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Abstract 

Small- and medium-sized commercial buildings owners and utility managers often look for 

opportunities for energy cost savings through energy efficiency and energy waste minimization. 

However, they currently lack easy access to low-cost tools that help interpret the massive 

amount of data needed to improve understanding of their energy use behaviors. Benchmarking 

is one of the techniques used in energy audits to identify which buildings are priorities for an 

energy analysis. Traditional energy performance indicators, such as the energy use intensity 

(annual energy per unit of floor area), consider only the total annual energy consumption, 

lacking consideration of the fluctuation of energy use behavior over time, which reveals the time 

of use information and represents distinct energy use behaviors during different time spans. To 

fill the gap, this study developed a general statistical method using 24-hour electric load shape 

benchmarking to compare a building or business/tenant space against peers. Specifically, the 

study developed new forms of benchmarking metrics and data analysis methods to infer the 

energy performance of a building based on its load shape. We first performed a data experiment 

with collected smart meter data using over 2,000 small- and medium-sized businesses in 

California. We then conducted a cluster analysis of the source data, and determined and 

interpreted the load shape features and parameters with peer group analysis. Finally, we 

implemented the load shape benchmarking feature in an open-access web-based toolkit (the 

Commercial Building Energy Saver) to provide straightforward and practical recommendations 

to users. The analysis techniques were generic and flexible for future datasets of other building 

types and in other utility territories. 

Keywords 

Benchmarking; load shape; representative load pattern; load profile; cluster analysis; building 

energy 
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1. Introduction  

Buildings consume over 40 percent of the total energy consumption in the United States [1]. 

Small- and medium-sized commercial buildings less than 50,000 square feet (ft2) (4,647 square 

meters [m2]) represent 95 percent of the number of commercial buildings and consume 

47 percent of the total energy of U.S. commercial buildings, excluding malls [2]. Building owners 

and utility managers often look for energy cost savings opportunities through installation of 

energy efficiency measures or by identifying and eliminating energy waste. Analysis of whole-

building electric load data is an effective approach to discovering opportunities for reducing 

energy costs through building energy management [3]. Electric meters from Advanced Metering 

Infrastructure (AMI) systems provide hourly or sub-hourly interval data to utilities at a rate 

approximately three orders of magnitude faster than the traditional manually read data [4]. 

Supported by the Smart Grid Investment Grant (SGIG) program, the U.S. Department of Energy 

reported that by 2013, most SGIG-funded meter deployments had already started, or even been 

completed [5]. By mid-2014, electricity smart meters had been installed in over 50 million, or 

43 percent, of U.S. households and were generating more than one billion data points a day [6]. 

California also has implemented state-level smart grid policies and topped the list of smart 

meter penetration rates, at 87.1 percent [7].  

Employment of new technologies in the energy industry usually brings new opportunities 

regarding energy efficiency [8] and cost effectiveness [9][10]. Specifically, the use of AMI 

systems by utilities creates huge opportunities for novel forms of analysis and interpretation of 

energy use behavior in buildings. However, small- and medium-sized business owners currently 

lack easy access to low-cost tools that help them interpret massive amounts of data to better 

understand their energy use behaviors and to look for opportunities to eliminate electricity 

waste [11].  

Benchmarking is one technique used in energy audits for targeting buildings and identifying 

energy-saving opportunities [12]. It refers to the comparison of the energy use in the target 

building to that in other buildings, and includes factors such as the magnitude of energy 

consumption, energy density, and consumption patterns [13]. Benchmarking policies are being 

pursued in many countries and at all levels of government. At present, the states of California 

and Washington, and many major cities in the United States, including Washington D.C., Austin, 

New York, Seattle, San Francisco, and Boston, have passed energy disclosure laws to transform 

the market for energy efficient buildings [14]. A simple floor-area-normalized Energy Use 

Intensity (EUI) metric is often used to assess the energy-use performance of a commercial 

building, and is commonly used as an Energy Performance Indicator (EPI) in the benchmarking 

process [15]. An EUI is a useful metric to evaluate a building’s long-term aggregated energy 

efficiency trends [16]. For example, the 1992 Commercial Buildings Energy Consumption Survey 

database is used to develop distributions of electric EUIs in office buildings for the nine U.S. 

