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Abstract 

To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the 

energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, 

occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when 

determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify 

the representation of occupant behavior by using a standard or representative set of static and 

homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant’s energy-related 

behavior in buildings. The simplification contributes to significant gaps between the simulated and 

measured actual energy performance of buildings.  

This study presents a framework for quantifying the impact of occupant behaviors on ECM energy 

savings using building performance simulation. During the first step of the study, three occupant behavior 

styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness 

of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-

in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy 

savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision 

making. Finally, a pilot study was performed in a real building to demonstrate the application of the 

framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the 

type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven 

(the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with 

strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural 

ventilation, energy savings are significantly affected by occupant behavior (the relative savings differ by 

up to 20%). The study framework provides a novel, holistic approach to assessing the uncertainty of ECM 
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energy savings related to occupant behavior, enabling stakeholders to understand and assess the risk of 

adopting energy efficiency technologies for new and existing buildings. 

 

Keywords: Occupant behavior; energy conservation measures; building performance simulation; energy 

use; building retrofit; uncertainty assessment 

 

1. Introduction 

Buildings consume more than one-third of the world’s total primary energy [1]. Building energy demand 

was the principal cause of the 58% growth in net electricity generation in the United States from 1985 to 

2006 [2]. The building industry faces the critical challenge of aggressively reducing energy use. Energy 

retrofits to implement energy conservation measures (ECMs) are an effective means of reducing energy 

consumption in buildings. According to the Advanced Energy Retrofit Guide by the Pacific Northwest 

National Laboratory, building energy use can be reduced by up to 15%–25% by implementing no- and 

low-cost measures, and over 45% with extensive retrofits using ECMs [3][4]. Currently, high-efficiency 

equipment is being developed and applied to retrofit buildings to improve performance and reduce energy 

use. However, the energy savings and economic effectiveness of building energy retrofits are subject to 

uncertainties, such as weather variations [5][6], building operations [7][8], human behavior changes [9–

11], and government policy changes [12][13]. All of these factors directly affect the effective selection of 

building technologies and, hence, the success of a retrofit project. Working with these uncertainties is a 

considerable technical challenge in any sustainable building retrofit project [14].  

Occupant behavior has a significant impact on building energy use [15] and represents one of the most 

significant uncertainties affecting the effectiveness of building retrofits. Owens and Wilhite [10] 

concluded from their survey that about 10%–20% of domestic energy use in the Nordic counties can be 

saved by changing occupant behavior alone. According to an investigation of householders’ energy 

behavior by Yohanis [9], significant energy savings can be achieved by improving occupant energy 

awareness. Santin, et al. [11] studied the importance of householder characteristics and occupant behavior 

on energy use for space and water heating in the Netherlands, concluding that occupant characteristics 

and behavior significantly affect building energy use. Virote and Neves-Silva found that the expected 

return of energy-efficient technologies could be weakened by occupant behavior within the building. To 

better predict the energy savings, they implemented occupant behavior models in a building performance 

simulation model based on the stochastic Markov chains [16]. Li examined the impact of actual building 



occupancy on the assessment of ECMs and observed big differences in energy savings [17]. Marshall, et 

al. [18] investigated the effectiveness of ECMs on different occupancy patterns in the residential 

buildings in the United Kingdom; he found that savings vary depending on the occupancy pattern of the 

household. These studies all showed that occupant behavior can significantly affect energy use in 

buildings as well as the saving potentials of building retrofits. However, most studies have used survey 

results to obtain findings. Few studies have quantified occupant behavior effects on the energy savings of 

ECMs. 

Occupant behavior in buildings has been widely acknowledged as a major factor contributing to gaps 

between measured and simulated energy consumption in buildings [19–21][22]. Building performance 

simulation (BPS) programs are commonly applied to evaluate the performance of building energy 

systems and technologies. However, in current practices, simulation users choose one of the default 

standard or representative settings for occupants that are defined according to building use type, in a 

simplified and homogeneous way, using the temporal schedules and static assumptions. Such simplified 

inputs result in poor representation of actual dynamic, stochastic, and diverse occupant behavior in 

buildings—with consequently poor energy use prediction. Previous studies [23][24] pointed out that 

simulation results frequently vary widely from actual energy use of buildings. Eguaras-Martinez, et al. 

[25] proved that the inclusion or exclusion of occupant behaviors in building simulation resulted in up to 

30% of the differences in energy use predictions. Furthermore, Hoes, et al. [21] used BPS to quantify the 

impact of occupant behavior on ECMs savings with results showing that the influence of the uncertainty 

of occupant behavior becomes even larger in buildings with passive design such as heavy thermal mass 

and low window-to-wall ratio. The International Energy Agency Energy in Buildings and Communities’ 

Annex 53: Total Energy Use in Buildings [1] recognized the impact of occupant behavior as one of the six 

driving factors of energy use in buildings along with climate, building envelope, building energy and 

services systems, indoor design criteria, and building operation and maintenance.  

Three approaches are primarily used for occupancy modeling: the stochastic approach, the agent-based 

approach, and the random-walk approach [26]. The stochastic approach considers the occupant movement 

as probabilistic. Markov Chains’ transition probabilities were generally utilized to generate a stochastic 

model for the occupant presence [27][28][29]. The agent-based approach aims to describe the interactions 

between occupants based on their perception, desire, and intention—focusing on what an occupant 

perceives and does in a certain situation. Agent-based models were developed to simulate autonomous 

occupants in previous research [30][31][32][33]. It should be noted that the stochastic approach and the 

agent-based approach are not mutually exclusive. The agent-based approach can use stochastic models or 

deterministic models, e.g. the agent movement can be simulated using Markov Chain models. The 



random-walk approach presents a new concept, which views occupancy pattern as unpredictable in 

certain cases. It was obtained from occupancy experiments in university laboratories, which are quite 

different from process-driven buildings such as residential buildings and schools. Though its application 

might be limited to certain building types, it provides another method to predict occupant presence [26]. 

To represent more realistic occupant behaviors in building performance simulation, researches have 

focused on probabilistic model development using monitored, sensor, and/or surveyed data from 

observational studies that demonstrate the relationships between the indoor and outdoor environmental 

factors and occupant behaviors under consideration [19]. Hong, et al. [34,35] reviewed published 

simulation models and identified major types of occupant behavior in buildings including occupant 

presence and movement as well as occupant actions on windows, shades (blinds), lighting, thermostat, 

HVAC, and plug-in equipment. Several stochastic models were developed for these occupant behavior 

types and data were collected in various locations and types of buildings around the world [36–44]. Field-

measured data and large-scale surveys confirmed that these window-opening behaviors, which are 

represented as probabilistic models (logit or Weibull functions), have been adopted by several BPS 

programs to determine when occupants open or close windows [45][46]. However, the use of these 

occupant behavior data are usually limited to observed building types, locations, climates, and cultural 

and social contexts—inevitably the corresponding models have the same limitations unless the models are 

validated using separate and independent measurement data from the model development [19][47]. 

Therefore, the challenges remain for building energy modelers to adopt proper occupant behavior models 

for their use unless they have full access to occupant data on their targeted buildings. Occupant behavior 

stochastic models are data driven and improve modeling assumptions of occupant activities in the BPS 

programs [27,28,48]. Furthermore, as denoted in recent studies, stochastic models do not necessarily 

produce better results than other simpler and/or non-probabilistic models of occupancy [47] (for instance, 

when it comes to annual building energy consumption) [49]. In other words, the applicability of occupant 

behavior models could vary according to the purpose of building simulation as well as the data 

availability to modelers. In this regard, Yan, et al. [19] argued that simple occupancy-related models, such 

as code-based or descriptive representation of occupant behavior, could be adopted in determining the 

likely performance of design options in the design development phase using aggregated indicators such as 

annual heating and cooling loads. Otherwise, more detailed occupant behavior scenarios and modeling 

methods need to be considered.  

This study proposes a framework to quantify the impact of occupant behavior on energy savings of ECMs 

using BPS. The framework provides a novel holistic approach to assessing the uncertainty of ECM 

energy savings related to occupant behavior, which directly supports risk assessment during decision 



making regarding energy technology investment for new and existing buildings. The framework is 

introduced in Section 2. A pilot study, which applies the framework to analyze a retrofit of a real building, 

is presented in Section 3. The discussion section addresses some important considerations for applying 

the proposed simulation framework.  

The proposed framework aims to provide guidance to help decision makers evaluate benefit of ECMs 

rigorously with quantitative investment risk, especially considering the uncertainties brought by the 

occupant behaviors on energy savings of ECMs. It would help to largely reduce the risks of energy 

retrofit associated with the occupants, which is one of the largest uncertain factors in the building industry.  

