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Abstract

Model predictive control (MPC) for buildings is attracting significant attention
in research and industry due to its potential to address a number of challenges
facing the building industry, including energy cost reduction, grid integration,
and occupant connectivity. However, the strategy has not yet been implemented
at any scale, largely due to the significant effort required to configure and cali-
brate the model used in the MPC controller. While many studies have focused
on methods to expedite model configuration and improve model accuracy, few
have studied the impact a wide range of factors have on the accuracy of the
resulting model. In addition, few have continued on to analyze these factors’
impact on MPC controller performance in terms of final operating costs. There-
fore, this study first identifies the practical factors affecting model setup, specif-
ically focusing on the thermal envelope. The seven that are identified are build-
ing design, model structure, model order, data set, data quality, identification
algorithm and initial guesses, and software tool-chain. Then, through a large
number of trials, it analyzes each factor’s influence on model accuracy, focusing
on grey-box models for a single zone building envelope. Finally, this study im-
plements a subset of the models identified with these factor variations in HVAC
MPC controllers, and tests them in simulation of a representative case that aims
to optimally cool a single-zone building with time-varying electricity prices. It
is found that a difference of up to 20% in cooling cost for the cases studied can
occur between the best performing model and the worst performing model. The
primary factors attributing to this were model structure and initial parameter
guesses during parameter estimation of the model.
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identification

1. Introduction

1.1. Background

Model Predictive Control (MPC) of building heating ventilating and air
conditioning (HVAC) systems is a control strategy that can help buildings meet
many forthcoming challenges, including reducing energy consumption and car-5

bon emissions [1], integrating with electric grid and other district-scale thermal
network operation [2], and integrating occupant behavior [3]. It is a strat-
egy that utilizes a model to predict building performance and optimize con-
trol, given information about operating conditions, constraints, and objectives.
While there are many advantages to MPC, many challenges exist as well. A10

critical challenge to be addressed is the implementation cost, particularly labor
time and required expertise of the implementer [4, 5]. Central to implementing
an MPC controller is the setup of the model used for solving the optimal control
problem, including generation and calibration. Studies indicate this task could
take 70-75% of the implementation effort [6]. Therefore, reducing the time and15

expertise required for model setup can improve the scalability of MPC.
There are many factors that contribute to model setup, including the avail-

able implementation tools, model type, model complexity, interaction with the
optimization solver, data availability and quality, calibration method, and the
expertise of the implementer. However, despite a large number of case studies20

indicating that MPC is a viable approach to meeting new control objectives, a
literature review presented in the next section reveals there is a lack of studies
on how practical issues affecting model setup influence model accuracy and, es-
pecially, MPC performance. This information is difficult to infer from the many
case studies in which applications and methods are varied simultaneously. Iden-25

tifying the relationship between variation of a single factor and the outcome of
interest, such as model accuracy and final MPC controller performance, enables
identifying the extent to which each individual factor affects the outcome. Such
study on MPC modeling approaches can help research and industry highlight
the most important considerations, validate robust approaches, and identify30

needs for further study.

1.2. Objectives

There are four main objectives of this paper:

1. Review previous work that identifies and studies the various factors af-
fecting model setup and their influence on model accuracy and MPC35

performance. Contribute to the literature by providing a comprehensive
summary.

2. Study the effect of the identified factors on model accuracy through a
number of simulation trials that apply ranges of each factor independently.
Contribute to the literature by presenting the relative impact of each fac-40

tor.
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3. Study the effect of model accuracy on final MPC controller performance
through a number of simulation trials that use models setup in the previ-
ously described accuracy study. Contribute to the literature by presenting
the relative performance of each model in terms of cost savings relative to45

a conventional controller in the presence of time-varying energy prices, a
common use-case for MPC.

4. Perform and document these studies using publicly available models, data,
and approaches so that additional factors and variations may be studied
and subsequently compared in the future.50

To complete the objectives, the paper is structured as follows. Section 2
presents a literature review and summary of practical factors that affect model
setup. Section 3 presents the methods used to study the effect of these factors on
model accuracy and resulting MPC controller performance. Section 4 presents
the results of model accuracy impacts, while Section 5 presents the results of55

MPC controller performance impacts. Section 6 provides a general discussion
of the results and how they lead to future work. Finally, Section 7 concludes
the paper with a summary and broader takeaways.

2. Practical factors of model setup

Central to the development of models for MPC is the choice of model struc-60

ture. Many have categorized models into three broad categories, which indicate
the level of physics represented in the underlying model equations. From most
physics to least, these are white-box, grey-box, and black-box. Readers are re-
ferred to [7, 8] for more detail, however, generally speaking, white-box models
are building simulation models, black-box models are identified from building65

data, and grey-box, or hybrid, are simplified physical models identified using
building data. The black-box and grey-box models will be referred to here
as MPC-oriented models. The choice of model has profound implications on
the available control optimization algorithm and process for calibration. Con-
trollers using white-box models typically require global, numerical optimization70

algorithms, while those using MPC-oriented models may also allow for local,
gradient-based algorithms, which can be more efficient [9]. White-box model
parameters and equations need to be tuned manually or using auto-calibration
techniques for large systems and are often only suitable for a single building,
while MPC-oriented models can use system identification techniques that could75

be adapted for use on multiple buildings. In [4], it is argued that white-box
models are already developed as part of the building design process and can
be reused for control, commissioning, and fault detection and diagnosis. In ad-
dition, advancements in simulation-based optimization techniques could make
the model calibration and control optimization problems more computationally80

tractable. A number of studies have used white-box building energy simulation
programs for MPC, including EnergyPlus [10] and TRNSYS [11], and their use
in the future may grow. However, after a review of building modeling for use
during operation, [12] still argue that the practical use of a white-box model
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during operation is limited by the effort required to build the model and cal-85

ibrate the large number of parameters. The majority of MPC studies to date
choose to identify MPC-oriented models, citing the efficiency of available con-
trol optimization algorithms and potential adaptability to multiple buildings
and applications [7, 8], leading to a decrease in development and implementa-
tion costs. Despite their initial attractiveness, identifying MPC-oriented models90

comes with many challenges.
The first of these challenges is associated with the complexity of the model,

including the order, or number of states, and lumping. Citing that lower or-
der, yet accurate, models decrease computational requirements for optimization
algorithms and large-scale simulation, many researchers [13, 14] have proposed95

and studied model-order-reduction techniques for buildings. Most recently, [15]
studied the influence of linear time invariant (LTI) state space (SS) model order
reduction on performance of the MPC controller, including resulting heating
cost, thermal comfort, and computation time. The study found that higher
order models greatly improved thermal comfort with slight decreases in heating100

cost and minimal increase in computation time, with a dense solver approach,
indicating their value for an MPC controller. Additionally, higher order models
were needed for buildings with heavier construction. While the study demon-
strates the controller value and computational practicality of higher order mod-
els, it does not factor in the influence of model calibration. Specifically, it,105

and [13, 14], assumed that the underlying white-box model used for the initial
linearization was an accurate representation of the physical building, with pa-
rameters and equations calibrated a priori. This white-box model development
and calibration may be difficult and costly to ensure.