census divisions [12]. Individual building EUIs can be compared to these distributions as an 

indication of energy performance [17]. The Commercial End-Use Survey (CEUS) survey provides 

detailed audit data for commercial buildings, and a California-based benchmarking tool, the Cal-

Arch, was developed using the database, representing the frequency distribution curve of 

energy intensity and the relative position of the target building [13].  
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Currently, the U.S. Environmental Protection Agency’s Portfolio Manager is the most commonly 

applied tool for performing operational ratings. It allows auditors to track energy and water 

consumption data and benchmark results to other buildings in the same functional category and 

climate zone [18]. Other EPIs, such as energy per worker or energy per bed, may also be used in 

various building types [19,20]. However, these traditional EPIs reveal only the long-term 

cumulative energy consumption information, lacking consideration of the fluctuation of energy 

use behaviors over time. With smart meter data, time series energy usage in sub-hourly 

intervals allows energy customers to understand how much energy they use at different times 

of the day, different days of the week, and different seasons of the year. Electric load shapes 

convert the long-term consumption data into estimates of the hourly or sub-hourly load to 

determine the energy use patterns over time [21]. Comparably, the load shape reveals the time-

of-use information, and the characteristics of the shapes during different time spans may 

represent distinct energy use behaviors. Considering this, it is also valuable to conduct load-

shape benchmarking for buildings.  

A load shape is defined as the curve that represents load as a function of time. Load shapes 

contain information on how electricity use changes over the day, as a composite of end uses 

such as lights, appliances, and heating, ventilation and air conditioning (HVAC). Load shape 

analysis is commonly used by building owners, operators, or energy managers to analyze the 

energy consumption of their buildings. Researchers have developed general methods to obtain 

these curves using historical electric meter data. Clustering is a common way to extrapolate load 

profiles representing conventional patterns of electricity consumption for commercial and 

residential buildings [22–24]. Chicco et al. applied the Electrical Pattern Ant Colony Clustering 

(EPACC) algorithm to obtain the daily electricity load patterns of non-residential customers in a 

typical weekday of an intermediate season and created a partitioning of the patterns into 

customers with non-overlapping classes [24]. Carmo and Christensen conducted k-means 

clustering of residential daily heat gas load profile to find the correlation between the load 

clusters and building characteristics such as the floor area, building type and vintage [25]. 

Deepak Sharma et al. also applied clustering techniques using load factor (ratio of peak load to 

average load) as an indicator, for the purpose of identifying similar electricity load profiles and 

normal peak demand among them [26].  

A load shape reveals information that helps building owners and facility managers detect 

potential energy waste and diagnose the possible reason for it. For example, load shapes can be 

evaluated to determine if they are consistent with the shape one would expect for the target 

building business or building type. These patterns can consider hours of operation, weekday 

versus weekend operation, seasonal variations, and holidays. The DrCEUS system, developed by 

California’s Commercial End-Use Survey (CEUS) project, suggests the building’s load shape be 

examined in a whole-year period to check the inconsistency between with the load file and the 

time-of-use logger data [27]. More generally, researchers also have defined a variety of load 

shape features and parameters to interpret the load file. Mathieu et al. recommended five 

parameters that were useful for describing load shapes, namely near-base load (kilowatts, kW), 

near-peak load (kW), high-load duration (hours), rise time, and fall time [28]. These parameters 

were used to describe and visualize load variation from one day to the next. Capehart et al. also 

recommended examining the base load percent (night load/day load), peak-to-base load ratio, 
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and coincident peak in the facility load profile, to identify irregular energy use behaviors in 

buildings [29]. 

Previous research listed above demonstrated different interpretations of the electric load shape 

for individual buildings, but little work has been done to employ these load shapes as energy 

benchmarking features, due to the complexity of extracting performance metrics from the time 

series data. However, the interpretation of some facts revealed in load shapes, such as the 

average workday operation hours, may not be explicit by itself, but yields information when the 

feature is compared to the target building’s peers of the same building category in the 

benchmarking analysis. One challenge in this analysis is that for small- and medium-sized 

buildings and business, electricity utility companies rarely have information on the floor area 

that a meter serves. Considering it is not proper to use the absolute energy consumption for 

peer group comparison since it ranges widely, we designed a novel approach to quantify the 

energy performance by interpreting the load shape without consideration of the magnitude of 

the total load.  

