Cooling equipment efficiency
Heating equipment efficiency
Fan efficiency
Cooling set point (schedule)
Heating set point (schedule)
Economizer status

Construction Window U-value
Window SHGC

Schedules HVAC operation schedule
Lighting schedule
Electric equipment schedule
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performance [1]. Therefore, the weather input data was relied
upon for developing the underlying algorithm for the initial selec-
tion of parameters.

To establish logics behind individual parameter selection the
severity of the climate was characterized in terms of heating
degree-day (HDD) or cooling degree-day (CDD) [48]. To define
cooling-dominant and heating-dominant months, the indices of
CDD10 (cooling degree-day base 10 �C) and HDD18 (heating
degree-day base 18 �C) from ASHRAE Standard 90.1 [49] were uti-
lized. Therefore, a day can be considered as cooling-dominant if the
mean temperature was higher than 14 �C (the average of 10 �C and
18 �C), or heating-dominant on the contrary. Furthermore, a day
can be considered cooling-only if the daily mean temperature
was higher than 18 �C, or heating-only if the daily mean tempera-
ture was lower than 10 �C. When the CDD10s of a month were
greater than 120 {(14 � 10) ⁄ 30 = 120}, it was defined as a
cooling-dominant month; when the CDD10s of a month were
greater than 240 {(18 � 10) ⁄ 30 = 240}, it was defined as a
cooling-only month. Likewise, a month was defined as a heating-
dominant month if its HDD18s were bigger than 120
{(18 � 14) ⁄ 30 = 120}, and a heating-only month if the HDD18s
were greater than 240 {(18 � 10) ⁄ 30 = 240}. These definitions
take 30 as the average number of days in a month. From this, five
climate types were defined as (1) hot all year round, (2) cold all year
round, (3) hot summer & cool winter, (4)warm summer & cold winter
and (5) mild. To clarify, if cooling was supplied throughout the
year, which means that all months were cooling-dominant, the cli-
mate type was defined as hot all year round. The corollary was true
for cold all year round. If not all of the months were cooling-
dominant or heating-dominant and the number of cooling-only
months was bigger than that of heating-only months, the climate
type was defined as hot summer & cool winter. If not all of the
months were cooling-dominant or heating-dominant, and the
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number of heating-only months was greater than cooling-only
months, the climate type was defined as warm summer & cold win-
ter. If not all of the months were cooling or heating dominant, and
there were no cooling-only months or heating-only months, mean-
ing the monthly CDD10s and HDD18s were no greater than
(18 � 10) ⁄ 30 = 240, the climate type was defined as mild. Table 2
shows a summary of the climate type definitions.

After defining seasonal behavior, the next steps were to catego-
rize the parameters that were the most frequently influenced by an
associated climate type. For example, for the climate type Hot all
year round, changing the cooling-related parameters (e.g. cooling
efficiency, cooling set point, HVAC schedule) usually caused a
Universal Bias in the monthly electricity consumption. Likewise,
in a heating-dominant climate, cold all year round, changing the
heating-related parameters (e.g. heating efficiency, heating set
point, HVAC schedule) usually caused a Universal Bias in the
monthly gas consumption.

A Seasonal Bias almost always existed in climate zones with
more distinct seasons. Considering that cooling was the main
source of electricity consumption, a positive or negative Seasonal
Bias in the monthly electricity consumption was identified when
the bias in cooling-dominant months minus the bias in heating-
dominant months was greater or less than zero. Likewise, a posi-
tive or negative Seasonal Bias in monthly gas consumption was
identified when the bias in heating-dominant months minus the
bias in the cooling-dominant months was greater or less than zero.

To simplify the algorithm, the fuel for the heating source was
fixed as natural gas, with three possible reheat types: reheat with
gas, reheat with electricity and no reheat. These parameters influ-
ence the energy consumption of reheat. For example, in a hot sum-
mer & cool winter climate, if reheat was supplied by gas, changing
the heating set point will cause a Seasonal Bias in the monthly gas
consumption (no influence on electricity); if reheating was sup-
plied with electricity, changing the heating set point will cause a
Seasonal Bias in both the monthly gas and electricity consumption.