The second challenge of identifying MPC-oriented models is calibrating them110

to real building operation. The calibration accuracy highly depends on the
training data set chosen, which must excite the model dynamics individually
and across the range of operation [8] as well as include the presence of unmea-
sured disturbances such as internal heat gains [16]. These requirements are
often difficult to meet during typical building operation, which follows highly115

repetitive and specific schedules to provide services to occupants. Therefore, [7]
suggests the use of white-box models to create sufficient identification data sets.
However, as indicated before, this again requires that the white-box model used
for identification is an accurate representation of the physical building, which
may be difficult and costly to ensure. Additionally, the model order must be120

sufficient to capture the dynamics of the building. For the commonly used grey-
box resistance-capacitance (RC) models, this includes the number of resistors
and capacitors [17, 18], while in a discrete linear transfer function model it can
be the number of historic states considered [19].

A third challenge of identifying MPC-oriented models is the quality and ac-125

cessibility of the data used for calibration. Issues occur at all stages of data
collection; sensing, transmitting, and storing. Sensors may fail to report val-
ues, be improperly positioned or calibrated, have improper resolution, or be
subject to anomalies, such as shading, animal activities, and electrical fields
[20, 21]. Communication network or power failure may prevent the transmis-130
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sion of data. Database sizing errors, management errors, and software updates
may cause stored data to be lost [22]. From these issues, the final impact on
model calibration can be separated into three causes; missing data, noisy data,
and biased data. In [23], missing data is classified into three categories depend-
ing on whether or not there is a dependency of the missing data on specific data135

values. Many missing values leads to an inability to use a model for system
identification and control optimization, as model simulation requires boundary
condition inputs and system identification requires sufficient measurements to
compare with model outputs. Data collected through building automation sys-
tems are subject to multiple points of failure, which may occur at different points140

in time. For these reasons, it is common practice to impute missing values, es-
pecially when the data does not have chaotic variability between samples. For
example, [24] compared multiple imputation strategies for filling missing out-
side air temperature data. Noise is an undesired modification that the signal
may suffer during data acquisition, transmission, or even storage and can be145

harder to distinguish than missing data. Short-period noise may be caused by
internal elements of the sensor, such as by electrical malfunctions or heat gen-
eration by resistors and transistors, by external electromagnetic fields, or by
other interferences [25]. Long-period noise is mostly generated by the position
of the sensor. One example is if an illuminance sensor is influenced by a shadow150

at particular times every day and another example is if an indoor temperature
sensor is located next to a window or HVAC diffuser. A final issue with data
is its availability in terms of having the correct sensors in the right locations to
take key measurements for the MPC model and final control. An example of
this would be flow measurements for air being delivered to each thermal zone155

to account for the amount of heating or cooling delivered by the HVAC system
to the specific zone.

A fourth challenge of identifying MPC-oriented models is the choice and
implementation of identification algorithm. Black-box models can be trained
with system-identification or other data-driven techniques, see for example [7,160

8]. They can be, though, over-fitted to training data and could potentially
provide unphysical predictions. Grey-box models are arguably less prone to
over-fitting due to the presence of fundamental physics, though the grey-box
parameter estimation problem is often non-convex, prompting some caution
when accepting a given solution without a global search space. Grey-box model165

parameters have been trained with non-linear programming (NLP) [17, 26, 18],
global optimization [27, 28, 29], agent-based optimization [30], linear regression
[31, 32, 19], maximum likelihood estimation (MLE) [33], online estimation [34],
and MPC relevant identification (MRI) [21].

A fifth challenge of identifying MPC-oriented models is the software used to170

implement the model, identification algorithm, and final MPC controller, which
also includes a control optimization algorithm, state estimator, and general data
handling scripts. While most studies described previously fail to make their
software implementation available for others to use, a number of toolboxes have
been made to aid others in the model identification process. [31, 35] rely on175

MATLAB [36], [29] uses the open-source Functional Mock-up Interface (FMI)
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Table 1: Summary of factors influencing model setup for MPC in buildings

Factor Examples

Building Design Envelope construction, HVAC system design
Model Structure White-, grey-, black-box
Model Order Number of states in RC network
Data Set Training period length and data variability
Data Quality Noisy or missing measurement data
Identification Algorithm Batch optimization, online estimation
Software Tool-Chain MATLAB, Python, R, Modelica

Standard [37] with Dakota optimization toolkit [38], and [39] uses the Python
NumPy and SciPy packages [40, 41]. In [17, 42], the open-source Modelica
modeling specification [43] and JModelica Modelica compiler and optimization
toolkit [44] are utilized.180

In summary, we chose to categorize the challenges of generating a model for
MPC into the factors defined in Table 1.

With this number of factors facing an implementer of MPC, and with each
factor largely addressed in individual studies for specific cases, it is difficult to
discern the relative impact of each on final model performance, and ultimately185

MPC controller performance. There are, however, a few studies that have looked
at the relative effect of these factors on MPC-oriented model performance. In
[26], the MPC performance was analyzed for concrete core activation systems
using 2nd and 4th-order grey-box models and five different training data sets,
ranging from inputs created for effective parameter estimation to realistic in-190

puts. MPC performance was evaluated based on thermal discomfort and energy
consumption over a one-year simulation using a TRNSYS [45] emulation model.
Parameter estimation was performed using a MATLAB interface to the ACADO
Toolkit [46], which performs parameter estimation through non-linear program-
ming. The study found that a second-order model excluding solar and internal195

heat gains provides similar MPC performance to a fourth-order model includ-
ing solar and internal heat gains if a proper model error correction scheme is
applied, a similar idea to modeling unmeasured disturbances in [16]. In [33],
the effects of data set length, season, RC model order, noise, and measured in-
puts on two single-zone buildings (insulated and uninsulated), was studied with200

measurements of the test buildings emulated using the IDEAS Modelica library
[47] and parameter estimation performed using MLE in R [48]. The study found
that a 4th-order RC model showed sufficient accuracy to be used as control for
both buildings. The addition of heat flux to building elements as an observation
variable, to internal air temperature, significantly reduced the uncertainty in the205

estimated parameters. Data sets of one, two, and four weeks showed small im-
provements on model accuracy. Noise in measurements generally increased the
uncertainty of estimated parameters, though only biased noise, as opposed to
unbiased noise, impacted the model accuracy. Final MPC control performance
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was not evaluated for any of the cases. [18] tested the identification of first,210

second, and third order RC models using interior-point non-linear optimization
in the MATLAB optimization toolbox on three real case study buildings of dif-
ferent size, type, and heating system. The study found that a 4R2C produced
acceptable model accuracy using zone-average indoor temperature, though final
MPC performance was not evaluated.215

3. Methods

3.1. Software tool-chain

The analysis in this paper uses Modelica [43] and FMI [37] in order to ease
the development of models, properly initialize states during MPC performance
simulation, and compare gradient-based and derivative-free identification algo-220

rithms on the same model implementation. In particular, the JModelica [44]
software is used for compiling models into Functional Mock-up Units (FMUs),
simulating the FMUs, and solving the dynamic optimization problems for pa-
rameter estimation and optimal control, while ModestPy [49] is used to solve
the parameter estimation problem with derivative-free optimization methods225

and FMU simulation. More details on the parameter estimation algorithms are
given in Section 3.4. The analysis is conducted using the open-source MPC
framework, MPCPy, described in [42], commit e31ea84, which implements the
required modeling, simulation, and optimization tools described above with
common interfaces, enabling the setup and execution of the many test cases230

considered.