2. Methodology 

2.1. Overview of the Framework 

As illustrated in Figure 1, the traditional method to evaluate energy savings of an ECM consists of four 

steps: (1) developing a baseline model where user inputs weather data, internal heat gains, configuration, 

operation, and efficiency of energy systems (HVAC, lighting, plug loads) as well as a static set of 

assumptions on occupant behavior; (2) performing a simulation of the baseline model to calculate its 

energy use; (3) applying the ECM to the baseline model to create a new alternate model and running a 

simulation on the new model to calculate its energy use; and (4) calculating energy savings (can be other 

metrics, e.g., energy cost savings and peak demand reduction) of the ECM by comparing simulated 

results between the alternate model and the baseline model. The calculated energy savings of the ECM 

using the traditional method are static or deterministic values.  

 

Figure 1 The traditional method to calculate energy savings of an ECM 

However, the ECM energy savings are influenced by many factors such as the building type, weather data, 

building operation, and occupant behavior. For example, a high-efficiency chiller can save very limited 

energy in cold climates due to minimal cooling load, and a well-designed natural ventilation building 

wouldn’t work if the occupants don’t open the windows when outdoor air favors cooling. Estimating the 



uncertainties of the ECM energy savings is critical, especially during risk analysis and decision making 

for ECM investment [50]. Decision makers should be aware of the potential risks of implementing 

different ECMs before selecting the most appropriate ECMs for a specific building. However, traditional 

ECM evaluation methods adopt deterministic inputs and calculate a static single result of energy savings, 

which cannot reflect the uncertainty of the ECM energy savings.  

Even though the same model inputs of weather data and occupant behavior are used in both the baseline 

model and the alternate model implementing the ECM, the energy savings of the ECM (determined by 

comparing the energy uses of the baseline model and the alternate model) would depend upon different 

packages of model inputs. Hong, et al. [5] show that the use of different weather files changes the energy 

savings of ECMs. A similar situation may apply to the assumptions of occupant behavior in energy 

models. However, no studies have yet looked at how occupant behavior assumptions influence the energy 

savings of ECMs. 

In this study, a framework was proposed to evaluate ECM savings considering the variations of occupant-

related inputs and their influence on the ECM energy savings (Figure 2). This proposed framework 

includes several steps: (1) defining the three occupant behavior styles using quantitate occupant behavior 

models (definition is illustrated in 2.2 in detail); (2) developing three baseline models using each of the 

three occupant behavior styles and other similar model inputs; (3) calculating the energy uses of the three 

baseline models; (4) applying the ECMs to each baseline model to create the alternate models for each 

ECM, and (5) simulating the ECM energy models to calculate their energy use. The simulated ECM 

saving results, gathered using the proposed framework, are a range of values instead of a single fixed 

value, which reflects the possible variations of the ECM savings due to different occupant behaviors in 

the building. Therefore, the framework can be adopted to evaluate ECM energy savings in a more 

comprehensive and robust way, giving decision makers information they need to recognize and assess the 

potential risks of investing in ECMs in buildings with different occupant behaviors. ECMs with consistent 

large energy savings can be prioritized for investment compared to those ECMs with savings that are 

sensitive to occupant behavior style. 



 

Figure 2 A framework to quantify the impact of occupant behavior on performance of ECMs 

There are four approaches that are used to simulate occupant behaviors in BPS programs [49]. (1) Direct 

input or control: occupant-related inputs are defined using the semantics of BPS programs, just as other 

model inputs are defined (building geometry, constructions, internal heat gains, and HVAC systems). (2) 

Built-in occupant behavior models: an advanced occupant behavior control is implemented directly into 

the BPS program, usually in a dedicated software module. (3) User function or custom code: the user can 

write functions (e.g., user functions in DOE-2.1E) or custom code (e.g., energy management system, or 

EMS, in EnergyPlus [51]) to implement new or overwrite existing or default building operation and 

supervisory controls. (4) Co-Simulation: a simulation methodology allows individual components to be 

simulated by different simulation tools running simultaneously and exchanging information in a 

collaborative manner [19]. In this study, the first and third approaches were used to simulate different 

occupant behavior styles. 

2.2. Definition of occupant behavior styles 

In previous studies, occupant behaviors were distinguished based on the user types. Parys, et al. [52] and 

Reinhart [53] used four user types in terms of their active and passive attitudes on lighting and blind 

controls. Santin [54] defined behavioral patterns as spenders, affluent-cool, conscious-warm, comfort, and 

convenience-cool based on behavior factors such as the use of appliances, energy-intensive, and 

ventilation in housing. In this study, three occupant behavior styles are defined based on the three office 

workstyles previously proposed by Hong, et al. [55]. To represent the diversity of occupants and their 

behaviors in building performance simulation, occupant energy-use styles are first categorized into three 

distinguished attitudes in regard to their energy consciousness during interactions with building energy 

systems including HVAC, windows, lights, and plug-in equipment: austerity, normal, and wasteful. The 

normal behavior represents the typical design assumptions of occupant behavior in a building, the 

austerity behavior represents the boundary conditions of energy savers, while the wasteful behavior 



represents the boundary conditions of energy spenders. This is a simplified representation of the 

complexity and diversity of occupant energy-related behaviors in buildings. This method does not 

necessarily represent the actual realistic occupant behavior in buildings; rather, it represents the boundary 

conditions of two behavioral extremes of the energy savers and the energy spenders. It helps to 

quantitatively evaluate the possible occupant-related risks on energy savings potential of ECMs in retrofit 

analysis by integrating occupant behavior models with building performance simulation. As described in 

Table 1, the occupant behaviors considered in this study include comfort temperature setpoints for heating 

and cooling, lighting control, plug-load control, HVAC control, and window operation. For each occupant 

behavior, three behavior styles are defined representing the proactive energy savers, average (norm) 

occupants, and the energy spenders. The chosen occupant behaviors and their related performance of the 

three occupant behavior styles are an example for the purpose of describing the framework. They could 

vary for different cases under different circumstances. Future research, such as the large-scale 

international survey of occupant behavior conducted by the IEA EBC Annex 66 [56], will help provide 

more realistic data on occupant behaviors as inputs. 

Table 1 Three occupant behavior styles 

 

Occupant Behavior Austerity Normal Wasteful 

Cooling Setpoint (°C) 26 24 22 

Heating Setpoint (°C) 18 21 22 

Control of lights Dim lights if unoccupied Follow standard schedule 
Always on during working 

hours 

Control of plug-loads turn 30% off if unoccupied Follow standard schedule 
Always on during working 

hours 

HVAC occupancy control 

(For VRF ECM only) 
Off if unoccupied Off if unoccupied Always on 

HVAC startup control 

(For VRF ECM only) 

Turn on HVAC only when 

occupants feel hot, based on 

a probabilistic model of 

HVAC operation 

None None 



Window operation 

(For natural ventilation 

ECM only) 

Concurrent HVAC and 

natural ventilation 

Either HVAC or natural 

ventilation 

HVAC and natural 

ventilation both on all the 

time 

  

2.2.1. Cooling and heating temperature setpoints 

The setpoints of the normal behavior style are either the design setpoints or consistent with the actual 

setpoints of a building, such as the case building described later in Section 3. The setpoints of the 

austerity behavior have a wider range (a higher cooling setpoint and a lower heating setpoint) but they are 

both within the temperature range of the comfort zone in ASHRAE Standard 55-2010 [57]. The setpoints 

of the wasteful behavior have an extreme narrow range (same cooling and heating setpoints). 

2.2.2. Control of lights and plug loads 

The occupants have the option to control their personal plug-in electric equipment, such as laptops, 

desktop screens, chargers, and personal fans, based on their presence. This part of electric equipment is 

assumed to take up about 30% of the total plug loads, based on previous research on occupant-based 

control of plug loads showing 5%–32% of the electricity savings [58–62]. 

The control logic of lights and plug loads are similar. The designed standard lighting and plug-load 

schedules, or the average schedules of a real building, were used as the normal behavior. For the wasteful 

behavior, both lights and plug loads were always on during working hours of the building. For the 

austerity behavior, the lights will be dimmed manually based on available daylight, and the plug loads 

will be reduced by 30% when the zone is unoccupied. 

2.2.3. HVAC control 

For HVAC systems that have zonal control, occupants can turn on or off the HVAC in their zone without 

affecting other zones; for centralized controlled HVAC systems serving multiple zones, occupants are not 

able to control their HVAC operation individually. For the baseline models, the HVAC system is a 

packaged variable air volume (PVAV) system, which doesn’t have zonal control, so the PVAV system is 

centralized controlled with a fixed schedule throughout the working hours. Therefore, the occupant-based 

control of HVAC is not applicable for the baseline models. For the ECMs that are using the variable 

refrigerant flow (VRF) system, which allows zonal control, the occupant-based control of HVAC is 

applied with the following logic: (1) for the austerity and normal occupant behaviors, the HVAC will be 

turned off when the occupants leave the room (occupant-based HVAC control) and (2) the austerity 

occupants would not turn on the HVAC unless they feel hot/cold (HVAC startup control). 