This study developed a general benchmarking method to allow energy consumers to benchmark 

their building or business space by comparing their energy use patterns against peers using 

statistical methods. Specifically, new forms of benchmarking metrics and analytical methods are 

needed to infer the energy performance of the building based on their load shape. The study 

developed a simple tool to perform the benchmarking analysis for general commercial buildings, 

to present straightforward interpretations of the result, and to provide practical 

recommendations on energy efficiency improvements. The benchmarking results can be used by 

the building owners and facility managers to improve how they operate and schedule 

equipment, to find opportunities for demand response, and to better understand the link 

between their building’s load shape and the coincident peak of the local distribution system or 

the larger electric grid. 

2. Data and Methods  

2.1 Source data sampling and labeling 

Electric load meter data from thousands of randomly selected small- and medium-sized 
commercial buildings were obtained from Pacific Gas and Electric Company, a California 
investor-owned utility, along with building information such as the location and building use. 
Specifically, the 15-minute interval electricity usage meter data were collected from a total of 
2,353 accounts. Since the time span of the raw data varies from record to record, to perform 
peer analysis and benchmarking, we selected a period of one continuous year, from January 1, 
2015, to December 31, 2015, for data analysis. During this period, 1,907 buildings have full 
records without missing values.  

To categorize the buildings for peer group analysis, we labeled them based on building type, the 
amount of electricity use, vintage, and climate zone. Building type was determined according to 
the building’s North American Industry Classification System (NAICS) codes, which indicate the 
building usage. Based on the sampled dataset, we classified the buildings into three groups: 
Office, Retail, and Other. Building floor area was not available, and considering this limitation, 
the annual rolling premise usage was used to determine the building size category. In particular, 
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buildings with electric usage less than 40,000 kilowatt-hours (kWh) were labeled as “small-sized 
buildings” and the rest as “medium-sized buildings.” The year-built information was partially 
available by looking up the property information from a real estate data source website (such as 
PropertyShark), and we categorized them as five groups: “before 1900,” “1900–1949,” “1950–
1979,” “1980–1999,” and “after 2000.” Forty-two percent of the buildings were labeled with 
one of the five vintage categories. Climate zone was defined by California Building Energy 
Efficiency Standards Title 24 by mapping the building ZIP code to one of the 16 zones. Via the 
resources mentioned above, all sample buildings were labeled with one of the three building 
types, one of the two building size categories, and one of the sixteen climate zones. In the study, 
we analyze each feature using the buildings with available labeled data. 

Figure 1 shows the distributions of the 1907 sample data records on the climate zone map (left) 
and by pie charts (right), categorizing the source data by its building type, building size, building 
vintage, and climate zone. The majority of the analyzed buildings are small offices, built after 
1950 and before 2000, and are mainly located in the San Francisco Bay Area. 

  

Figure 1 Distributions of the source data 

The data were labeled with these features, and these factors were considered as potential 
clustering features for the load shape benchmarking. 

2.2 Deriving load shapes from meter data 

To evaluate the hourly load shape from the metered data, daily chronological load curves were 
examined, clustered, and generalized. As suggested by our literature review, load shapes in 
commercial building are dominated by factors such as the day of the week and the season of the 
year [30]. Hence, for each meter record, we first clustered the daily records into four seasons: 
Winter (Dec, Jan, Feb), Spring (Mar, Apr, May), Summer (Jun, Jul, Aug), and Fall (Sep, Oct, Nov). 
This allows the customers to identify different characteristics of the energy use pattern in each 
season. For each group of time series, we derived basic statistics of the daily data, namely the 
hourly mean load, the daily mean load, and the load at the 5, 15, 50, 85, and 95 percentiles. To 

https://www.propertyshark.com/
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capture the behavior on typical days, the “mean of the medians” is calculated for each statistic, 
by finding the median value for each day of the week and taking the mean of the results.  