For a certain climate type paired with a reheat type, a change in
a single parameter leads to a specific combination of pattern
changes in the monthly electricity and gas consumption. For exam-
ple, in a warm summer & cold winter climate and reheat with gas
mode, decreasing the lighting power density will result in a nega-
tive Universal Bias in monthly electricity consumption together
with a positive Seasonal Bias in monthly gas consumption.

Following this general logic, the parameter selection process
was developed. The climate type is established upfront by comput-
ing CDD10 and HDD18 from the annual weather file. The process
starts by using the generic pattern bias recognition. The most
straightforward pattern identification is the recognition of the
Universal Bias pattern. First the algorithm identifies if a Universal
Bias exists. If no Universal Bias is identified, the pattern recognition
Table 2
Summary of the defined climate types used to establish the logic behind parameter
selection.

Climate type
name

Monthly cooling degree
days (CDD10)

Monthly heating degree
days (HDD18)

Hot all year
round

>120 for almost every
month

n.a.

Cold all year
round

n.a. >120 for almost every
month

Hot summer &
cool winter

>240 # of cooling-only
months > # of heating-only
months

Warm summer
& cold winter

# of heating-only
months > # of cooling-only
months

>240

Mild <240 <240
moves on to recognize a Seasonal Bias. Depending upon the com-
bination of applicable inputs, a limited number of possible param-
eters are identified from the possible 17 to-be-tuned parameters.
This parameter field is narrowed based on the combination of pat-
tern identification, original inputs and weather logic. Once the
parameter is selected to be tuned, the question becomes howmuch
to tune it.
2.4. Tuning calibration parameters

For automatic tuning, the original input parameters were
allowed to be tuned using an upper and lower bound of ±30% from
the original input values. From the original value to the upper or
lower limit, the selected parameter was assigned a series of values
for its tuning direction. This generates a series of sub-models to
compare simulation results with the utility bill profile. The sub-
model with the minimum Normalized Mean Bias Error (NMBE)
and Coefficient of Variation of the Root Mean Square Error
(CVRMSE) is chosen for the next calibration step. The NMBE and
CVRMSE follows ASHRAE Guideline 14 [50] and are determined
by comparing predicted results (ŷ) with the measured data used
for calibration (yi) and where (n) represents the number of months
and (�y) is the average. NMBE and CVRMSE are calculated using Eqs.
(1) and (2), respectively:

NMBE ¼
Pn

i¼1ðyi � ŷiÞ
n� �y

� 100 ð1Þ

CVRMSE ¼ 100�
Xn
i¼1

ðyi � ŷiÞ2=n
" #1=2,

�y ð2Þ

A value of 5% for the NMBE and 15% for the CVRMSE was used as
the threshold level. In other words, if the NMBE and CVRMSE of the
simulation results reach or are lower than 5% and 15%, the model
calibration stops and the model is considered calibrated.
2.5. The automatic calibration process

The calibration process goes through a series of iterative steps
prior to arriving at a calibrated model. The automated calibration
starts with two comparison patterns: (1) the monthly electricity
bill compared with simulated monthly electricity consumption
and, (2) monthly natural gas bill compared with simulated
monthly gas consumption. From this the bias types (Universal or
Seasonal) of the two patterns are identified. For different bias
types, weather conditions and reheat types, the tuning parameter
rules are applied. A single parameter (from the list of 17) is
selected, tuned and the building simulation regenerates new elec-
tricity and gas profiles. Following the re-simulation, the ASHRAE
Guideline 14 [49] criteria are assessed and the process will repeat
with another iteration if the criteria is not met.