The probability of turning on the HVAC system relates to the current conditioning mode (cooling or 

heating) and the indoor air temperature. Ren [63] investigated the indoor temperature and HVAC usage of 

34 families in six Chinese cities and used a three-parameter Weibull distribution function to describe 

different air conditioning usage patterns. Because residents have independent control of their HVAC 

systems, a fact that applies to the condition of our study, Ren’s model was adopted to estimate the time-

step HVAC control status in our models. The function used to calculate the probability of turning on the 

HVAC system is shown as follows: 

                                                 

𝑃 = {1 − 𝑒−(
𝑇−𝑢

𝐿
)𝑘∆𝜏, 𝑇 ≥ 𝑢, 𝑤ℎ𝑒𝑛 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑

0, 𝑇 < 𝑢
    (1) 

Where, 

: Probability of turning on the HVAC system. 

: Indoor air temperature, the independent variable. 

: Threshold of independent variable T, beyond which the probability of an occupant taking action becomes 0. 

: The scale of the function, which is used for non-dimensionalization (T-u). 

: The slope of the function. The greater k value is, the more sensitive the occupant is to indoor temperature. 

In each scenario, the three parameters are predetermined to meet certain criteria. For example, for the 

probability function of turning on HVAC when the occupants feel hot:  

(1) The heating setpoint of 18°C was set as the u value. In other words, it is considered impossible for the 

occupants to turn on the HVAC because of feeling hot when the indoor temperature T is lower than the 

heating setpoint. 

(2) The L and k values were obtained assuming that the probability of turning on HVAC is about 20% at 

the cooling setpoint of 26°C (cooling setpoint satisfies thermal comfort for 80% of the population) and 

about 50% at the upper limit of ASHRAE comfort zone 28.3°C. 

For this study, the assumption is made that when the indoor air temperature T falls within the comfort 

zone between the cooling and heating setpoints, occupants will not turn on the HVAC. The indoor 

temperature T will be used to calculate the probability of turning on the HVAC only when: (1) the HVAC 

status of last time step is off, (2) the zone is occupied, and (3) the indoor temperature T is higher than the 

cooling setpoint or lower than the heating setpoint. A random number between 0 and 1 is generated for 

P

T

u

L

k



each occupant and compared with the above probability per time step to determine whether to turn on the 

HVAC. HVAC will be turned on as long as one of the present occupants needs it. On the other hand, the 

occupants will turn off the HVAC on two conditions: (1) the zone is unoccupied, or (2) the zone is 

occupied, the HVAC status of last time step is on, and the calculated probability of turning off the HVAC 

is greater than the generated random numbers of all present occupants. To implement the occupant-based 

HVAC control measure in EnergyPlus models, the simulated indoor air temperature per time step is the 

input for determining the action of the next time step. To model this HVAC control strategy, the EMS 

function of EnergyPlus was employed to interpret the conditional logics, generate random numbers, and 

manipulate the HVAC schedules per time step. 

There are potential limitations on purely occupant-based HVAC control in colder climates: if the 

occupants leave the room for a short period of time, the room temperature will not drop much due to heat 

transfer and airflow from adjacent rooms; however, if the occupants leave the room for long period of 

time (e.g., at night), heating up the room may take a while, which might cause potential occupant 

discomfort. This could be mitigated by thermostat setback control. For example, if the room temperature 

drops below a certain temperature say 10°C, the HVAC system will be automatically turned back on. This 

can be incorporated in future studies. 

2.2.4. Window operation 

In the baseline model, the window operation is not applicable as the PVAV system is centrally controlled 

with a fixed schedule throughout the working hours. The window operation is only applicable for the 

ECMs that employ a VRF system with zonal control. In this study, three ventilation modes discussed in 

Wang’s research [64] were adopted for the three occupant behavior styles: (1) concurrent mix-mode 

ventilation for the austerity behavior, (2) change-over mix-mode ventilation for the normal behavior, and 

(3) HVAC and windows both on all the time for the wasteful behavior.  

Concurrent mix-mode ventilation is an optimized window operation strategy: natural ventilation is taken 

as the priority to provide cooling for perimeter zones, and mechanical systems provide supplementary 

cooling when natural ventilation alone is not enough to meet cooling setpoints. In other words, if natural 

ventilation can meet cooling loads for a thermal zone, its VRF indoor unit will be turned off; otherwise, 

conditioned air from the VRF indoor unit is available to provide supplementary cooling in order to meet 

thermal comfort. Both natural ventilation and HVAC are only available when the room is occupied. 

Adaptive comfort criteria with 80% acceptability limits, developed by the Center for the Built 

Environment in UC Berkeley [57,65], were adopted to calculate a dynamic comfort range based on 

ambient temperature. This range was then used for the dynamic cooling setpoints for naturally ventilated 

perimeter zones, while the interior zones use the same cooling setpoints as the baseline model. The 



windows in perimeter zones are favorable to be open when all the following conditions are satisfied: (1) 

the outdoor air temperature is lower than the zone air temperature, (2) the zone air temperature is greater 

than the heating setpoint, and (3) the outdoor air temperature is greater than the temperature that is 3°C 

lower than the heating setpoint, to avoid overcooling thermal zones when outdoor air temperature is too 

low [65]. When windows in perimeter zones are favorable to be open, the fractions of window opening 

are modulated based on a linear relationship with indoor-outdoor temperature difference, illustrated in 

Figure 3 [65]. Windows will be fully closed when the indoor–outdoor temperature difference is greater 

than or equal to 15°C and windows will be fully open for ventilation when the indoor and outdoor air 

temperatures are equal. The air change rate per hour with the windows fully open is assumed to be 10, 

which is comparable to mechanical ventilation systems.  

 

Figure 3 Modulation of window opening according to indoor and outdoor temperature difference 

In change-over mix-mode, whenever a window in a perimeter zone is open, the VRF indoor unit of that 

zone will be turned off. During natural ventilation hours, the adaptive comfort criteria were adopted as the 

cooling setpoints; during HVAC hours, the cooling setpoints were set the same as the baseline model. For 

the wasteful behavior, both the HVAC are always on and the windows open during working hours. This 

study assumes that the natural ventilation rate through the windows is five air changes per hour. 

For all three ventilation modes, natural ventilation only applies to the perimeter zones while mechanical 

systems serve cooling and heating for core zones. The heating setpoints remain the same as the baseline 

model. The EMS function of EnergyPlus was used to interpret the conditional logics and manipulate the 

natural ventilation schedules per time step for the concurrent mix-mode and change-over mix-mode 

ventilations. 

2.3. Occupant schedules 

Occupancy has a significant impact on the energy-saving potentials of ECMs [16]. The occupant 

schedules adopted in the simulation are supposed to reflect the realistic occupant movement in the 

buildings. An average whole-building occupant schedule is normalized and not able to reflect the realistic 



occupant movement and the variations between different zones within the buildings. Especially for 

occupant-based control, occupant schedules are critical input for accurately estimating the energy 

performance, as elaborated in Sun’s study [66].  

The method used in this study to generate realistic occupant schedules is similar to the method used in 

previous Lawrence Berkeley National Laboratory (LBNL) research on estimating the energy saving 

potentials of occupant behavior measures [66]. The Occupancy Simulator was used to simulate the 

realistic occupant presence and movement in each zone, with inputs from the site survey of real buildings. 

The Occupancy Simulator, developed by LBNL, is a user-friendly web-based application that uses the 

stochastic Markov chain modeling to simulate occupancy in buildings [67]. The app takes high-level 

inputs of occupants, spaces, and events to simulate the occupant presence and movement in buildings, 

capturing the spatial and temporal occupant diversity [27][28]. Each occupant and each space in the 

building are explicitly simulated as an agent with their profiles of stochastic behaviors. It reduces the 

amount of data inputs by allowing users to group occupants with similar behaviors as an occupant type 

and spaces with similar function as a space type. The theoretical mathematical distribution of the 

occupant pattern properties have been verified using collected occupant data in real buildings [68]. 

The generated schedules can reflect the variation, diversity, and stochastic characteristics of the realistic 

occupant movement. These generated schedules are more reasonable than the normalized occupant 

schedule and can help improve the simulation accuracy. To make it consistent for all the studied ECMs, 

the same set of generated schedules is applied to both the baseline model and the ECM models. 

3. Pilot Study 

A pilot study was performed in a real office building, using the proposed framework, to quantify the 

influence of occupant behavior on ECM energy savings. Figure 4 shows the overall workflow of the pilot 

study. Field investigation was conducted in the building to gather information for creating the baseline 

energy model, including the geometry, zoning, number of occupants in each zone, and occupant schedules. 