Given the seasonal load shapes derived for each time series record, quantified features of those 
curves were extrapolated. Naming the load at n percentile as “pct_n,” we especially defined 
three examined load shape features in this study, including: 

 Peak load: pct_95 

 Base load: pct_15 

 On hour: the period of time when building’s load is higher than the threshold. The 
threshold is defined as pct_5 + 0.25 * (pct_95 – pct_5). 

Further, to identify the energy use pattern during the days when the buildings are in operation 
for each season, the data were clustered into workdays and non-workdays based on its load 
pattern during the day, as shown in Figure 2 [31]. Specifically, we adopted the k-means 
clustering algorithm in the workday and non-workday clustering, considering features including 
daily mean load, mean on-hour load, mean off-hour load, on-hour duration, and the 5, 15, 50, 
85, and 95 percentiles of the daily load curve. Based on the results, the hourly representative 
load curve, along with the three concerned load shape features, are derived for each cluster, 
representing a typical workday and a typical non-workday for each building. 

 

Figure 2 Load shape features and parameters [31] 

2.3 Load shape parameters analysis 

Building load shapes can vary greatly, but a group of buildings may share similar characteristics 
in their shapes [32]. For small- and medium-sized commercial buildings, the timing and amount 
of energy use are the most significant indications of the building’s operating patterns. To 
examine a facility load and compare it to its peers, we normally care about the magnitude of day 
load, night load, and operation and non-operation load, as well as the duration during which 
these loads occur. We developed a set of dimensionless parameters to interpret the load 
patterns. Specifically, the three load shape parameters listed in   
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Table 1 were considered in this study. The concepts of peak load, base load, typical workdays, 
and on-hour were defined in the previous section. 
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Table 1 Definition of load shape parameters 

Load shape parameters Definition 

Peak-base load ratio Ratio of peak load to base load on typical workdays 

Workday/non-workday load ratio Ratio of total daily load on typical workdays to non-workdays 

On-hour duration Duration of a building’s operating hours on typical workdays 

As the base load is the amount of power always on, a low peak-base load ratio may indicate that 
many unnecessary loads are left on in the building during the night hours. Similarly, a low 
workday and non-workday load ratio may suggest many unnecessary loads are left on during 
non-operating days in a week. Apart from these, the on-hour duration can imply the amount of 
time in a day that the building is in full or main operation, and the customer can justify whether 
the duration is as expected. 

2.4 Representative load patterns clustering 

A more nuanced way to look at hourly energy consumption is a load duration curve. The curve is 
the graphical representation of hourly electric demand from highest to lowest over a certain 
time interval. Clustering load curves are based on the shape of a load curve, and are usually 
normalized scaled to a specific range, such as [0.0, 1.0]. To normalize the vector of the shape, 
we divided the load of every hour by the annual average daily near-peak load, which was 
calculated by taking the average of the daily peak load (pct_95) across all working days of 
a building. 

Suggested from previous work, the normalized curves can then be clustered to obtain the 
representative load patterns (RLPs). The RLPs represent the conventional patterns of the 
electricity consumption of a building group. We used the RLPs to understand the normal load 
shape in similar load profiles and to identify irregular load shapes. To recognize a building’s RLPs 
for each studied period (a season in this case), we clustered the hourly load curves based on the 
shape of the curve. The cluster analysis groups the load profiles into classes according to their 
load characteristics. The k-means clustering algorithm is the most widely applied for the purpose 
of load curve clustering [33], and was adopted in the analysis. The algorithm includes iterated 
selection of k centroids of k patterns, and the objective function is to minimize the overall Sum 
of Squared Errors (SSE) given by Equation (1): 

 

𝑆𝑆𝐸 =  ∑ ∑ 𝑑2(𝑤𝑘 , 𝑥𝑗)                          (1)    

𝑥𝑗∈𝐶𝑘

𝐾

𝑘=1

 

where Ck is the k-th cluster with C1 ∪ C2 ∪ ... ∪ Ck = X and d(•, •) is the Euclidean distance norm. 
The Calinski-Harabasz (CH) criterion was used to evaluate the optimal number of clusters. The 
CH criterion calculates the CH clustering index for cluster validation, and tests the validity based 
on the average distance between and within cluster sum of squares [34]. The corresponding 
functions in the Statistics and Machine Learning Toolbox™ in MATLAB were applied.  