3.2. Building design

The building envelopes used in this study are those described in the ASHRAE
/ ANSI BESTEST [50] methodology as implemented in the Modelica Buildings
Library v. 5.0.1. [51], referred to hereafter as the emulation models. We use the235

BESTEST building descriptions because they serve as a benchmark model for
building energy simulation for which the dimensions and construction are pub-
licly available and implementations are available in several building simulation
environments. These envelopes consist of a single zone with a window on the
south facade and a constant infiltration mass flow rate. These single-zone bench-240

mark models also prevent inclusion of additional confounding factors associated
with multi-zone modeling. Our tests analyze two variants of the BESTEST
envelope, the lightweight Case 600 (LW) and heavyweight Case 900 (HW). The
difference between the LW and HW cases is the construction. The exterior
walls and roof of the LW case are constructed of plaster board and fiberglass245

insulation, while those of the HW case are constructed of concrete block and
foam insulation. The floor of the LW case is timber construction, while the floor
of the HW case is concrete slab. The EPW weather file DRYCOLD.epw, also
publicly available as part of the BESTEST methodology, is used for all tests.
The data used for the trials presented later in this study are shown in Figure 1.250

For more information about the BESTEST building description, see [50].
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Figure 1: (a) Outdoor temperature Tamb and (b) horizontal global irradiance Hglo used in
the study time period from the ”DRYCOLD.epw”.

In addition to the envelope, our emulation models utilize a simple HVAC sys-
tem, consisting of a proportional dual-setpoint feedback controller that controls
room temperature according heating and cooling setpoints, heater with constant
efficiency of 0.99, and cooler with a constant coefficient of performance (COP)255

of 3.0. The heater and cooler add or extract energy from the room air mass,
which is assumed to be well-mixed. As this study focuses on the identification
of the room model, the HVAC model is kept simple in order to not compound
the complexity of the whole building model. In this fashion, the effects of the
room model and HVAC system model on MPC performance is separated.260

The operation of the building represents a typical office, with the following
load assumptions coming from [52]. The operating hours of the building are as-
sumed to be from 8 AM to 6 PM. The heat gains for office equipment is assumed
to be 5.4 W/m2 with 30% radiative and six workstations per 92.9 m2, which
corresponds to a light office density. The heat gain from lighting is assumed to265

be 11.8 W/m2 with 58% radiative, corresponding to an open office plan. The
heat gain from people include both sensible and latent, affecting room air tem-
perature and humidity respectively. They are assumed to be 73.3 W sensible
with 60% radiative and 58.6 W latent, corresponding to moderate office work.
With six workstations per 92.9 m2 and a zone floor area of 48 m2, there are270

three people assumed to be in the zone. In total, the radiative heat gain is
11.2 W/m2, the convective heat gain is 10.6 W/m2, and the latent heat gain is
3.67 W/m2. These heat gains are active during the occupied period and zero
during unoccupied periods. The heating and cooling occupied and unoccupied
setpoint temperatures are (21 ◦C, 16 ◦C) and (24 ◦C, 29 ◦C) respectively.275
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3.3. Model structure and order

Three models are considered to analyze the effect of model complexity, each
a variant of an RC network model commonly found in literature described previ-
ously. The models are presented in Figure 2 and gradually increase the number
of capacitive and resistive components in order to account for thermal mass and280

resistances within the room, walls, floor, and roof with increasing accuracy. The
models are R1C1, R3C3, and R5C4. For the R5C4 models, the extra resistance
is in parallel with the wall in order to account for infiltration and window con-
duction gains separately. The inputs to the models are outside air temperature
Tamb [K], global horizontal irradiance Hglo [W/m2], radiative and convective285

internal heat gains qocc,r, qocc,c [W/m2], and HVAC heating (qh) and cooling
(qc) power qhvac = qh − qc [W]. The output of the models are the temperature
of the capacitance representing the zone air Ti [K]. For the R1C1 model, this
is the only capacitance. The model parameters to be estimated are each of the
resistance and capacitance values of the model, as well as gain parameters that290

scale the total global horizontal irradiance incident on the floor, α, and exterior
walls (for R3C3 and R5C4), αe. These solar irradiance parameters have the
units m2, although represent a number of factors, including sun-exposed areas,
absorptivity and transmissivity factors, and orientations. The wall and floor
areas are assumed known, meaning the resistance and capacitance parameters295

to be estimated have the units of m2K/W and J/(m2K) respectively, except for
the capacitance representing the air volume, which has units of J/K.

Figure 2: RC thermal network models considered in the study: a) R1C1, b) R3C3, c) R5C4.

3.4. Identification algorithm

A common formulation of the model identification problem as an optimiza-
tion problem is defined by Equations 1-4:300
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min
θ∈Rn

J =

∫ tf

ts

(y − ŷ)2dt (1)

s.t.
f(ẋ,x,u,ω,θ) = 0 (2)

x(ts) = x0 (3)

θli ≤ θi ≤ θui ∀i ∈ {1, ..., n} (4)

Here, the model dynamics are represented by f , which is twice-differentiable,
with parameter vector θ of n real-valued numbers. Each individual parameter305

is indexed by i ∈ {1, ..., n}. The state vector is x and its derivative with respect
to time is ẋ. The control vector is u, which contains signals for the heater
and cooler. The disturbances of weather and internal loads are contained in
ω. The minimum and maximum values for any given parameter are θli and θui
respectively. The period of training is from a start time, ts, to a final time, tf .310

All variables are real-valued functions of time except θ. The model output, y,
in this study is the zone air temperature, with its measured value being ŷ.

Three identification algorithms, which represent a common subset of the
approaches found in the literature, are analyzed to solve this problem along
with two sets of parameters for each model, represented by an initial guess,315

minimum, and maximum. The first identification algorithm is implemented
using JModelica, which uses the model and optimization equations defined in
Optimica [53] with a direct collocation [54] discretization method to setup an
NLP, using CasADi for algorithmic differentiation [55], which is then solved
by IPOPT [56] with the MA27 linear solver [57]. The objective of the NLP is320

to minimize the sum of the squared errors between measured and modeled air
temperature at each discretization point, subject to the minimum and maximum
constraints on parameter values. In this study, the measured values are the
emulated values. Overall, this method represents an NLP approach to find
the local minimum of the parameter estimation problem, which has been used325

previously in [17, 26, 18], and is referred to from here on as the NLP method.
Due to the number of simulation cases to be processed in this study, and after
experienced was gained in determining how long it took a solution to converge,
the maximum CPU time per optimization was constrained to 150s.