It can better reflect the realistic occupant behaviors in buildings with realistic geometry, zoning, and 

schedules than the United States Department of Energy (DOE) prototype models [69], which simplify 

building zoning and occupant inputs. The impact of occupant behavior on ECM energy savings was 

evaluated in four different climates—Chicago, Fairbanks, Miami, and San Francisco—so that the 

potential sensitivity to climate could be studied as another dimension. The selected cities represent the 

four typical climate types in the United States: humid continental, subarctic, tropical (subtropical), and 

Mediterranean, respectively. 



The three occupant behavior styles defined in Section 2 were adopted to represent different levels of 

energy consciousness and the boundaries of either extreme (as in energy savers and spenders). The 

occupant behavior style was assumed to be consistent before and after the ECMs were implemented; the 

three occupant behavior styles were applied to generate three baseline models for the ECM evaluation in 

each climate type. Also, occupant schedules, generated by the Occupancy Simulator with inputs from the 

site survey of the case building, were used in the energy models.  

An effective useful life of building equipment varies from 5 to 25 years [70][3]. The case building is 

about 15 years old; the efficiencies of the baseline models are compliant with ASHRAE Standard 90.1-

2001. The more recent ASHRAE Standard 90.1-2013 was used as a representative energy efficiency level 

for the new building technologies, which was adopted as the source of the efficiencies of the ECMs in the 

pilot study.  

 

Figure 4 The workflow of the pilot study 

Whole-building simulation using EnergyPlus was used to evaluate the impact of occupant behavior on the 

energy savings of ECMs. Based on the investigated office building, baseline models were developed in 

EnergyPlus version 8.5. EnergyPlus is an open-source program that models heating, ventilation, cooling, 

lighting, water use, renewable energy generation, and other building energy flows [71] and is the flagship 

building simulation engine supported by DOE. It includes innovative simulation capabilities (e.g., sub-

hourly time-steps, natural ventilation, thermal comfort, co-simulation with external interfaces, renewable 

energy systems, and user customizable EMS). Some of the innovative capabilities, such as natural 

ventilation, daylighting, external schedules, and EMS, were used in this pilot study. 



3.1. The case building energy model 

The field-investigated office building has two above-ground stories with a total conditioned floor area of 

1,723 m2. Main room functions include office, conference room, classroom, and lounge. The perimeter 

zones have operable windows, which allow the occupants to open windows for cooling or ventilation. The 

total number of occupants in the case building is 63. Figure 5 and Figure 6 show first- and second-floor 

plans of the case building, including the room functions. Detailed information on the case building, 

including number of occupants in each zone, lighting schedule, plug-load power density, and plug-load 

schedule, was also obtained via the field investigation. The zone functions and their maximum number of 

people are summarized in Table 2. 

 

Figure 5 The 1st floor plan 

 

Figure 6 The 2nd floor plan 

Table 2 Zone function and number of occupants 

Zone Function 

Maximum 

Number of 

Occupants 

Number 

of zones 

Office 

0 1 

1 12 

2 10 

3 5 



4 4 

Classroom 
3 1 

5 1 

Meeting Room 
4 2 

13 1 

 

Based on realistic geometry and zoning of the case building, the three defined occupant behavior styles, 

and the generated realistic occupant schedules (details in Section 3.2), the three baseline models were 

developed in EnergyPlus Version 8.5 for each climate type, as Figure 7 shows. The efficiency inputs of 

the baseline models are based on ASHRAE 90.1-2001. The lighting power density is 14 W/m
2
. The 

thermal properties of the building envelope are shown in Table 3.  

 

Figure 7 The 3D view of the baseline models 

Table 3 Envelope thermal properties based on ASHRAE 90.1-2001 

 
Chicago San Francisco Miami Fairbanks 

Wall U-factor W/(m
2
.K) 0.701 0.857 3.293 0.453 

Roof U-factor W/(m
2
.K) 0.36 0.527 0.36 0.273 

Window U-factor W/(m
2
.K) 3.24 6.93 6.93 2.61 

Window SHGC 0.39 0.61 0.25 0.45 

 

The baseline models are equipped with PVAV systems, which use direct expansion (DX) cooling coil to 

supply cooling and gas heating coil for reheat. As the baseline models are based on ASHRAE 90.1-2001, 

economizers are not required for PVAV systems. Minimum requirement of outdoor air is assumed to 

meet ventilation requirement. The sizing of the HVAC equipment for each baseline model standardized 

through all the ECM calculations since HVAC equipment will stay the same unless replaced or removed 

during retrofits. The sizing information was first obtained by autosizing the equipment of the baseline 

model. 



3.2. Occupant schedules 

The maximum number of occupants and space types, listed in Table 2, are inputs to the Occupancy 

Simulator. For the offices, three prevailing types of work schedules on weekdays were summarized based 

on the survey: 8am – 5pm (70%), 7am – 6pm (20%), and 6am – 11pm (10%). The occupants don’t work 

on weekends. The classrooms and meeting rooms only hold events during several fixed time slots on 

weekdays with certain possibilities. With the above inputs, the occupant schedules for each space were 

generated by the Occupancy Simulator. Figure 8 shows the hourly variation and profile of total occupant 

schedule in all the offices throughout the weekdays of a whole year. Likewise, Figure 9 shows the 

occupant schedules on weekdays in all the meeting rooms, respectively. Figure 10 shows the occupant 

schedule of a four-person office on the second floor during a weekday with the time step of 15 minutes. 

According to the normalized occupant schedule in the DOE office building prototype models [69], the 

unoccupied hours during weekdays are 1,564, while the average unoccupied hours of all the offices 

during weekdays are 3,800 based on the generated stochastic occupant schedule. This was calculated by 

averaging the total unoccupied hours during weekdays of each office. With the stochastic occupant 

schedule, the spaces are unoccupied for more than twice the time of the normalized occupant schedule, 

which leads to a significant difference in the energy performance of occupant-based ECMs.  

 

Figure 8 Box-Whisker plot of the hourly schedule of total occupants in all offices on weekdays. The four marks on each time 

scale stand for (from top to bottom): maximum, upper quartile, lower quartile, and minimum. The dotted line connects the 

median value of all. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Sc
h

ed
u

le

Hours

Generated occupant schedule - Offices



 

Figure 9 Box-Whisker plot of the hourly schedule of total occupants in all the meeting rooms on weekdays. The five marks on 

each time scale stand for (from top to bottom): maximum, upper quartile, median, lower quartile, and minimum. 

 

Figure 10 The occupant schedule of an office room on the 2nd floor on a typical weekday (Time interval: 15 min). 

3.3. Energy conservation measures 

To investigate the impact of occupant behavior on performance of ECMs, seven individual ECMs and one 

packaged ECM (integrating several individual ECMs) were evaluated in this study. These ECMs were 

chosen considering their  application to a 15-year-old building designed to comply with ASHRAE 

Standard 90.1-2001 standards [72], which were adopted in the baseline models to represent existing 

buildings. The efficiencies of the ECMs in this study were obtained from the more recent ASHRAE 90.1-

2013 [73] standards. The details of the ECMs are described as follows. 

3.3.1. Reducing lighting power density (LPD) 

For this ECM, the lighting system is upgraded with more efficient light bulbs and the lighting power 

density is reduced from 14 to 8.83 W/m
2
. 
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3.3.2. Reducing plug-in electric equipment power density (EPD) 

There are no requirements on the efficiencies of plug-in electric equipment in the standard. Therefore, the 

new upgraded electric equipment is assumed to be 25% more efficient than the old equipment, 

considering the adoption of efficient plug-in technologies. Thus, the average electric equipment power 

density is reduced from 14 to 10.5 W/m
2
. 

3.3.3. Improving envelope performance 

This ECM improves the thermal properties of the building envelope from those defined in ASHRAE 

90.1-2001 (Table 3) to ASHRAE 90.1-2013 (Table 4). 

Table 4 Envelope thermal properties based on ASHRAE 90.1-2013 

 
Chicago San Francisco Miami Fairbanks 

Wall U-factor W/(m
2
.K) 0.513 0.701 3.293 0.273 

Roof U-factor W/(m
2
.K) 0.184 0.220 0.273 0.158 

Window U-factor W/(m
2
.K) 2.38 2.84 3.24 2.16 

Window SHGC 0.4 0.25 0.25 0.45 

 

3.3.4. Improving HVAC system efficiency 

This ECM improves the cooling system efficiencies (DX cooling coil for PVAV is categorized as air-

cooled unitary air conditioner) from the 2001 ASHRAE 90.1 to 2013, as shown in Table 5. The gas 

burner efficiency remains the same. 

Table 5 Improvement of the HVAC system efficiencies 

Capacity (kW) ASHRAE 90.1-2001 ASHRAE 90.1-2013 

<19  9.7 SEER
(1)

 14 SEER 

19-40 10.1 EER
(2)

 12.7 IEER
(3)

 

40-70  9.5 EER 12.2 IEER 

70-223  9.3 EER 11.4 IEER 

≥223  9.0 EER 11.0 IEER 

Notes:  

(1) SEER, Seasonal Energy Efficiency Ratio, is the cooling output (in British thermal units [Btu] per hour) during a typical 

cooling season divided by the total electric energy input (in Watts) during the same period. 