Conducting the experiment using 2 to 5 clusters, Figure 3 shows the results of the clustering 
performance evaluated by the CH criterion. Comparing the performance of clustering solutions 
containing two to five clusters, we chose to group the load curves of office buildings into three 
clusters, and the retail buildings into two, as suggested by the optimal cluster numbers for each 
subgroup. 
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Figure 3 Clustering performance of different number of clusters 

After clustering, the RLPs are developed by calculating the centroid of a cluster of normalized 
load curves. Figure 4 Example clustering results for each subgroup shows an example of 
clustering the load curves based on peer groups into an optimal number of clusters. 

  
(a) Clustering results for small office - winter (b) Clustering results for small retail - winter 
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(c) Clustering results for medium office - winter (d) Clustering results for medium retail - winter 

Figure 4 Example clustering results for each subgroup 

3. Experiment and Results 

3.1 Data categorization for peer group analysis 

To enable energy benchmarking of a building in peer groups, we first categorized the sample 
buildings based on the data labels. To select features for categorization, we individually tested 
the significance of each data labels listed in Chapter 2.1 to those mentioned above three 
statistical load shape parameters. Table 2 lists the p-value for each term, testing the null 
hypothesis that the coefficient is equal to zero (no effect). Testing at a significant level (α-value) 
of 0.05, a predictor that has a low p-value less than the α-value was likely to be a meaningful 
addition to the corresponding response variable and vice versa. In the output below, we can see 
that the predictor variable of building size was significant for all tested responses, and the 
building type was associated with the peak-base load ratio and on-hour duration. Finally, the 
climate zone had an effect on load ratios in summer.  

Table 2 Significance of building labels to load shape parameters 

Factor P-value of general linear model 

Peak-base load ratio Workday / non-workday load ratio On-hour duration 

Winter Summer Winter Summer Winter Summer 

Building size category 0.000 0.000  0.000 0.045 0.000  0.000 

Building type 0.000 0.034  0.201 0.382 0.000  0.015 

Vintage 0.789 0.744  0.701 0.495 0.252  0.477 

Climate zone 0.695 0.002  0.276 0.000 0.343  0.227 

 

Table 2 suggested categorizing sample buildings based on their size category, type, and the 
climate zone in summer. However, except for Climate Zone 3, the source data we had was 
limited. According to the central limit theorem, a sample size less than 100 will construct a 
95 percent confidence interval with a margin of error of over ±13 percent (for very large 
populations as in our case)—too large a range for estimating the true population proportion 
with any accuracy [35]. For benchmarking analysis, we usually desire a sample size level of about 



11 
 

500 to optimally estimate the population parameters, constructing a 95 percent confidence 
interval with a margin of error of about ±4.4 percent. To ensure the sample size was sufficiently 
large in each cluster for benchmarking, we only categorized the sample buildings with their type 
and size. Besides, in this analysis, the buildings labeled “Other” as a building type were excluded 
from benchmarking analysis since energy usage can vary from type to type, and it is irrelevant to 
compare the usage of office and retail buildings to other types of buildings. As a result, we 
sampled four groups of 928 small office, 148 medium office, 532 small retail, and 124 medium 
retail buildings for peer comparison. With more labeled data available in the future, the peer 
group could be categorized in more detail according to the significance of the data label to the 
benchmarking parameters concerned, and more detailed sensitivity analysis should be 
conducted regarding the significance of each parameter [36]. 

3.1.1 Analysis of load shape parameters 

Based on the methodology described in the previous chapters, we derived the statistics and 
distributions for each load shape benchmarking parameter. Figure 5 shows the probability 
distribution of the peak-base load ratio of the four building categories: namely, small office, 
small retail, medium office, and medium retail. The X-axis shows the load ratio ranging from 1 to 
30, and the Y-axis shows the percentage of all analyzed buildings within a certain range. The 
results indicated that more medium-sized buildings had a lower peak-base load ratio than the 
small buildings, and more office buildings had a lower peak-base load ratio than the retail 
buildings. Among all sample buildings in our analysis, small office buildings and small- and 
medium-sized retail buildings tended to shut down more completely during non-operation 
hours. 