The second identification algorithm is implemented using ModestPy [49],330

which uses an FMU representation of the model to simulate the model within
a hybrid Genetic Algorithm-Pattern Search approach. The algorithm begins by
using a Genetic Algorithm (GA) to explore the solution space (global search),
and uses the Generalized Pattern Search algorithm to converge to a minimum
(local search). The implemented hybrid approach is similar to the Particle335

Swarm optimization combined with Hooke-Jeeves algorithm available in GenOpt
[58]. Note that the FMU is generated from the same Modelica equations used to
generate the Optimica code for the gradient-based JModelica approach in order
to ensure the same dynamic model is used. Overall, the method represents
a global optimization approach to parameter estimation, which has been used340
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previously in [27, 28, 29]. This method is referred to from here on as the GA+PS
method.

The third algorithm considered results from the acknowledgement that the
NLP approach is a local search method and the parameter estimation problem
may be non-convex. This approach applies a global start algorithm to the NLP345

approach described previously. Here, Latin Hypercube Sampling is used to
identify a number of initial guesses within the allowed parameter space. Then,
the NLP approach is run for each of the initial guesses and the results with the
minimum objective value is chosen as the final result. The chosen number of
initial guesses for this study is 20. This method is referred to from here on as350

the NLP+LHS method.
Finally, for each identification algorithm, two parameter sets are considered.

One parameter set has wide minimum and maximum values, representing a case
where the implementer does not have a good guess as to what the parameters
should be. A second set has minimum and maximum values set according to355

a range that limits the parameters to physically plausible values, representing
a case where the implementer has a good idea of what the parameters should
be from experience or access to building information. Both parameter sets are
shown in Table 2

All computations that were carried out for which computational time is360

reported were performed on a Linux virtual machine (Ubuntu 16.04), hosted on
a workstation running on two Intel E5-2630 v4 processors (20 cores in total),
192 GB RAM, with SSD disks for system data (host and guests) and HDD
disks for user data (guests). The workstation, however, hosts multiple virtual
machines, and the resources are shared and scaled dynamically. Each simulation365

case was analyzed on a single core, but several cases were run simultaneously.
Since the resources of the computer are shared dynamically depending on other
simultaneous users, the reported CPU time for each algorithm should be taken
as a general means of comparison, rather than exact expectations of computation
time with the stated resources. With thousands of cases run, the authors expect370

that any random fluctuation in computation performance occurred in all cases
and do not bias the results towards any.

3.5. Training data length

The analysis of training data length is conducted for a number of consecutive
days from May 15 to May 30. For each day, the training data are collected for375

a different number of preceding days, n = 1, 2, 3, 5, 7, 10, 14, 21. Also, for each
day and for each number of preceding days, two validation periods are assessed:
1) one following day and 2) seven following days.

3.6. Noisy data

In this study, noise is added to sensor data for the outside air temperature,380

solar irradiance, and zone air temperature during training periods, then the
noisy data is used to estimate the models of the parameter, and then the model
is used to produce new data for validation during the validation period. No noise
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Table 2: Parameter sets (wide bounds, narrow bounds)

Model Parameter Unit
Wide bounds Narrow bounds

Lower Upper Lower Upper

R1C1 R m2K/W 0.001 100 1 10
C J/K 1 5e7 1e4 15e6
α m2 0 100 0 10

R3C3 R m2K/W 0.001 100 0.1 3
C J/K 1 5e7 1e4 5e6
α m2 0 100 0 10
αe m2 0 100 0 10
Ri m2K/W 0.001 100 0.01 3
Ci J/(m2K) 1 1e7 200 4e5
Re m2K/W 0.001 100 0.1 10
Ce J/(m2K) 1 1e7 200 4e5

R5C4 R m2K/W 0.001 100 0.1 3
C J/K 1 5e7 1e5 5e6
α m2 0 100 0 10
αe m2 0 100 0 10
Ri m2K/W 0.001 100 0.01 3
Ci J/(m2K) 1 1e7 200 4e5
Re m2K/W 0.001 100 0.1 5
Ce J/(m2K) 1 1e7 200 2e5
Rem m2K/W 0.001 100 0.1 5
Cem J/(m2K) 1 1e7 200 2e5
Rinf m2K/W 0.001 100 0.1 10

is added to validation data. To add the noise, a random value is drawn from
a Gaussian distribution with a mean of zero and particular standard deviation385

[59] and added to particular data points of the chosen sensor according to the
period of the noise. The value is drawn independently for each noisy data point.
The study is carried out for various standard deviations, representing noise
magnitude, and a number of noise periods for each of the three variables. For
noise applied to temperature data, standard deviations ranging from 0 (clean)390

to 10 ◦C are applied [14], while for solar irradiance data, standard deviations
ranging from 0 to 500 W/m2 are applied. A limit is applied to keep solar
irradiance values greater than or equal to zero after noise application. As the
sensor period is assumed to be 1 hour, noise periods varying from 1 hour to
1 day are applied, with the noise lasting for the full hour. Note that noise395

periods higher than the sensor period, which may represent electromagnetic
interference, are not detected at a higher rate than the sensor period. Noise
periods on the order of one day can represent daily occurring phenomenon such
as sudden shadows or daylight on a sensor. Finally, since the noise values are

12



generated randomly, each case is tested 10 times to obtain a distribution of400

results.

3.7. Missing data

Two aspects of missing data are studied for each of the three sensors for
outside air temperature, solar irradiation, and zone air temperature. A first
aspect has to do with the amount of missing data, and is characterized by two405

variables; the percent of total missing data and the length of each missing data
gap. A second aspect has to do with strategies for filling in the missing data
for use in the parameter estimation problem. Four strategies were tested. First,
the strategy of replacing the missing data with zeros. While this is likely not a
strategy to be chosen intentionally by an implementer, it represents a possible410

default configuration on data collection and management systems. The second
strategy is filling missing data with the last known value, also known as forward
padding. This is a simple strategy that fills data with a more reasonable value
than zero. The third strategy is linear interpolation, where the last and next
valid values are linearly interpolated to fill the missing data in between. Finally,415

the fourth strategy is a more advanced technique that replaces missing data with
the average of values from the previous two days and next two days at the same
time steps. If some of this data are also not available, the average of whatever
data are available is taken. If none of this data are available for averaging, the
next valid value is used. Since the actual data points selected to be missing420

are chosen randomly according to the percent of total missing data and length
of missing data gaps, each case is tested 10 times to obtain a distribution of
results.