(2) EER, Energy Efficiency Ratio, is the ratio of the cooling capacity (in British thermal units [Btu] per hour) to the power input 

(in Watts). 



(3) IEER, Integrated Energy Efficiency Ratio, is an integrated performance for commercial unitary air conditioning and heat 

pump equipment, expressing cooling part-load EER efficiency on the basis of weighted operation at various load capacities. 

3.3.5. Daylighting control 

In this ECM, daylight sensors are installed in perimeter zones to allow automatic daylighting control. The 

lights will automatically dim continuously from maximum to minimum electric power as the daylight 

illuminance increases. The lights stay on at the minimum point with further increase in the daylight 

illuminance. 

3.3.6. Variable refrigerant flow system 

VRF systems vary the refrigerant flow to meet the dynamic zone thermal loads. They can provide flexible 

controls and individual thermal comfort and consume less energy due to: (1) more efficient operation 

during part-load conditions with the help of variable speed compressor and fans; (2) minimal or no 

ductwork reducing air leakage and heat losses; and (3) smaller indoor unit fans consuming less energy 

while reducing indoor noise [74,75]. Furthermore, VRF heat recovery (VRF-HR) system can deliver 

simultaneous heating and cooling to different zones and transfer heat from the cooling zones to the 

heating zones. 

This ECM replaces the original PVAV system with VRF system to enable flexible zonal control and more 

efficient operation. It should be noted that the VRF system generally does not have an airside economizer 

due to small air duct design to only provide the minimal amount of outdoor air directly to zones meeting 

the ventilation requirements. Therefore, the amount of supplied outdoor air is the same between the 

baseline PVAV system and the VRF system. The efficiency curves of the VRF systems were provided by 

VRF manufacturers. 

3.3.7. Natural ventilation coupled with the VRF system 

As mentioned above, occupant-based control of HVAC system and window operation are only applicable 

to the VRF system, which allows zonal control. In this case, the ECM of natural ventilation is 

implemented together with the VRF system ECM. 

As discussed in Section 2.2.4, three ventilation modes were adopted for the three occupant behavior styles 

for this ECM: (1) concurrent mix-mode ventilation for the austerity behavior, (2) change-over mix-mode 

ventilation for the normal behavior, and (3) HVAC on and windows open all the time for the wasteful 

behavior. 



3.3.8. The integrated ECM 

All previous ECMs have been integrated as a new ECM, with the exception of the ECM of improving 

system efficiency, which is excluded because the HVAC system is changed to the VRF system with new 

efficiency curves and the improvement of cooling system efficiencies does not apply. 

3.4. Simulation results 

The energy performance of the baseline models and the models implemented with the ECMs was 

simulated using EnergyPlus Version 8.5. Site energy is used as the energy metric. The results are 

elaborated as follows. 

3.4.1. Impact of occupant behavior styles on baseline energy use 

Before evaluating the impact of occupant behavior styles on ECM savings, the impact of each behavior 

style on the energy consumption of the baseline models was analyzed. Figure 11 shows the total energy 

use intensity of the baseline models with the three occupant behavior styles in four climate types. 

Compared with the normal behavior style, the model with the austerity behavior style consumes 17.8%–

32.1% less energy while the model with the wasteful behavior style consumes 27.8%–47.8% more energy. 

When comparing the wasteful behavior style with the austerity behavior style, the energy use differences 

can be 55.6% (Fairbanks) and even as high as 117.6% (San Francisco). 

The occupant behavior style has significant influence on building energy use. Even though the buildings 

are physically identical, they consume significantly different amounts of energy when occupied by 

different types of energy users. Some energy spenders consumed more than twice the energy of the 

energy savers.  

 

Figure 11 Total site energy use of the baseline models 
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3.4.2. Impact of occupant behavior styles on ECM energy savings 

Each ECM was implemented in the three baseline models with different occupant behavior styles in each 

climate type. The energy performance of each ECM was then simulated and compared with the baseline 

models. Figure 12 to Figure 15 illustrate the ECM energy saving percentages compared to the baseline 

models under the three behavior styles in each climate type. The simulation results indicate that the ECM 

saving percentages of LPD, EPD, envelope, system efficiency, and daylighting control are minimally 

affected by occupant behavior styles. This is because they are all purely technology-driven ECMs, which 

don’t rely on the interactions with the occupants to save energy. For example, the ECM of reducing 

lighting power density doesn’t require any actions from the occupants, thus its saving percentage varies 

minimally with behavior styles.  

On the other hand, the ECM saving percentages of the VRF system, natural ventilation, and integrated 

ECM are significantly affected by occupant behavior styles. Energy performance in these ECMs is 

closely related to how the occupants interact with the ECM. For example, once the VRF system is 

installed, which allows zonal control, the occupants have decisions to make on how to control their indoor 

units: the austerity occupants only turn on the indoor units when they feel hot, normal occupants turn on 

the indoor units as long as they are in the room, while the wasteful occupants keep the indoor units on 

during the entire working hours. Also, cooling and heating setpoints are different among the behavior 

styles. Therefore, the energy performance of each ECM heavily depends on how the occupants behave. 

Even though the same VRF system is installed, different amounts of energy are consumed with different 

occupant operation modes. Likewise, the saving potentials of natural ventilation also heavily depend on 

how the occupants control the windows and the HVAC system. The integrated ECM includes the VRF 

system and natural ventilation, so it is also largely affected by behavior styles. 

In summary, for ECMs that are purely technology driven and have little interaction with the occupants—

such as reducing LPD, reducing EPD, improving envelope properties, and improving system efficiency 

and daylighting control—energy saving percentages are minimally affected by occupant behavior styles. 

For ECMs that have strong interaction with the occupants, such as the VRF system and natural ventilation, 

energy saving percentages are significantly affected by occupant behavior styles.  

For occupant-dependent ECMs, austerity and normal behavior styles tend to have larger saving 

percentages compared to the wasteful behavior style (one exception is that the VRF-HR system operated 

by wasteful behavior occupants has the highest saving percentage in San Francisco) (Figure 15). In mild 

climates like San Francisco, the close or even equal cooling and heating setpoints of the wasteful behavior 

style generate a significant simultaneous cooling and heating load. In the baseline model with PVAV 

systems, this can only be satisfied by cooling coupled with reheat. However, the VRF heat recovery 



system can easily handle a simultaneous cooling and heating load by recovering heat from cooling zones 

to heating zones—significantly improving system efficiency and reducing energy consumption. Therefore, 

VRF has the greatest saving potential for the wasteful behavior and the least saving potential for the 

austerity behavior in San Francisco. On the other hand, in climates with distinct cooling and heating 

seasons such as Chicago, Miami, and Fairbanks, a simultaneous cooling and heating load is much less 

frequent than that in mild climates, so the saving percentages for the wasteful behavior are less than those 

of the normal and austerity behaviors. 

 

Figure 12 ECM saving percentages compared to the baseline models with different behavior styles in Chicago 

 

Figure 13 ECM saving percentages compared to the baseline models with different behavior styles in Fairbanks 
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Figure 14 ECM saving percentages compared to the baseline models with different behavior styles in Miami 

 

Figure 15 ECM saving percentages compared to the baseline models with different behavior styles in San Francisco 

4. Discussion 

4.1. Relative saving percentages vs. absolute savings 

It should be noted that ECM energy saving percentages are not equivalent to their absolute energy savings. 

While the saving percentages are similar, the absolute savings could be different. Figure 16 through 

Figure 19 show the absolute energy savings of the ECMs under the three behavior styles in each climate. 

There are two main findings:  

(1) the wasteful behavior style generally results in the greatest absolute energy savings while its 

saving percentages are mostly close to those of the austerity and normal behavior styles for 

occupant independent ECMs and even lower than those of the austerity and normal behavior 

styles for occupant dependent ECMs. This is mainly because the energy consumption of the 
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baseline model with the wasteful behavior style is much higher than that of the other two 

behavior styles, leading to huge saving potentials. 

(2) The wasteful behavior style results in less absolute savings on the natural ventilation ECM. This 

is due to the fact that HVAC is on and windows are open all the time, increasing cooling/heating 

load significantly especially when outdoor environment is not beneficial to indoor thermal 

comfort. 

Knowing absolute energy savings is very important to retrofit planning. Though buildings with the 

wasteful occupant behavior styles tend to achieve less saving percentages than other behavior styles, their 

absolute energy savings are generally higher. One finding of this study is that decision and policy makers 

would do well to target big consumers with wasteful behavior styles, which have more potential energy 

savings, especially for the promotion of technology-driven occupant-independent ECMs.  