              

 
Figure 5 Histogram of peak-base load ratio for each building category 
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Similarly, Figure 6 plots the probability distributions of the workday and non-workday load ratio. 
It was clear from Figure 5 that more retail buildings have a lower workday / non-workday load 
ratio than office buildings, because retail buildings tend to operate all days of a week. In 
particular, the statistics of small- and medium-sized office buildings were close; while the load 
ratio of medium-sized retail buildings was significantly lower than other groups, indicating these 
buildings did not have an obvious difference in operation patterns between workdays and 
non-workdays. 

 
Figure 6 Histogram of workday / non-workday load ratio for each building category 

The duration of operation hours also varied from group to group, as shown in Figure 7. The 
difference was found between small buildings with an average “on” duration of around 10 hours 
and medium buildings at around 13 hours. Detailed operation start and end time can be found 
from representative load pattern analysis, as described in the following chapter. 
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Figure 7 Histogram of peak-base load ratio for each building category 

3.1.2 Representative load patterns  

Representative load patterns (RLPs), derived from the centroid of load curves of each building 
group, were used to identify more detailed building energy use patterns, involving the start and 
end time of operation hours, as well as the period of rise time, high-load duration, and fall time. 

Figure 8 lists all the clustered RLPs for the four building categories. The percentage marked for 
each load shape on the figures represents the percentage of the buildings falling into this kind of 
RLP. Taking small offices for instance, 65 percent of the RLPs have a normal curve corresponding 
to the normal operation schedule, rising at 8 am and falling around 6 pm, and this cluster 
accounts for the largest proportion of all buildings. And 18 percent of the buildings had a flat 
and high curve, which does not have an obvious rise or fall time, indicating the building is 
operating the whole day. A few office buildings had a load curve that is “on” during the night 
and “off” during the day. This likely represents a meter serving part of a building that only 
operates at night. A large number of these meters may be parking lots or exterior lighting. 
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Figure 8 Clustered representative load patterns for each building category in summer 

Plotting the seasonal RLPs in one figure, as shown in Figure 9, it was clear that in retail buildings, 
the load patterns are similar between seasons. Across different seasons, for small and medium 
offices, the afternoon “fall time” (as defined in Figure 2) is shorter in winter than that in other 
seasons, as the peak load in the cooling seasons usually appears at 3 pm. The load shape in 
winter during working hours (9 am to 5 pm), however, stays at a relatively constant level and 
does not show a particularly high peak load in the afternoon. Across different building groups, 
medium office and retail buildings tended to have a longer high-load duration, when the load 
ratio was higher than 0.8, which makes sense because larger buildings have more people, and 
the diversity of times people come and go is likely larger. Each group of buildings had its own 
normal operation hours different from one another. 

 

Figure 9 Seasonal representative load patterns of each building category 

The RLPs and the percentage of buildings they represented were also included in the database 

for benchmarking. 
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4. Application 

Based on the previous analyses, we purposed benchmarking a building’s load shape from their 
utility meter data according to two metrics, the load shape parameters, and the clustered 
representative load patterns. The load profile database and analysis methods were programmed 
and implemented into a web-based toolkit, the Commercial Building Energy Saver (CBES: 
http://cbes.lbl.gov) [3]. CBES is intended use for small- to medium-sized office and retail 
buildings in California, providing energy benchmarking and three levels of retrofit analysis that 
consider the project goal, data availability, and user experience. CBES offers prototype building 
models for seven building types, six vintages, in 16 California climate zones and roughly 80 
energy conservation measures (ECMs) for lighting, envelope, plug-in equipment, HVAC, and 
service hot water retrofit upgrades. The CBES Preliminary Retrofit Analysis utilizes the DEEP 
database, a data bank for screening and evaluating retrofit measures for commercial buildings 
generated from 10 million building energy simulations conducted using EnergyPlus on the U.S. 
National Energy Research Scientific Computing (NERSC) supercomputer. The CBES Detailed 
Retrofit Analysis employs advanced automated calibration algorithms to attune inputs before 
simulating energy savings of ECMs. For the detailed retrofit analysis, on-demand energy 
simulations using OpenStudio [37] and EnergyPlus [38] calculates the energy performance of the 
building with user-configurable ECMs. CBES is flexible enough that the user can jump to any 
level of evaluation after the common inputs are provided. 