3.8. Control optimization

A simulation of the MPC controller is used to evaluate the influence of model425

accuracy on performance for a range of cases as presented in the previous sec-
tions. In this way, the overall effect of model accuracy on MPC performance
can be evaluated as well as the relative effects of the previously described influ-
ential factors. MPC provides benefits when there are incentives to shift load in
time, such as to improve HVAC equipment efficiency according to the changing430

outside air temperature or reduce electricity bill costs according to dynamic
pricing schemes. In this study, since a detailed model of the HVAC system is
not included, we implement a simple dynamic electricity price, where the price
is five times higher from 2-6pm than all other hours. Such a price increase is
reasonable based on realized differentials in both wholesale market prices (see435

for example the PJM Interconnection hourly real-time locational marginal price
from September 9-23, 2018 [60] as well as current commercial customer Time-
Of-Use (TOU) retail tariffs (see for example the E19 Schedule for PG&E in
California [61]). This will incentivize a shift in HVAC load away from these
hours and utilization of thermal mass present in the structure of the building.440

Therefore, the control optimization problem is defined by Equations 5-11:
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min
uc,uh

J =

∫ tf

ts

πePdt (5)

s.t.
f(ẋ,x,u,ω,θ) = 0 (6)

x(ts) = x0 (7)

P = uc
Qc

COP
+ uh

Qh

η
(8)

445

Th ≤ Ti ≤ Tc (9)

0 ≤ uc ≤ 1 (10)

0 ≤ uh ≤ 1 (11)

Here, uc is the cooling control signal and uh is the heating control signal,
contained in u. The model dynamics for a given model are represented by f ,
which is twice-differentiable, with parameter vector θ. The model dynamics in450

Equation 6 are the same as Equation 2. The state vector is x, within which is
Ti, the zone internal air temperature. The disturbances of weather and internal
loads are contained in ω. The upper and lower temperature limits are set to
the cooling and heating setpoints respectively Tc and Th. P is the HVAC power
consumption, Qc and Qh are the maximum cooling and heating capacities and455

COP and η are the cooling coefficient of performance and heating efficiency
respectively. Finally, πe is the electricity price. All variables are real-valued
functions of time except θi, COP , and η, which are constant for the problem
time horizon. The time period ts to tf is the problem time horizon.

For each case, the model and set of identified parameters are used in the460

optimization, represented by f with θ in Equation 6, to produce an optimal
control solution for a given time horizon. The solution is then implemented in
the emulator model by setting the heating and cooling temperature setpoints
equal to the temperature trajectory in the optimal solution for the control step
of the simulation. At the end of the control step, a state estimator is used465

to estimate the states of control model before the process is repeated for the
next control step and until the end of the simulation time. For each control
step optimization, the result of the previous control step optimization is used
as an initial guess. In practice, an envelope around the optimal temperature
trajectory will likely be required for supervisory control implementation. How-470

ever, in this simulated case study, good results are obtained with zero deadband
and the tuning of this deadband would add additional variability in the final
performance of the MPC controller. While various methods exist for state esti-
mation, a simple method was used for this study, where the measured states are
set to the corresponding emulation model measurements and the unmeasured475

states are set to the values of the corresponding control step from the previous
control step optimization. The only measured state for this study is the zone
air temperature, and the unmeasured states correspond to the temperatures of
extra capacitances representing internal and wall thermal mass. Finally, for this
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study, the optimization horizon is 24 hours, the control step is one hour, and480

each simulation occurs for one week. The optimization problem is implemented
and solved using the open-source platform for MPC in buildings MPCPy [42].

It is worth a note on the choice of optimal control implementation to be
as temperature setpoints for the HVAC controller, rather than open-loop injec-
tion of optimal heating and cooling signals. The former we call the supervisory485

method and the latter the open-loop method. From a research perspective, the
performance of the open-loop method could be evaluated by the resulting objec-
tive cost and the magnitude of constraint violations in the emulator model. In
this case, this would be in the form of thermal comfort violations, likely requiring
both maximum violation over the time of simulation in [K] and total discomfort490

in [K-h]. In total, this leads to performance evaluation requiring the use of three
metrics, for which the relative importance can be disputed. In contrast, the su-
pervisory method can have an added feature that the conventional temperature
setpoints are used as absolute boundaries of setpoint implementation, ensuring
no more thermal discomfort than the conventional controller. In this case, under495

the assumption of sufficient capacity, any model error that would cause thermal
comfort violation in the open-loop method instead leads to increased objective
cost (in the form of unanticipated additional heating or cooling) to maintain
thermal comfort in the supervisory case. Therefore, the supervisory method
collapses the three performance metrics required in the open-loop method into500

a single performance metric, the objective cost. This makes it easier to evaluate
the performance of a given case relative to others. Additionally, from a practical
perspective, it is often easier to implement the optimal control as supervisory
setpoints to a BMS system that already exposes available setpoints, rather than
directly control a number of local actuators. Finally, by applying the absolute505

boundary conditions to the supervisory setpoints, building occupants and facil-
ity operators can be assured that the conventional service of the building will
not be compromised.

A final important consideration is how to initialize the optimization for each
control step, including the handling of initial time constraint violation. In some510

cases, the resulting initial state of the zone air in the model may violate con-
straints, leading to an infeasible optimization problem. To handle this, the
constraints of the optimization are expanded by a small envelope around this
initial state.

4. Impact of factors on model accuracy515

This section presents the results of analyzing the impact of the factors pre-
sented in Table 1 of Section 2 on model accuracy, according to the methods
described in Section 3. The analysis is split into two main components. The
first component studies the impacts of building design, model order, identifica-
tion algorithm, and training data length, while the second component uses a520

subset of the first component cases to study the impact of noisy and missing
data. The accuracy indicator used in this study is inside air temperature Root
Mean Square Error (RMSE), which is the most common indicator found in the
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Table 3: Summary of cases for the Component 1 analysis

Category Cases Description

Building Design 2 Lightweight (LW), Heavyweight (HW)
Model Order 3 R1C1, R3C3, R5C4
Identification Algorithm 3 NLP, NLP+LHS, GA+PS
Parameter Bounds 2 Wide Bounds, Narrow Bounds
Training Data Length 8 1, 2, 3, 5, 7, 10, 14, 21 Days
Beginning of Validation 15 May 15-30

literature and is a single variable that can be used to represent the accuracy of
each model when comparing MPC performance in Section 5.525

4.1. Building design, model order, identification algorithm, and training data
length

Component 1 of the analysis presents the impacts of building design, model
order, identification algorithm, and training data length on resulting model
accuracy according to the methods described in Sections 3.2-3.5. The variation530

of cases is summarized in Table 3 and leads to a total of 4320 model setup
permutations considered. Due to a significant number of outliers in the results,
which result from convergence to local minima during model identification, we
focus mainly on the analysis of medians instead of means. However, the spread of
data are discussed and presented as well in some cases. The RMSE is calculated535

for the training period as well as two validation periods of 1-day and 7-day
lengths.

First, Figure 3 presents the median RMSE of all cases by building type and
model order. We can notice that the control models were more accurate for the
heavyweight building than the lightweight building. This may be attributed to540

the dampening of model errors associated with fast dynamics by the increased
thermal mass in the heavyweight building compared to the lightweight building.
For both types of buildings, the R3C3 model was most accurate for all three of
training, 1-day, and 7-day validation periods. In addition, for the lightweight
building, the R5C4 model had lower training error than the R1C1 model, but545

higher 1-day and 7-day validation error, indicating the tendency of the R5C4
model to be overfitted to training data.