To automate this iteration process four main programming
modules were developed including: (1) the UBIden (Identification
of Universal Bias), (2) UBElim (Elimination of Universal Bias), (3)
SBIden (Identification of Seasonal Bias), and (4) SBElim (Elimina-
tion of Seasonal Bias). Module UBIden was programmed to identify
the Universal Bias. Module UBElim is activated if the Universal Bias
is identified, for only the electricity profile or gas profile, or both
profiles. If there is no Universal Bias, a Seasonal Bias must exist
and the Module SBIden will run to identify the specific type of Sea-
sonal Bias. This is followed by the use of the SBElim module when
the Seasonal Bias is identified. These four modules are then used to
sort out a parameter which will be tuned for the iteration step.
Fig. 4 shows a flow chart of this automated calibration algorithm.
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2.5.1. Modules to identify and eliminate the Universal Bias
Module UBIden identifies the Universal Bias, by recognizing that

the simulated data is consistently higher or lower than measured
data in 11 or more months. Module UBElim becomes activated only
if the Universal Bias is identified. There are two sub-modules:
UBElim_elec and UBElim_gas, which are used to manage the itera-
tion process with the goal to eliminate the Universal Bias that exists
between the simulated and actual electricity and gas profiles,
respectively. If a Universal Bias in both electricity and gas profiles
exist, an index of the relative Universal Bias for each energy type
is compared. The indices are calculated using the following order:
(i) the biases for each month are ranked and (ii) the minimum of
the remaining biases are averaged. The index is calculated by divid-
ing the average value by the total energy consumption for the
respective energy type (electricity or natural gas). This represents
a weighted average of the Universal Bias to the total energy con-
sumption for the energy type in question. Likewise, if the Universal
Bias is negative, the index is calculated in the same fashion, except
that the numerator is the average of the maximum bias.

2.5.2. Modules to identify and eliminate the Seasonal Bias
SBIden is activated under the precondition that there is no

Universal Bias or that no more action can be taken for the Universal
Bias to be eliminated. Similar to UBElim, the SBElim module is acti-
vated when a Seasonal Bias is identified, either in electricity, gas, or
both profiles. There are two sub modules: SBElim_elec and
SBElim_gas, are used to adjust the simulated electricity and gas
profiles, respectively. If the Seasonal Bias exists for both load
shapes (electricity and gas), an index indicating a comprehensive
Seasonal Bias will be calculated as the sum of absolute NMBE
and CVRMSE of the energy type. The energy type with the higher
index will be attended to first.

3. Implementing the automatic calibration and a case study

The automatic model calibration technique was developed
using Ruby, an object-oriented, general-purpose programming lan-
guage and built on top of OpenStudio. The application was made
accessible to users through the development of a web-based plat-
form called the Commercial Building Energy Saver or CBES toolkit
[51]. The CBES toolkit is intended to be used for small and medium
office and retail buildings in California. It provides energy bench-
marking and three levels of retrofit analysis considering the project
goal, data availability, and user experience. CBES offers prototype
building models for seven building types, six vintages, in 16 Cali-
fornia climate zones and roughly 75 energy conservation measures
(ECMs) for lighting, envelope, equipment, HVAC, and service hot
water retrofit upgrades [52]. The CBES Detailed Retrofit Analysis,
the most advanced level of the three levels of retrofit analysis, uti-
lizes the automated calibration algorithm. The calibration attunes
inputs prior to on-demand energy simulations using OpenStudio
and EnergyPlus to calculate the energy performance of the building
with user configurable ECMs. The goal of the calibration is to be
able to get a more accurate estimation of the energy savings of
the retrofit measures for the building, by capitalizing on having a
simulated building profile that closely resembles the actual build-
ing. Fig. 5 shows the interface of the CBES toolkit, with the ‘Build-
ing Model Calibration’ tab highlighted. The interface allows for
automatic or customized calibration using the pattern-based
methodology developed in this paper.