 

Figure 16 Absolute energy savings of the ECMs under three behavior styles in Chicago 

 

Figure 17 Absolute energy savings of the ECMs under three behavior styles in Fairbanks 
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Figure 18 Absolute energy savings of the ECMs under three behavior styles in Miami 

 

Figure 19 Absolute energy savings of the ECMs under three behavior styles in San Francisco 

4.2. Impact of occupant schedules 

The occupant schedules that are generally used in current energy models are static and normalized for the 

whole building, such as the office occupant schedule in the DOE prototype models for office buildings 

[69] (Figure 20). The normalized occupant schedule only represents the average occupancy level for the 

whole building and stays the same on every weekday, every weekend, and in each room, which means 

that the occupant schedules neither vary with the time (on a daily basis) nor vary with space. The 

normalized occupant schedule is not able to reflect the realistic occupant presence and movement and the 

variations between different zones within the buildings. 
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Figure 20 Office occupant schedule in the DOE reference model for office buildings 

The author implemented the normalized occupant schedules in the DOE reference model for office 

buildings in both the baseline and ECM models and compared the simulation results with the realistic 

occupant schedule. Figure 21 through Figure 24 show the differences of energy saving percentages 

between the realistic and normalized occupant schedules in each climate type. The energy savings with 

the wasteful behavior style is not affected by occupant schedule regardless of ECM types, as its operation 

has nothing to do with occupants. For occupant-independent ECMs, only the energy savings with the 

austerity behavior style are slightly affected by the occupant schedule as only the austerity control of 

lights and plug load is partially related to the occupants. For occupant-dependent ECMs, the energy 

savings with both the austerity and normal behavior styles are significantly affected by the occupant 

schedule as their control of the VRF system and windows is closely tied to the occupants. From above, 

the occupant schedule does affect the simulated results of ECM savings, especially for the occupant-

dependent ECMs coupled with the austerity behavior style. Adopting realistic occupant schedules rather 

than the normalized ones would help improve the accuracy of ECM saving evaluation. 

 



 

Figure 21 Difference of energy saving percentages between realistic and normalized occupant schedules in Chicago 

 

Figure 22 Difference of energy saving percentages between realistic and normalized occupant schedules in Fairbanks 

 

Figure 23 Difference of energy saving percentages between realistic and normalized occupant schedules in Miami 
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Figure 24 Difference of energy saving percentages between realistic and normalized occupant schedules in San Francisco 

4.3. Occupant behavior styles 

The defined three occupant behavior styles serve to illustrate the framing and application of the proposed 

framework, but they do not intend to represent actual occupant behavior in buildings. For users’ specific 

buildings or applications, different occupant behaviors can be included. Future studies will use more 

realistic data of occupant behaviors, including different occupant behavior styles and their weighting 

factors, from research such as the large-scale international survey of occupant behavior in buildings under 

the IEA EBC Annex 66. 

4.4. Interpretation of the simulation results 

The simulated results using the proposed framework indicate a range of ECM savings with different 

occupant behaviors in buildings. The ways that the results are interpreted and adopted would vary by 

application purpose. 

When the framework is applied to the retrofit analysis of existing buildings, the ECM saving range can be 

significantly reduced as the buildings are occupied and the types of occupant behaviors are recognized. In 

this case, the decision makers can minimize the investment risks by selecting the ECMs that benefit the 

most from the current occupant behavior style. On the other hand, when the framework is applied to the 

design of new buildings, the simulated range of ECM savings informs decision makers of the potential 

risk of technology choices due to variation and uncertainty of occupant behaviors. As the tenants are 

usually uncertain at the design stage, it is less risky to choose occupant-independent ECMs, such as 

reducing lighting power density, improving envelope properties, and improving HVAC system 

efficiencies. If occupant-dependent ECMs are considered as well, it would help to largely reduce the risk 

by educating and training occupants to understand the design intent of the building systems or by 
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implementing automatic/intelligent control functions, such as automatic shading, lighting, and HVAC 

controls coupled with occupancy sensors. 

 

4.5. Repetition of simulation runs 

As some of the studied occupant behavior models are stochastic, the calculated ECM energy savings may 

vary if the annual performance simulations are repeated multiple times. Feng, et al. [76] recommended 

that a repetition of ten times is adequate for determining the mean results. D’Oca investigated the 

variation among simulation results due to stochastic models of window opening and heating setpoints 

within residential buildings by running each model more than 10 times. She concluded that the variation 

is very small (10%–12%). Commercial buildings, the focus of this study, have a much greater number of 

zones and occupants than residential buildings, leading to even smaller variations brought by stochastic 

models since the aggregated effect of diversities among multiple zones and occupants significantly reduce 

the overall variations [77]. 

This study explored the variation of ECM savings using the VRF ECM as an example. Per Section 2.2.3, 

the probability of turning on the HVAC system is calculated based on a three-parameter Weibull 

distribution function, and then compared with generated random numbers to determine whether occupants 

turn on the HVAC system, which is a stochastic result. Simulations of the VRF ECM in the four cities 

were repeated ten times each; Table 6 shows the results. As the variations of the annual HVAC site 

energy are less than 1% (even smaller if total site energy is compared), the repetition of annual simulation 

is not needed for this study. However, if metrics other than annual energy—for example, peak demand or 

hourly energy—are concerned, repetition may be needed. 

Table 6 Simulated HVAC site energy of the VRF ECM under ten times repetition (Unit: GJ) 

 
Chicago SF Miami Fairbanks 

Min 144.8 82.98 221.38 159.75 

Max 145.0 83.13 221.67 159.88 

100(max/min - 1)% 0.14% 0.18% 0.13% 0.08% 

5. Conclusions 

This study introduced a simulation framework to quantify the impact of occupant behaviors on ECM 

energy savings. Three occupant behavior styles—austerity, normal and wasteful—were defined to 

represent different levels of energy consciousness in terms of the control of HVAC, window, lights, and 

plug-in equipment. These behavior styles don’t necessarily represent realistic occupant behavior in 



buildings, but rather represent the boundary of either extreme, such as energy savers and spenders. The 

framework was then applied to a pilot study to evaluate the ECM energy saving discrepancies among 

different behavior styles. The main findings from this study are:  

(1) The occupant behavior style has significant influence on building energy use. Buildings occupied by 

energy spenders could consume more than twice the energy of the energy savers. 

(2) For occupant-independent ECMs, which are purely technology-driven and have little interaction with 

the occupants, such as reducing LPD, reducing EPD, improving envelope properties, and improving 

HVAC system efficiency and daylighting control, energy saving percentages are minimally affected by 

occupant behavior styles. For occupant-dependent ECMs, which have strong interaction with the 

occupants, such as the VRF system and natural ventilation, energy saving percentages are significantly 

affected by occupant behavior styles. 

(3) The wasteful behavior style generally achieves the greatest absolute energy savings while its saving 

percentages are close to or even lower than those of the austerity and normal behavior. This is important 

information for decision makers in retrofit planning. 

(4) The occupant schedule has certain impacts on the simulated results of ECM savings, especially for the 

occupant-dependent ECMs coupled with the austerity behavior style. Adopting realistic occupant 

schedules rather than normalized ones would help improve the accuracy of ECM saving evaluation.  

The zero-net energy (ZNE) technologies are successful and growing today as energy performance 

requirements are becoming more and more stringent. ZNE technologies, such as natural ventilation, 

HVAC control, and demand response, tend to need more interaction with occupants. They are more 

sensitive to occupant behaviors and reactions to stimulations, which makes occupant behavior a 

significant uncertainty factor for the technology’s performance. In other words, occupant behavior may 

significantly change the way technologies are designed and expected to perform. The proposed 

framework provides a novel simulation approach enabling energy modelers to calculate the ECM savings 

as a range rather than a single fixed value considering the variations of occupant behaviors in buildings, 

which provides a critical input to the risk analysis of ECM investments. 

Recommended future work include: (1) developing more realistic occupant behavior styles based on large 

scale survey of occupants in various climates, (2) pilot testing the methodology in a real design or 

retrofitting project, and (3) extending the study for other building types and building technologies. 



Acknowledgments 

This work is sponsored by the United States Department of Energy (Contract No. DE-AC02-05CH11231) 

under the U.S.-China Clean Energy Research Center for Building Energy Efficiency. The work is also 

part of the research activities of the International Energy Agency Energy in Buildings and Communities 

Program Annex 66, Definition and Simulation of Occupant Behavior in Buildings. 

References 

[1] International Energy Agency, Total energy use in buildings: Analysis and evaluation methods, 

2013. http://www.iea-

ebc.org/fileadmin/user_upload/images/Pictures/EBC_Annex_53_Main_Report.pdf. 

[2] U.S. Department of Energy, Energy Efficiency Trends in Residential and Commercial Buildings, 

2008. 

[3] Pacific Northwest National Laboratory, Advanced Energy Retrofit Guides - Office Buildings, 

2011. http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20761.pdf. 

[4] Pacific Northwest National Laboratory, Advanced Energy Retrofit Guides - Retail Buildings, 2011. 

http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20814.pdf. 