Next, Figures 4-5 present the performance of each identification algorithm
and parameter set. Figure 4 shows the distributions of training, 1-day vali-
dation, and 7-day validation RMSEs for all cases by identification algorithm550

and parameter set, while Figure 5 presents the mean computational time for
all cases by identification algorithm and parameter set. According to the data
in Figure 4, NLP+LHS outperforms or is similar to NLP in all of the analyzed
cases. NLP+LHS particularly outperforms NLP for the parameter set with wide
bounds, and models with higher orders, with a difference in median RMSE rang-555

ing from 0.3 to 1.0 ◦C depending on the case. This highlights the non-convexity
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Figure 3: Median RMSE [◦C] by building type (HW and LW) and RC model type.

of the parameter estimation problem, particularly for higher-order models. The
NLP+LHS also outperforms or is similar to the GA+PS method, again in par-
ticular with cases of wide bound parameter sets and models with higher orders,
with a difference in median RMSE of up to 1.2 ◦C. The worse performance of560

GA+PS on wide bound parameter sets and higher-order models was likely due
to the chosen evolution settings. As shown in Figure 5, the computational time
of GA+PS is lower for wide bound parameter sets than for narrow bound (con-
versely to NLP+LHS), meaning that it switches too quickly to the local search.
We believe better results could be achieved by extending computational time565

of the GA+PS, for the GA global search portion, however, due to the signifi-
cant number of cases to run, and successful results with NLP+LHS, we decided
not to further tune GA+PS. In summary, with respect to identification algo-
rithms and parameter sets, when dealing with twice-differentiable models where
the directional derivatives with respect to the parameters being estimated are570

available (as in this study), the NLP+LHS approach provides the best balance
between the computational demand and accuracy. Meanwhile, an advantage of
the GA+PS algorithm not studied any further here is the ability to be applied
to discontinuous functions.

The parameter bounds had a significant effect on the estimation results.575

The median training and validation errors were lower in all cases with narrow
bounds, although the R1C1 model performed similarly with the NLP algorithm
for both parameter sets, according to median RMSEs. However, Figure 6 shows
that even the R1C1 estimation problem is not trivial to solve, as even with the
NLP solver different parameters were obtained depending on the exact case,580

indicating possible non-convexity of the problem. In the cases of R3C3 and
R5C4 model orders, the cases with narrow parameter sets outperformed those
with wider parameter sets by differences in median RMSEs of 0.86 and 1.72 ◦C
respectively. In general, the R3C3 model presented the most attractive balance
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Figure 4: RMSE box (quartiles) and whisker (1st/3rd quartile +/- 1.5 IQR) distribution with
outliers by estimation method (NLP, NLP+LHS, GA+PS) and parameter set (wide bounds,
narrow bounds).

between estimation difficulty and model accuracy, performing best on both wide585

and narrow parameter bounds.
In addition, the results indicate that parameter sets impact not only the

median model accuracy, but also the spread of the results. In the case of NLP
with wide parameter sets, for all validation cases, most of the errors are below
8 ◦C, but outliers have errors up to 400 ◦C (not shown in Figure 4, as it is zoomed590

to 0-25 ◦C). For GA+PS, most of the errors are below 5 ◦C, but outliers have
errors up to 12,000 ◦C. The large errors (over 100 ◦C) yielded by the outliers
appear only in the cases with wide parameter bounds, and are due to extremely
overestimated solar gains, underestimated thermal mass of the building, and
overestimated thermal resistance of external walls. Since the considered RC595

models do not include separate resistors representing the window, the excessive
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Figure 5: Mean computation time by estimation method (NLP,NLP+LHS, GA+PS) and
parameter set (narrow bound, wide bound).

heat gains have no means of dissipating to the ambient environment. In practice,
and as mentioned previously, additional tuning of the GA+PS can help rectify
the outliers. Meanwhile, NLP+LHS yielded all RMSEs below 13 ◦C. It is worth
noting for the narrow parameter sets that, while there are minimal outliers for600

training data in the cases using NLP+LHS and GA+PS, there still exists several
validation outliers, especially for 7-day validation.

Finally, Figure 7 presents the median RMSE for all cases by training period
length. The results indicate that the optimum length of training depends on the
considered length of the validation period. In the case of 1-day validation, the605

best results were achieved with training on just the previous day and continues
to decrease as more training days are added. In the case of 7-day validation, the
optimum length of the training period was between 3-7 days. Training period
RMSE increases with training length because with each additional training day,
the parameters are estimated for an average day instead of any one particular610

day. Similar is true for 1-day validation when conditions from one day to the
next tend to be similar. 7-day RMSE decreases at first with training length
because with each additional training day, the parameters are estimated over a
wider range of conditions, which may be more similar to the validation period.
However, the RMSE begins increasing after a certain point for a similar reason615

as why training period and 1-day validation RMSE increases. The training
period data becomes too general for the specific validation period. This data
suggests that, when using grey-box models, an adaptive model identification
framework, where the model parameters are estimated often using a few days
of previous data, would produce the most accurate MPC-oriented models for620

MPC control.
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4.2. Noise and missing data

Component 2 of the analysis presents the impacts of noisy and missing data
on resulting model accuracy according to the methods described in Sections 3.6-
3.7. The variation of cases is summarized in Table 4 and leads to a total of 5760625

model setup permutations considered. Each variation was performed on a single
case of the Component 1 analysis: the use of the NLP identification algorithm,
narrow parameter bounds, seven day training length starting on May 15, and
7-Day validation. With reference to the maginitude of noise tested, we note
that in the clean case, the standard deviation for outside dry bulb temperature630

is 5.51 ◦C and global horizontal radiation is 362 W/m2. Zone temperature
standard deviation is 3.60 ◦C for the LW building and 1.44 ◦C for the HW
building.

Figure 8 presents the results for noise applied at various periods and mag-
nitudes for each of the three data variables and building cases. Clean cases635
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Figure 7: Median RMSE for all cases by training period length.

Table 4: Summary of cases for the Component 2 analysis.

Category Cases Description

Building Design 2 Lightweight (LW), Heavyweight (HW)
Model Order 1 R3C3
Affected Data Variables 3 Tamb, Hglo, Ti
Noise Period 4 1 Hour, 4 Hours, 12 Hours, 1 Day
Noise Magnitude 4 0,2,5,10 ◦C and 0,100,200,500 W/m2

Missing Data Percent 4 0%, 25%, 50%, 75%
Missing Data Gap Length 5 1 hour, 3 hours, 10 hours, 15 hours, 1 day
Missing Data Correction 4 Zeros, Interpolate, Last value, Average

without any noise are represented by a grey line in the Figure. Outside dry
bulb temperature noise has the least effect on RMSE, especially on the HW
building, due to the exterior wall thermal mass acting as a filter. Meanwhile,
noise in the solar radiation, due to the window transmitting heat gain directly
to the interior mass, and zone air temperature measurement have greater effects640

on RMSE. We observe that the estimated total thermal mass in the models, by
sum of all thermal capacitances, increases as noise standard deviation increases,
as the estimation algorithm attenuates the impact of the noisy signal on inside
air temperature. This would lead to an overestimation of thermal mass. Finally,
we observe that in some cases, adding noise can improve validation RMSE com-645

pared to the clean case. Indeed, adding some noise to training data has been
used as a technique to avoid over-fitting in data-intensive analytics, such as
machine learning [62].