The tuning range and selection can be fully automated or a cus-
tomized calibration feature can be used. The customized calibra-
tion allows the user to select which parameter they would like to
change and enter a tuning range. The customized calibration fea-
ture enables users who have confidence in their inputs, to choose
to exclude specific parameters from the list of possible changeable
parameters during the calibration process. Alternatively, if users
know the possible range (maximum and minimum value) for the
input parameters this can be included to aid in the calibration pro-
cess. The more information the user provides the faster the calibra-
tion process will find a solution. Fig. 6 shows a screen shot of the
customized calibration web-app. The image shows options allow-
ing the user to select which parameters to tune or to let the com-
puter algorithm decide on a suitable parameter range. For those
parameters that the user overrides, a minimum or maximum range
has to be specified.



Fig. 5. The interface of the CBES toolkit showing the building model calibration feature.

Fig. 6. Interface of customized calibration using the CBES toolkit.
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To demonstrate the application of automatic model calibration,
a single story, small (929 m2 or 10,000 ft2) office building located
in San Francisco, California (zip code: 94127) and built in 1977,
was used. The basic information of the building, including building
type, vintage, location, and building area was entered in the CBES
Web APP into the common inputs tab. For simplicity, additional
details about the building, such as: (i) lighting power density, (ii)
insulation, (iii) window specifics (U-value, solar heat gain coeffi-
cient, visual transmittance), (iv) internal loads, (v) HVAC system,
(vi) occupancy, lighting, HVAC and setpoint schedules, (vii) water
heater information and (viii) utility rates were taken from the CBES
default settings. The default settings were generated from Califor-
nia’s building energy efficiency standards Title 24 [53] and ASHRAE
Standard 90.1 [48]. San Francisco belongs to California Climate
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Zone 3 [48] classifying the climate as Mild according to the CDD
and HDD calculation. The HVAC system of the building was a pack-
aged single zone rooftop unit with no reheat.

3.1. Calibrating the case study

Before the start of the calibration process the monthly energy
consumption of the original model was simulated. Module ‘‘UBI-
den” was called to check if there was a Universal Bias pattern. In
this particular case, a positive Universal Bias for the electricity pro-
file and a negative Universal Bias for the gas profile were identified
(Fig. 7(aE, aG)). This result triggered the ‘‘UBElim” module. Due to
8000

10000

12000

14000

16000

E
le

ct
ric

ity
 U

se
 (M

W
h)

1 2 3 4 5 6 7 8 9 10 11 12

Months

8000

10000

12000

14000

16000

E
le

ct
ric

ity
 U

se
 (M

W
h)

8000

10000

12000

14000

16000

E
le

ct
ric

ity
 U

se
 (M

W
h)

8000

10000

12000

14000

16000

E
le

ct
ric

ity
 U

se
 (M

W
h)

Tuning Step 1: Decrease lighting power density
8000

10000

12000

14000

16000

E
le

ct
ric

ity
 U

se
 (M

W
h)

Simulated Result
Electricity Bill

Baseline: Before Calibration

Tuning Step 2: Increase occupant density

Tuning Step 3: Increase avg. outdoor air flow per person

Tuning Step 4: Increase cooling COP (eE)

(dE)

(cE)

(bE)

(aE)

Fig. 7. The simulated results compared with the actual electricity (E) and gas (G) usage:
following a decrease in the lighting power density; (cE) and (cG) tuning step 2: the result
following an increase in the outdoor air flow per person; (eE) and (eG) tuning step 4: th
the fact that a Universal Bias was identified for both electricity
and gas profiles, the index of the relative Universal Bias was calcu-
lated. The index showed that the electricity profile had a larger
Universal Bias, triggering the module ‘‘UBElim_elec” and start of
the tuning process.