[5] T. Hong, W.K. Chang, H.W. Lin, A fresh look at weather impact on peak electricity demand and 

energy use of buildings using 30-year actual weather data, Appl. Energy. 111 (2013) 333–350. 

doi:10.1016/j.apenergy.2013.05.019. 

[6] W. Blyth, R. Bradley, D. Bunn, C. Clarke, T. Wilson, M. Yang, Investment risks under uncertain 

climate change policy, Energy Policy. 35 (2007) 5766–5773. doi:10.1016/j.enpol.2007.05.030. 

[7] L. Wang, P. Mathew, X. Pang, Uncertainties in energy consumption introduced by building 

operations and weather for a medium-size office building, Energy Build. 53 (2012) 152–158. 

doi:10.1016/j.enbuild.2012.06.017. 

[8] C.C. Menassa, Evaluating sustainable retrofits in existing buildings under uncertainty, Energy 

Build. 43 (2011) 3576–3583. doi:10.1016/j.enbuild.2011.09.030. 

[9] Y.G. Yohanis, Domestic energy use and householders’ energy behaviour, Energy Policy. 41 (2012) 

654–665. doi:10.1016/j.enpol.2011.11.028. 

[10] J. Owens, H. Wilhite, Household energy behavior in Nordic countries-an unrealized energy saving 

potential, Energy. 13 (1988) 853–859. doi:10.1016/0360-5442(88)90050-3. 

[11] O. Guerra Santin, L. Itard, H. Visscher, The effect of occupancy and building characteristics on 

energy use for space and water heating in Dutch residential stock, Energy Build. 41 (2009) 1223–

1232. doi:10.1016/j.enbuild.2009.07.002. 

[12] C.H. Baek, S.H. Park, Changes in renovation policies in the era of sustainability, Energy Build. 47 

(2012) 485–496. doi:10.1016/j.enbuild.2011.12.028. 

[13] L. Tobias, Retrofitting Office Buildings to Be Green and Energy-Efficient: Optimizing Building 

Performance, Tenant Satisfaction, and Financial Return, Washington D.C., 2009. 

[14] Z. Ma, P. Cooper, D. Daly, L. Ledo, Existing building retrofits: Methodology and state-of-the-art, 



Energy Build. 55 (2012) 889–902. doi:10.1016/j.enbuild.2012.08.018. 

[15] T. Hong, D. Yan, S. D’Oca, C. Chen, Ten questions concerning occupant behavior in buildings: 

The big picture, Build. Environ. (2016) 1–13. doi:10.1016/j.buildenv.2016.12.006. 

[16] J. Virote, R. Neves-Silva, Modelling the Occupant Behaviour Impact on Buildings Energy 

Prediction, in: Nearly Zero Energy Build. Refurb. A Multidiscip. Approach, 2014: pp. 119–141. 

doi:10.1007/978-1-4471-5523-2. 

[17] N. Li, Z. Yang, C. Tang, N. Chen, B. Becerik-Gerber, Impact of Building Occupancy on 

Assessing the Effectiveness of Energy Conservation Measures, in: ISARC. Proc. Int. Symp. 

Autom. Robot. Constr., 2015: p. 1. 

[18] E. Marshall, J.K. Steinberger, V. Dupont, T.J. Foxon, Combining energy efficiency measure 

approaches and occupancy patterns in building modelling in the UK residential context, Energy 

Build. 111 (2016) 98–108. doi:10.1016/j.enbuild.2015.11.039. 

[19] D. Yan, W. O’Brien, T. Hong, X. Feng, H. Burak Gunay, F. Tahmasebi, A. Mahdavi, Occupant 

behavior modeling for building performance simulation: Current state and future challenges, 

Energy Build. 107 (2015) 264–278. doi:10.1016/j.enbuild.2015.08.032. 

[20] K. Sun, D. Yan, T. Hong, S. Guo, Stochastic modeling of overtime occupancy and its application 

in building energy simulation and calibration, Build. Environ. 79 (2014) 1–12. 

doi:10.1016/j.buildenv.2014.04.030. 

[21] P. Hoes, J.L.M. Hensen, M.G.L.C. Loomans, B. de Vries, D. Bourgeois, User behavior in whole 

building simulation, Energy Build. 41 (2009) 295–302. doi:10.1016/j.enbuild.2008.09.008. 

[22] K. Sun, T. Hong, S.C. Taylor-Lange, M.A. Piette, A pattern-based automated approach to building 

energy model calibration, Appl. Energy. 165 (2016) 214–224. doi:10.1016/j.apenergy.2015.12.026. 

[23] K. Schakib-Ekbatan, F.Z. Çakici, M. Schweiker, A. Wagner, Does the occupant behavior match 

the energy concept of the building? - Analysis of a German naturally ventilated office building, 

Build. Environ. 84 (2015) 142–150. doi:10.1016/j.buildenv.2014.10.018. 

[24] C. Turner, M. Frankel, Energy Performance of LEED ® for New Construction Buildings, New 

Build. Inst. (2008) 1–46. 

[25] M. Eguaras-Martínez, M. Vidaurre-Arbizu, C. Martín-Gómez, Simulation and evaluation of 

building information modeling in a real pilot site, Appl. Energy. 114 (2014) 475–484. 

doi:10.1016/j.apenergy.2013.09.047. 

[26] K.-U. Ahn, C.S. Park, Different Occupant Modeling Approaches for Building Energy Prediction, 

Energy Procedia. 88 (2016) 721–724. doi:10.1016/j.egypro.2016.06.050. 

[27] X. Feng, D. Yan, T. Hong, Simulation of occupancy in buildings, Energy Build. 87 (2015) 348–

359. doi:10.1016/j.enbuild.2014.11.067. 

[28] C. Wang, D. Yan, Y. Jiang, A novel approach for building occupancy simulation, Build. Simul. 4 

(2011) 149–167. doi:10.1007/s12273-011-0044-5. 

[29] J. Page, D. Robinson, N. Morel, J.L. Scartezzini, A generalised stochastic model for the simulation 

of occupant presence, Energy Build. 40 (2008) 83–98. doi:10.1016/j.enbuild.2007.01.018. 

[30] C.J. Andrews, D. Yi, U. Krogmann, J.A. Senick, R.E. Wener, Designing buildings for real 

occupants: An agent-based approach, IEEE Trans. Syst. Man, Cybern. Part ASystems Humans. 41 

(2011) 1077–1091. doi:10.1109/TSMCA.2011.2116116. 



[31] Y.S. Lee, A.M. Malkawi, Simulating multiple occupant behaviors in buildings: An agent-based 

modeling approach, Energy Build. 69 (2014) 407–416. doi:10.1016/j.enbuild.2013.11.020. 

[32] D. Robinson, U. Wilke, F. Haldi, Multi Agent Simulation of Occupants’Presence and Behaviour, 

Proc. Build. Simul. (2011) 14–16. http://www.ibpsa.org/proceedings/BS2011/P_1671.pdf. 

[33] J. Langevin, J. Wen, P.L. Gurian, Simulating the human-building interaction: Development and 

validation of an agent-based model of office occupant behaviors, Build. Environ. 88 (2014) 27–45. 

doi:10.1016/j.buildenv.2014.11.037. 

[34] T. Hong, S. D’Oca, S.C. Taylor-Lange, W.J.N. Turner, Y. Chen, S.P. Corgnati, An ontology to 

represent energy-related occupant behavior in buildings. Part II: Implementation of the DNAS 

framework using an XML schema, Build. Environ. 94 (2015) 196–205. 

doi:10.1016/j.buildenv.2015.08.006. 

[35] T. Hong, S. D’Oca, S.C. Taylor-Lange, W.J.N. Turner, Y. Chen, S.P. Corgnati, An ontology to 

represent energy-related occupant behavior in buildings. Part II: Implementation of the DNAS 

framework using an XML schema, Build. Environ. 94 (2015) 196–205. 

doi:10.1016/j.buildenv.2015.08.006. 

[36] G.Y. Yun, P. Tuohy, K. Steemers, Thermal performance of a naturally ventilated building using a 

combined algorithm of probabilistic occupant behaviour and deterministic heat and mass balance 

models, Energy Build. 41 (2009) 489–499. doi:10.1016/j.enbuild.2008.11.013. 

[37] A. Mahdavi, A. Mohammadi, E. Kabir, L. Lambeva, Occupants’ operation of lighting and shading 

systems in office buildings, J. Build. Perform. Simul. 1 (2008) 57–65. 

doi:10.1080/19401490801906502. 

[38] D. Wang, C.C. Federspiel, F. Rubinstein, Modeling occupancy in single person offices, Energy 

Build. 37 (2005) 121–126. doi:10.1016/j.enbuild.2004.06.015. 

[39] G. Zimmermann, Modeling and Simulation of Individual User Behavior for Building Performance 

Predictions, Summer Comput. Simul. Conf. (2007) 913–920. doi:10.1145/1357910.1358052. 