Figure 9 presents the results for missing data studied at varying degrees with
different cleaning strategies, as described in Section 3.7. Clean cases without650
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e) Noise in zone temperature, LW, R3C3
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b) Noise in dry bulb temperature, HW, R3C3
Noise Standard deviation

0 °C
2°C
5°C
10°C

1 h 4 h 12 h 1 d
Noise period

0

2

4

6

8

10

12

14

RM
SE

 [°
C]

d) Noise in global horizontal radiation, HW, R3C3
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Figure 8: 7-Day validation RMSE boxes (quartiles) and whiskers (1st/3rd quartile +/- 1.5
IQR) distributions with outliers of the impact of gaussian white noise applied to dry bulb
temperature (row 1), horizontal radiation (row 2) and zone temperature (row 3) applied to
LW (column 1) and HW (column 2) buildings with NLP estimation method, narrow bound
parameter set, and an R3C3 model.

any missing data are represented by a grey line in the Figure. It was found that
the percent of missing data and cleaning strategy had significantly more impact
on the accuracy of the models than length of gaps of missing data. Therefore,
results are shown including all gap length cases. From the Figure, it is clear
that replacing missing data with a zero is the worst strategy to use, particularly655

at high rates of missing data and for the zone temperature measurement. While
this is not a strategy likely employed on purpose by an implementer, it may be
a default setting on data collection and processing tools and is therefore worth
ensuring another strategy is used. Overall, the average strategy works the best,
while the interpolation and last valid value strategies seem to work reasonably660

well for all cases, with the interpolation strategy performing slightly better in
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many of the cases. The average strategy is a particularly good strategy for
zone temperature in the LW building, even for more than 50% missing data,
due to the consistent day-to-day operation at the cooling or heating setpoints.
Meanwhile, for the HW building, which spends more time in free-float, the665

average strategy does not perform as well due to the variability in day-to-day
temperature profiles. The average or interpolation strategies can work well for
low percentages of missing data, underlining the importance of keeping missing
data to less than 25%.
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e) Missing data in zone temperature, LW, R3C3
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b) Missing data in dry bulb temperature, HW, R3C3
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d) Missing data in global horizontal radiation, HW, R3C3
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Figure 9: 7-Day validation RMSE boxes (quartiles) and whiskers (1st/3rd quartile +/- 1.5
IQR) distributions with outliers of the impact of missing data applied to dry bulb temperature
(row 1), horizontal radiation (row 2) and zone temperature (row 3) applied to LW (column
1) and HW (column 2) buildings with NLP estimation method, narrow bound parameter set,
and an R3C3 model.
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Table 5: Summary of cases for the controller performance analysis.

Category Cases Description

Building Design 2 Lightweight (LW), Heavyweight (HW)
Model Order 3 R1C1, R3C3, R5C4
Identification Algorithm 1 NLP+LHS
Parameter Bounds 2 Wide Bounds, Narrow Bounds
Training Data Length 3 1, 3, 7 Days
Beginning of Validation Date 3 May 15, 20, 25
Electricity Prices 1 Five times higher from 2-6pm

5. Impacts on controller performance670

This section analyzes the results of simulating the MPC controller using
many of the models that have been identified through the previous studies as
described in Section 3.8. In this way, we can compare the performance of the
resulting MPC controllers in terms of operating cost, the minimization of which
is the objective of the control optimization, as a function of the accuracy of675

the model that is used as reported during the identification process. Since the
simulation occurs for one week for each controller, the 7-day validation RMSE
is used as a proxy of model accuracy, as was done in the previous analyses
in this paper and often considered in the literature. The cases considered in
this analysis are pulled from the Component 1 analysis in this study and are680

detailed in Table 5. In summary, they are a subset of models that represent a
cross section of model setup methods, and do not include the noisy or missing
data models. There are 108 total cases represented.

Figure 10 summarizes the results of the analysis. The y-axis is the cost of
HVAC operation with the MPC controller as a percent of the conventional feed-685

back controller for the same week of simulation, while the x-axis is the seven-day
validation RMSE for the model setup with the same end of training/beginning
of validation date. Figure 10(a) presents the results for the LW building, while
10(b) presents the results for the HW building. Each color represents a differ-
ent starting day of the simulation week (May 15: red, May 20: green, May 25:690

blue), each shape represents a different model structure (R1C1: circle, R3C3:
triangle, R5C4: square), and each filling represents a different parameter bound
(wide bounds: white, narrow bounds: filled). Readers are referred to Figure 1
for outside conditions. To promote clarity, training data length is not differen-
tiated. Therefore, there are three of any given symbol on the Figures. Finally,695

some cases had virtually the same performance, meaning their points overlap
and some may be hidden.

The first thing to note in Figure 10 is that greater cost savings are achieved
with the HW building than with the LW building. Less thermal mass in the LW
case leaves little ability to shift load, and little benefit provided by the MPC700

controller. Meanwhile, the thermal mass of the HW building enables shifting of
load, leading to benefit of the MPC controller to save cost over the conventional
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Figure 10: MPC performance vs. accuracy for the LW building (a) and HW building (b)
including three starting days (May 15: red, May 20: green, May 25: blue), three model
variants (R1C1: circle, R3C3: triangle, R5C4: square), and two parameter sets (wide bounds:
white, narrow bounds: filled), and three learning period lengths (1 day, 3 days, 7 days: not
differentiated).

controller. In the best case for each week tested, these savings are approxi-
mately 9%. It is important to consider that the relative performance of an
MPC controller, and thereby deemed savings, compared to a more conventional705

controller is highly dependent on an applications incentive and ability to shift
load, as well as the specific setup of the MPC controller. In this study, the per-
formance of the MPC controllers relative to the conventional controller could
be adjusted by adding or removing thermal mass or energy storage elements
to the building case as well as providing more or less incentive to shift load710

through the diurnal price disparity or additional objectives like peak demand
costs. It could also be adjusted with more fine tuning on the MPC controller
for each individual case, for instance the length of the control step and the
method of state estimation. MPC controllers that, in the particular situation
shown here, do not appear to save on energy costs may actually still save on715

energy costs in situations with stronger incentives or more finely tuned MPC
controllers. However, as indicated in Section 1 of this paper, it is not in the
scope to consider these additional controller variations. Instead, we focus here
on the model setup. These other variations should be the subject of future work
to further identify minimum building design and application requirements for720

MPC to be effective. Therefore, the remainder of this analysis will focus on the
performance of the MPC controllers relative to each other, which indeed is the
primary purpose of this study. In particular, we focus on the HW case, where
sufficient thermal mass is present to take advantage of the use of MPC.