Tuning Step 1: The goal of tuning step 1 was to eliminate the
Universal Bias in both the electricity and gas use profiles. Using
the calibration algorithm, in combination of a Mild climate and
no reheat, resulted in changing the lighting power density as
the first parameter to tune. In this step the lighting power den-
sity was reduced from 21.4 to 15.0 W/m2 (Fig. 7(bE, bG)).
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Tuning Step 2: The resulting profile from tuning step 1, showed a
negative Universal Bias for the gas profile and a Seasonal Bias
for the electricity profile. With a Universal Bias still identified,
UBElim_gas continued the process. The next parameter to be
tuned was the occupant density, with an increase from 0.11
to 0.14 persons/m2 (Fig. 7(cE, cG)). Due to the fact that the goal
of the parameter selected in this step was to eliminate a Univer-
sal Bias in the gas profile, the parameter may not improve the
electricity profile. In fact this became the case, where Fig. 7
(cE) showed little to no improvement relative to Fig. 7(bE).
Tuning Step 3: After tuning steps 1 and 2, all Universal Bias pat-
terns were eliminated, at which point the SBIden module was
triggered. A positive Seasonal Bias for electricity and a negative
Seasonal Bias for gas were identified, triggering module SBElim.
The indices of relative Seasonal Biases for the two energy types
were calculated as 18.9 for electricity and 22.1 for gas. The
indices show that the gas profile had a relative higher compre-
hensive Seasonal Bias triggering the SBElim_gas module. Again
the selection of the parameter aimed as adjusting the gas pro-
file. Based on the priority list for this specific bias combination,
the outdoor air flow per person was selected as the third
parameter to be tuned. This was increased from 0.00708 to
0.00769 m3/(s person) (Fig. 7(dE, dG)). As in tuning step 2, the
parameter did not improve the electricity profile, where Fig. 7
(dE) showed little to no improvement relative to Fig. 7(cE).
Tuning Step 4: Lastly, a positive Seasonal Bias for electricity and
a positive Seasonal Bias for gas were identified. The indices of
their relative Seasonal Biases were 18.0 and 15.3, respectively,
triggering the SBElim_elec to be used. Using a similar method
to tuning step 3, the cooling COP was selected as the fourth
parameter to be tuned. The original COP input was 3.1, which
was adjusted to 3.7 (Fig. 7(eE, eG)). In this case, optimization
of the electricity profile was targeted. Adjusting the cooling
COP will not affect the gas profile as indicated that Fig. 7(dG)
and (eG) are the same.

Following tuning step 4 the NMBE was less than 5% and the
CVRMSE was less than 15% for both profiles, ending the calibration
process. Table 3 shows the parameter values before tuning and
when tuning was completed in addition to the resulting NMBE
and CVRMSE for the electricity and gas profiles following each tun-
ing step. The entire process was performed using an eight-core
desktop and took about 8 min to complete. It should be stressed
that the parameter selected may or may not improve one of the
two profiles, depending upon which module is operating during
the iteration step. This can be clearly seen in the NMBE values
for electricity in steps 2 and 3, where the parameter selected is
intended to impact the NMBE of the gas profile (Table 3). Similarly,
it can be shown that the CVRMSE values in steps 3 and 4 for the gas
profile are the same, where the parameter selected (cooling COP)
only impacts the electricity profile (Table 3). This is intentional,
such that the pattern index which indicates the worst profile
performer will dominate the parameter to be selected for
adjustment.
Table 3
Tuning steps and the calibration index after each tuning step.

Tuning Calibration actions Before tun

Baseline prior to calibration
Step 1 Decrease lighting power density (W/m2) 21.4
Step 2 Increase occupant density (person/m2) 0.11
Step 3 Increase average outdoor air flow per person (m3/s person) 0.007
Step 4 Increase cooling COP 3.1
4. Discussion