The CBES toolkit can be used to generate a benchmarking report by input building type and 
building size category and upload the annual meter data file. For the load shape parameter 
benchmarking, the user can compare the operation and performance of an individual building 
against its peers to determine whether the building is in the normal range. The CBES toolkit is 
compatible with multiple meter data intervals, as it ultimately aggregates the load data to a 
reasonable interval length. For example, if the load data at 1-second timescale, the tool 
aggregates it to the 10-minute timescale, to avoid carrying around tens or hundreds of times 
more data than needed. However, to generate more accurate hourly load shapes using the 
methodology described in Section 2.2, the tool also requires the data interval of the input daily 
chronological loads to be short enough for clustering based on shape, and preferably to be 
hourly or sub-hourly. 

We conducted a case study with the CBES toolkit using the AMI data from a medium-sized retail 
building in San Francisco to demonstrate the benchmarking feature. The studied dataset 
contains electricity meter records of the building from Jan 1, 2015, to Dec 31, 2015, in a 
15-minute interval. The toolkit first generates a normalized load curve of the target building and 
compares it to the RLPs of its peer group—the database of all medium-sized retail buildings. 
Figure 10 shows the sample report generated by the toolkit, including the benchmarking results 
of the three parameters, namely peak-base load ratio, workday / non-workday load ratio, and 
on-hour duration in summer. The building was benchmarked with its peer medium-sized retail 
buildings, and the parameter distributions of the whole database are shown as the histograms. 
The red dashed line indicates the medium level of all medium retail buildings, and the blue 
shadow shows the range from the first to the third quartile, marked as the interquartile range 
(IQR). The report provides the user with the message that this building’s peak-base load ratio 
and work / non-workday load ratio are 2.0 and 1.33, respectively, which are lower than 
81.9 percent and 7.0 percent of its peer buildings. The on-hour duration is 14.4 hours per day, 
and is only longer than 64.6 percent of its peer buildings. So compared with its peer buildings, 

http://cbes.lbl.gov/
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this building’s workday / non-workday load ratio and on-hour duration (operation hours) are 
normal. The building’s peak-base load ratio is significantly lower though, indicating that the 
building may not fully shut down during the non-working hours at night. 

 

 

 

 
Figure 10 Results of a load shape benchmarking case study for a retail building in San Francisco  

The CBES toolkit then generates normalized load curves of the target building and compares 
them to the RLPs of its peer group. Figure 11 shows the two clustered RLPs of medium retail 
buildings in dashed line and the target building in solid line. Cluster 1 had a normal load pattern 
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with regular on and off hours, while Cluster 2 had a flat and high curve. In all medium retail 
buildings from the database, 79 percent were grouped into the first cluster, while the rest were 
clustered into the second. The user can further compare the load shape with the RLPs across the 
four seasons to understand the building’s operation performance in all seasons. Take the sample 
building in Figure 11 as an example, the load curve is closer to the RLP of the first cluster, and 
shows a normal on-off schedule. The load curve indicates the building’s working hour starts at 
around 7 am and ends at around 8 pm, and the rise and fall times are normal. However, the 
curve during the off-work hours deviates from the shape of the majority of its peer buildings, 
which can inform building operators to check the operating schedule of the building systems.  

 

Figure 11 Clustered representative load patterns clustering 

In this way, a building owner or facility manager can compare a building’s load shape patterns 

against peer buildings in the same type and size category to identify irregular load shapes and to 

evaluate the building’s operation performance. 