[40] A.M. Rysanek, R. Choudhary, DELORES – an open-source tool for stochastic prediction of 

occupant services demand, J. Build. Perform. Simul. 8 (2015) 97–118. 

doi:10.1080/19401493.2014.888595. 

[41] W. Parys, D. Saelens, H. Hens, Coupling of dynamic building simulation with stochastic 

modelling of occupant behaviour in offices – a review-based integrated methodology, J. Build. 

Perform. Simul. 4 (2011) 339–358. doi:10.1080/19401493.2010.524711. 

[42] R. Fritsch, A. Kohler, M. Nyg, / ~rd-Ferguson, J.-L. Scartezzini, A Stochastic Model of User 

Regarding Ventilation Behaviour, Build. Environ. 25 (1990) 173–181. doi:10.1016/0360-

1323(90)90030-U. 

[43] I. Richardson, M. Thomson, D. Infield, A high-resolution domestic building occupancy model for 

energy demand simulations, Energy Build. 40 (2008) 1560–1566. 

doi:10.1016/j.enbuild.2008.02.006. 

[44] J. Widén, A.M. Nilsson, E. Wäckelgård, A combined Markov-chain and bottom-up approach to 

modelling of domestic lighting demand, Energy Build. 41 (2009) 1001–1012. 

doi:10.1016/j.enbuild.2009.05.002. 

[45] V. Fabi, R.V. Andersen, S. Corgnati, B.W. Olesen, Occupants’ window opening behaviour: A 

literature review of factors influencing occupant behaviour and models, Build. Environ. 58 (2012) 



188–198. doi:10.1016/j.buildenv.2012.07.009. 

[46] S. D’Oca, T. Hong, A data-mining approach to discover patterns of window opening and closing 

behavior in offices, Build. Environ. 82 (2014) 726–739. doi:10.1016/j.buildenv.2014.10.021. 

[47] A. Mahdavi, F. Tahmasebi, Predicting people’s presence in buildings: An empirically based model 

performance analysis, Energy Build. 86 (2015) 349–355. doi:10.1016/j.enbuild.2014.10.027. 

[48] Y.S. Lee, A.M. Malkawi, Simulating multiple occupant behaviors in buildings: An agent-based 

modeling approach, Energy Build. 69 (2014) 407–416. doi:10.1016/j.enbuild.2013.11.020. 

[49] Q. Wang, G. Augenbroe, J.H. Kim, A framework for meta- Analysis of the role of occupancy 

variables in the energy use of commercial buildings, 14th Int. Conf. IBPSA - Build. Simul. 2015, 

BS 2015, Conf. Proc. (2015) 2278–2285. http://www.scopus.com/inward/record.url?eid=2-s2.0-

84976447996&partnerID=tZOtx3y1. 

[50] Y. Heo, G. Augenbroe, R. Choudhary, Risk analysis of energy-efficiency projects based on 

Bayesian calibration of building energy models, Proc. Build. Simul. 2011 12th Conf. Int. Build. 

Perform. Simul. Assoc. 2002 (2011) 2579–2586. http://ibpsa.org/proceedings/BS2011/P_1799.pdf. 

[51] H.B. Gunay, W. O’Brien, I. Beausoleil-Morrison, Implementation and comparison of existing 

occupant behaviour models in EnergyPlus, J. Build. Perform. Simul. 1493 (2015) 1–46. 

doi:10.1080/19401493.2015.1102969. 

[52] W. Parys, D. Saelens, H. Hens, Impact of Occupant Behaviour on Lighting Energy Use, Build. 

Simul. (2009) 1143–1150. 

[53] F.C. Reinhart, Tutorial on the Use of Daysim Simulations for Sustainable Design, Harvard Des. 

Sch. (2010) 1–114. 

[54] O.G. Santin, Behavioural patterns and user profiles related to energy consumption for heating, 

Energy Build. 43 (2011) 2662–2672. doi:10.1016/j.enbuild.2011.06.024. 

[55] T. Hong, H.-W. Lin, Occupant Behavior: Impact on Energy Use of Private Offices, ASim 2012 - 

1st Asia Conf. Int. Build. Perform. Simul. Assoc. (2013) 12. 

[56] D. Yan, T. Hong, IEA EBC Annex 66 : Definition and Simulation of Occupant Behavior in 

Buildings, 2014. 

[57] ASHRAE, ASHRAE STANDARD 55-2010: Thermal Environmental Conditions for Human 

Occupancy, 2010. 

[58] GSA Public Building Service, Plug load control, 2012. 

http://www.gsa.gov/graphics/pbs/PlugLoadControl_508c.pdf. 

[59] Leviton, Plug Load Control Solutions, 2014. 

http://www.leviton.com/OA_HTML/LevitonSearchResults.jsp?kw=Plug+Load+Control+Solution

s&tbon=&minisite=10251. 

[60] A. Mahdavi, F. Tahmasebi, M. Kayalar, Prediction of plug loads in office buildings: Simplified 

and probabilistic methods, Energy Build. 129 (2016) 322–329. doi:10.1016/j.enbuild.2016.08.022. 

[61] I. Metzger, M. Sheppy, D. Cutler, Reducing Office Plug Loads through Simple and Inexpensive 

Advanced Power Strips, (2013). http://www.nrel.gov/docs/fy13osti/57730.pdf. 

[62] S. Hackel, Advancing the Last Frontier – Reduction of Commercial Plug Loads, (2016) 1–12. 



[63] X. Ren, D. Yan, C. Wang, Air-conditioning usage conditional probability model for residential 

buildings, Build. Environ. 81 (2014) 172–182. doi:10.1016/j.buildenv.2014.06.022. 

[64] L. Wang, S. Greenberg, Window operation and impacts on building energy consumption, Energy 

Build. 92 (2015) 313–321. doi:10.1016/j.enbuild.2015.01.060. 

[65] G.S. Brager, R. De Dear, Climate , Comfort & Natural Ventilation : A new adaptive comfort 

standard for ASHRAE Standard 55, Cent. Built Environmen. (2001) 19. doi:10.1016/S0378-

7788(02)00005-1. 

[66] K. Sun, T. Hong, A Simulation Approach to Estimate Energy Savings Potential of Occupant 

Behavior Measures, Energy Build. (2016) (Article in press). doi:10.1016/j.enbuild.2016.12.010. 

[67] Y. Chen, X. Luo, T. Hong, An Agent-Based Occupancy Simulator for Building Performance 

Simulation, ASHRAE Annu. Conf. (2016). 

[68] X. Luo, Performance Evaluation and Enhancement of a Probabilistic Occupancy Simulation 

Model, Master Thesis, Carnegie Mellon University, 2016. 

[69] U.S. Department of Energy, Commercial Prototype Building Models, (2013). 

https://www.energycodes.gov/development/commercial/prototype_models. 

[70] L.A. Skumatz, S. Economic, C. Hickman, Effective ECM and Equipment Lifetimes in 

Commercial Buildings : Calculation and Analysis, in: ACEEE Summer Study Energy Effic. Build., 

1994. 

[71] D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang, C.O. Pedersen, R.K. 

Strand, R.J. Liesen, D.E. Fisher, M.J. Witte, J. Glazer, EnergyPlus: Creating a new-generation 

building energy simulation program, Energy Build. 33 (2001) 319–331. doi:10.1016/S0378-

7788(00)00114-6. 

[72] ASHRAE, ANSI/ASHRAE/IES Standard 90.1-2001: Energy Standard for Buildings Except Low-

Rise Residential Buildings, 2001. 

[73] ASHRAE, ANSI/ASHRAE/IES Standard 90.1-2013: Energy Standard for Buildings Except Low-

Rise Residential Buildings, 2013. 

[74] T. Hong, K. Sun, R. Zhang, R. Hinokuma, S. Kasahara, Y. Yura, Development and validation of a 

new variable refrigerant flow system model in EnergyPlus, Energy Build. 117 (2016) 399–411. 

doi:10.1016/j.enbuild.2015.09.023. 

[75] X. Yu, D. Yan, K. Sun, T. Hong, D. Zhu, Comparative study of the cooling energy performance of 

variable refrigerant flow systems and variable air volume systems in office buildings, Appl. 

Energy. 183 (2016) 725–736. doi:10.1016/j.apenergy.2016.09.033. 

[76] X. Feng, D. Yan, C. Wang, On the simulation repetition and temporal discretization of stochastic 

occupant behaviour models in building performance simulation, J. Build. Perform. Simul. 0 (2016) 

1–13. doi:10.1080/19401493.2016.1236838. 

[77] S. D’Oca, V. Fabi, S.P. Corgnati, R.K. Andersen, Effect of thermostat and window opening 

occupant behavior models on energy use in homes, Build. Simul. 7 (2014) 683–694. 

doi:10.1007/s12273-014-0191-6. 

 