4.1. Novelty of the automatic calibration process

Using only the inputs of the monthly electricity bill and gas bill,
the raw building energy model and weather data, a calibrated
model could be achieved following an automatic iterative process.
The main findings showed that it is possible to integrate the intel-
ligence and experience of the modelers into an automated calibra-
tion process, by linking the tuning of the parameters based on the
generic patterns. This logic was able to be programmed consider-
ing the bias pattern, understanding the possible causes of specific
patterns under different conditions and which parameter should
be tuned first. These were summarized into principles, according
to which the patterns were identified and the parameters were
selected and tuned accordingly. In this way, calibration could be
automated as well as logical. There are basically two types of gen-
eric bias patterns, Universal Bias and Seasonal Bias. Universal Bias
had the characteristic that the monthly electricity bill is always
higher (or always lower) than simulated results, while for Seasonal
Bias, the bias during cooling-dominant months was significantly
bigger/smaller than the bias during heating-dominant months, or
even had an opposite sign. To further address the influence of
the climate on the bias patterns, 5 climate types are defined in this
research: hot all year round, cold all year round, hot summer & cool
winter, warm summer & cold winter and mild. The algorithm of
automated calibration was developed with four modules: UBIden,
UBElim, SBIden and SBElim. The Universal Bias, which was more
simple and straightforward, was always the first to be addressed,
followed by Seasonal Bias. On the basis of the CBES web-based
platform an application of automatic model calibration was used
to demonstrate the developed methodology. The findings from
the case study helped to identify and understand the different
characteristics of bias patterns between simulated monthly energy
consumption and utility bills. More broadly the case study demon-
strated the success of the applied logic in the pattern-based cali-
bration methodology.
4.2. The adjustment of schedules

Previous studies show that schedules are very important
parameters in model calibration. They have significant impacts
on the energy consumption and are difficult to adjust
[9,19,23,33]. In the pattern-based calibration method, the HVAC
operation schedule, cooling setpoint schedule, heating setpoint
schedule, lighting schedule and electric equipment schedule are
adjustable parameters in the algorithm (Table 1). The HVAC oper-
ation schedule, cooling setpoint schedule and heating setpoint
schedule are directly related to the energy consumption of HVAC
systems. As mentioned in Sections 2.1 and 2.3, the cooling-
related/heating-related parameters, including these HVAC sched-
ules, may lead to Universal Bias in cooling-dominant/heating-domi
nant climate types (Hot all year round/Cold all year round); while
they may cause Seasonal Bias in climate types with distinct cooling
ing After tuning NMBE NMBE CVRMSE CVRMSE
Electricity (%) Gas (%) Electricity (%) Gas (%)

20.8 �41.2 23.4 50.7
14.9 6.8 �32.7 10.6 38.9
0.14 7.6 �9.9 11.3 13.8
0.008 7.1 �0.2 10.9 14.1
3.7 4.7 �0.2 8.5 14.1
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and heating seasons (hot summer & cool winter, warm summer &
cold winter). Therefore, these HVAC schedules will have higher pri-
ority in the calibration process when there is a Universal Bias in the
hot or cold year-round climates, or there is a Seasonal Bias in other
climates with distinct cooling and heating seasons. The lighting
schedule and electric equipment schedule serve as the supplemen-
tary parameters for lighting power density and electric equipment
power density. When lighting power density and electric equip-
ment power density have been adjusted to their upper or lower
limits, these two schedules will then be tuned.

When adjusting the HVAC schedule, with a value of either 0 (off)
or 1 (on) at each time step, operation hours on weekdays andweek-
ends are increased or reduced; The lighting schedule and electric
equipment schedule, varying between 0 (fully off) and 1 (fully on),
are adjusted by scaling up or down all the schedule values; The cool-
ing and heating setpoint schedules are adjusted by increasing or
decreasing all the setpoint values by a delta temperature.