5. Discussion 

As pointed before, the smart meter data of a small business may correspond to only a portion of 

a building rather than the entire building. Utility companies do not have accurate data of their 

customers’ total floor area. Floor area data are hard to acquire. Consequently, the load profiles 

were not normalized by floor area, and thus it was not eligible to compare the buildings’ 

absolute amount of energy use against peers. Considering this limit, the benchmarking metrics 

proposed in this study were based on the normalized hourly load profile (by their own peak 

loads), considering only the shape of the curves, regardless of the actual energy use amount. 

Specifically, the quantified metrics marks represent mostly the variation of electricity load over 

time during a day, or the distribution of energy demand. Besides, as utility companies do not 

have the information of the exact serving area of a meter, the usage category of an analyzed 

record can be ambiguous for the peer grouping and benchmarking analysis. Another major 

limitation due to the limited data source is that the gas consumption was not provided along 

with the electricity data, while the seasonal daily electricity profile of a building would differ 

based on whether or not the building has gas heating. Future work is suggested to consider this 

as a potential peer grouping parameter for seasonal load shape analysis. 
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Fifteen-minute electricity data for 2,000 smart meter accounts were acquired in this study, and 

used as the database for the benchmarking analysis. Due to the practical limitations of data 

availability and reliability, the analysis was based on a simplified grouping of buildings in 

California. As justified in the paper, to ensure the sample size was large enough in each cluster 

for benchmarking, the sample buildings were categorized by their use type and size category 

based on annual electricity consumption. However, it might be worthwhile to further group the 

benchmarked buildings by climate zone and building vintage if an adequate sample of buildings 

have smart meter data available. Furthermore, the current datasets were sampled only from 

small- and medium-sized commercial buildings in California, but the analysis techniques may 

also be applied to other building types and in other utility territories and locations. With more 

meter data from AMI available in the future, the benchmarking database can be replenished 

gradually to cover broader existing building stock and for a wider range of applications. 

6. Conclusions 

In this study, a general approach was developed to allow load shape benchmarking for small- 
and medium-sized commercial buildings and businesses to interpret and benchmark their 
electricity use patterns with statistical approaches. The paper discussed the method of 
benchmarking metric selection, peer group categorization, and the selection of desired sample 
size for benchmarking. Normalization and cluster analysis techniques were proposed. Three 
quantified shape-based parameters were proposed to characterize a building’s electricity use 
patterns from interval load data, namely the peak-base load ratio, the on-hour duration, and the 
workday and non-workday load ratio. The analysis techniques are generic and flexible for future 
datasets of other building types and in other utility territories. The methodology and results 
were implemented in the CBES web tool, allowing users to perform the analysis easily and 
obtain a better understanding with the visualized benchmarking results.  

The methodology and the tool can be useful for the energy benchmarking of buildings with AMI 
data, where the available vast amount of raw data needs to be processed effectively, to acquire 
useful information about the energy use behaviors and the potential application in energy 
saving, utility cost saving and waste elimination. Moreover, recognizing representative load 
shapes for peer group buildings would benefit demand response, which aims at usage reduction 
at peak that is offset by usage during off-peak hours. Energy customers can use the tool to 
benchmark their building operation performance against other peer buildings. Owners will be 
able to identify opportunities for operational improvements, energy retrofit, and utility cost 
saving. The potential benefits also rest upon energy policy pillars associated with economic 
objectives to reduce the cost of energy supply by a targeted response to electricity market 
conditions. 

Load shape benchmarking implies a step forward in energy benchmarking as a comparative 
appraisal of the energy performance of an existing building. With the massive amount of AMI 
data flowing into the industry in the future, the benchmarking techniques may allow building 
owners and facility managers to improve building operations to reduce energy use and utility 
cost. Further work is needed to understand the practical application of this tool and its 
usefulness for customers. As mentioned, further work is also needed to explore these trends 
with a larger dataset, and to conduct additional related research in other climate zones and 
regions with different end-uses and electricity consumption patterns. For example, it would be 
very worthwhile to attempt to group peers by climate zones, and by construction and 
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retrofitting history aligned with the changes in building regulations and codes. As techniques to 
collect hourly occupancy data improve, it will be useful to revisit this methodology to 
understand how energy use and occupancy can be compared. 
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