4.3. Pros and cons of the automatic calibration process

The pattern-based calibration method has both pros and cons
relative to traditional methods. Manfren et al. [54] highlighted
the general problems with model calibration including (i) intensive
computational resources, (ii) exploration of the parameter range
can be infeasible, (iii) various ranges or combinations of input vari-
ables may yield similar results, (iv) observed data contains error
and uncertainty and (v) model response is multivariate. The auto-
matic calibration process overcomes some of these generic prob-
lems, but not all. Firstly, the automatic calibration process still
relies on a pre-defined intelligence that determines the set of
model parameters to tune from different patterns. Although this
method is a vast improvement over conventional calibrations,
which typically rely on a generic hierarchy, there can still be
improvement in making the approach more physics-based. The
use of bounded parameter ranges following the ASHRAE Guideline
14 [49] criteria can’t assess whether the range is feasible, leading to
potential calibration errors. Items which can be improved upon
include: (1) a larger availability of building types as currently the
calibration model only applies to small to medium buildings; (2)
the number of changeable parameters are limited, so the algorithm
is not able to find a reasonable solution when parameters (other
than the current 17 parameters) are far away from the true values.
More parameters with relatively higher sensitivity to energy con-
sumption are to be investigated and added to the algorithm as
changeable parameters; (3) the heating source that is available
for automated calibration is limited to gas only for now. Electricity
heating will be added to the algorithm in the future; (4) the use of
monthly data and not hourly or smart meter data is a simplifica-
tion that sacrifices accuracy for computational simplicity; (5) the
‘‘priority lists” for selecting the to-be-tuned parameters on a cer-
tain bias pattern in different climate and reheat types are con-
cluded from the local sensitivity analysis results of a DOE
reference medium office building. Though local sensitivity analysis
has low computational costs, and is simple to implement and easy
to interpret, it does not consider interactions between inputs and
does not have self-verification [55]. This current ‘‘priority list” is
not generic enough to ensure success of calibration for other build-
ing types. To get a more comprehensive and robust overview of the
parameters’ influence on the energy consumption, a database of
the parameters’ sensitivity under different circumstances is pre-
ferred. Since there are a number of building types, climate types,
reheat types and changeable parameters, the combinations of the
cases could be hundreds of thousands. Considering the large
amount of computation, a supercomputer might be utilized to gen-
erate the database. It should be noted that even if a supercomputer
is used to generate the database, this would be a preprocessed one-
time job. The generated database could serve as a look-up table
when selecting to-be-tuned parameters, which means that the
supercomputer is not needed during the automated calibration.

Lastly, despite our best efforts, the algorithm is not fail proof. If
the simulation fails to converge, the iterative calibration process
automatically stops, with the results indicating a partially cali-
brated model. Based on our tests of more than a hundred cases
which cover all the climate types and reheat types in the study,
about 80% of the tested cases converged using this calibration
process.

Despite these limitations, the automated model calibration pro-
cess is a logical calibration process, with a well-documented
methodology to support the automatic tuning of parameters gen-
erated from comparing simulated and measured data. In addition
the process is quick to run on a PC improving upon the intensive
computational resources required during most calibration pro-
cesses. The automated feature affords advantages such as the
potential to be scaled-up and the ability to offer a calibration pro-
cess at a relatively low cost.

5. Conclusion

This paper presented a new approach to achieve automated cal-
ibration of building energy models using graphical pattern identi-
fication, instead of traditional automated calibration through
mathematical optimization techniques. The key findings and basic
methodology are: (1) parameter selection and tuning could be
intelligent and automated following logic that summarized princi-
ples of different pattern biases; (2) two types of bias patterns,
Universal Bias and Seasonal Bias were identified according to their
characteristics; (3) the algorithm of automated calibration was
developed and implemented in the CBES web-based platform.
The demonstration of the automatic model calibration for a small
office building showed the capabilities of the methodology. The
pattern-based automated approach is able to integrate logic link-
ing parameter tuning with the bias pattern identification, remov-
ing any need for manual input or long computation time. Future
work will focus on enhancing the algorithm for: (1) more robust-
ness and better computing performance, (2) a wider range of build-
ing types, (3) more tunable model parameters, (4) more heating
source options, and (5) calibration to hourly load shapes and peak
demand.
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