In general, the data indicates that the strongest predictor of MPC perfor-725

mance is model structure and parameter set. As can be seen in Figure 10(b), all
of the points that represent controllers that performed as well as or worse than
the conventional are those cases that used the R1C1 model and/or a wide pa-
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rameter bound set for estimation. Otherwise, for the models that used a model
structure with a complexity of at least three states and a narrow parameter730

bound, savings of 5-9% were achieved. This can be seen in the Figure 10(b) by
the group of points clustered in this savings range and with an RMSE ranging
from 0.5 to 2 ◦C. Notice, however, that RMSE is a better predictor for per-
formance for the week of May 15, which experiences the highest variation in
RMSE, and the worst for the week of May 25. This indicates that a relatively735

high model accuracy, in terms of RMSE, could be necessary for good MPC
controller performance, but not sufficient.

Figure 11 shows the time series data for three cases for the week of May
25. The Figure shows zone temperature and HVAC cooling power consumption
for the emulator under conventional control (blue) and MPC (red). Note that740

no heating is used in any of the cases and is, therefore, omitted from presenta-
tion. In addition, the optimal predicted temperature and HVAC performance
produced by the MPC controller for one specific hour, 24, is also shown (black).
The first case, Figure 11(a), shows the best performing controller model, us-
ing an R3C3 model with narrow parameter sets and one day of training data,745

which saved approximately 9% energy cost compared to the conventional. This
controller shifts cooling to the morning hours in order to reduce cooling during
the periods of high prices. Overall, more cooling energy is used than the con-
ventional control to generally reduce the need to cool during high price periods,
indicated by consistently lower zone temperatures and greater area under the750

HVAC power trajectory. This is a natural consequence of minimizing energy
cost and not energy alone, as is discussed elsewhere [63, 32].

The second case Figure 11(b) shows a poorly performing controller, using an
R5C4 model with wide parameter sets and seven days of training data, which
had an energy cost approximately 10% more than the conventional. This opti-755

mization solver in this controller often finished with the detection of an infeasible
problem, perhaps due to parameters that are over-trained to the training op-
erating conditions and unphysical temperature response predictions to cooling
and heating control signals during optimization iterations. The returned tem-
perature trajectory was, therefore, not the optimal for the building.760

Finally, the third case Figure 11(c) shows a poorly performing controller,
using an R1C1 model with narrow parameters sets and one day of training
data, which had an energy cost approximately 5% more than the conventional.
Here, the controller suffered from an inability to correctly predict the effect
of thermal mass. Lumping all of the thermal mass into a single state did not765

allow for the split of fast and slow dynamics present in the air volume and
structure of the building. As the HVAC system was assumed to provide heating
and cooling directly to the air, the resulting lumping of slow and fast dynamics
led to an over-prediction of the effect of thermal mass on the air temperature.
Therefore, this controller overestimates the ability to reduce cooling during high770

price hours. While this controller is stable, the resulting control solution is not
optimal for the emulated building, resulting in performance that is worse than
conventional control.
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a)

b)

c)

Figure 11: Conventional (blue) and MPC (red) controller performance for the HW building
over the week of May 25 for three model cases. The optimal predicted temperature and
HVAC performance produced by the MPC controller for one specific hour, 24, is also shown
(black). Zone temperature (top) and cooling power (bottom) is shown for each subplot. Zone
temperature limits are shown as dashed black lines. No heating power is used in any case
and is not shown. The first model case represents the best performer (a), the second model
case represents a performer with poor parameter estimation (b) leading to difficulty for the
optimization solver to find a feasible solution, and the third model case represents a performer
with poor model structure (c) leading to over-estimation of the effect of thermal mass.

6. Discussion

This analysis has identified and tested many factors that play a role in de-775

termining the accuracy of models for MPC, and quantified the impacts of them
according to a single accuracy metric, RMSE, and MPC performance metric, en-
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ergy cost. It distinguished the effects of factors that would otherwise compound
each other in studies presenting a single implementation. Despite the scope of
the analysis being limited to a single zone building, simple HVAC system, and780

envelope model, it can be expected that the conclusions are applicable to MPC
in buildings in general because of the systematic approach taken to analyzing a
large number of variations on a representative case.

The results of this study may be applied more generally in the following
ways:785

1. This study has identified many of the practical issues to be considered
when implementing a model for MPC. This may then serve as a com-
prehensive list of factors that should be considered when designing and
implementing MPC, as well as when analyzing the performance after im-
plementation. Such a list can be particularly helpful as MPC gains atten-790

tion in industry.

2. The results of the study indicate that model structure and data quality
play significant roles in the success of the MPC controller. In particular,
higher order models are able to more accurately account for dynamics795

occurring on different timescales, which improves controller performance,
however, require good initial guesses for a larger number of parameters.
While this notion is not necessarily new, we see from this study that the
influence on a given MPC implementation could mean a performance dif-
ference of up to 20% for specific performance periods. In addition, this800

difference is not necessarily accounted for by the time series accuracy met-
ric of RMSE. While this study indicates low RMSE is necessary for good
performance, it is not sufficient, which points to the importance of using
additional methods for determining accuracy, such as frequency response
or other time series analysis methods.805

Data quality is represented in a few ways in this study. First, the initial
guess of parameters being identified also plays a significant role in the
accuracy of the model, as well as ultimate controller performance. Good
initial guesses can only come from comprehensive and accurate documen-810

tation of building construction. They can also be aided by workflows
to translate this information into digital forms or take digital forms of
this information and communicate it to MPC controllers. Second, noisy
and missing data can significantly influence the ability to identify models.
Some noise can be tolerated, though too much can lead to over-estimation815

of thermal mass. In addition, some missing data can be handled by clean-
ing strategies. The cleaning strategy that works best is dependent on the
nature of the data source. For instance, averaging data from similar times
of different days works well if data are highly periodic from day to day,
however, if data are not, simple interpolation can work best. In general,820

strategies work best if missing data is less than 25% so that the cleaning
strategies maintain the step-by-step variability in the data.
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3. This study opens up multiple avenues for future work. First, there are
many parameters that additionally influence MPC controller performance825

other than model setup. The timestep of control, state estimator, method
of implementation of optimal control strategy to the real system, control
optimization algorithm, degree of incentives for MPC, and missing data for
state estimation will all affect performance relative to a more conventional
control. Second, multi-zone buildings and HVAC systems add additional830

models for which the practical factors discussed in this study apply. Third,
the analysis of controller performance as a function of accuracy could lead
to better understanding and eventual predictions of theoretical limits of
performance under MPC with perfect models or of performance with less
accurate models. While such sensitivity studies may be difficult to gener-835

alize for all applications, characterizing the performance of the controller
based on the model accuracy required for particular applications, and fur-
ther identifying the effort required to reach a particular accuracy, would
help determine the cost-benefit ratio of implementing MPC controllers
before embarking on implementation.840

7. Conclusions

MPC for buildings is attracting significant attention in research and indus-
try due to its potential to address a number of challenges facing the building
industry, including energy cost reduction, grid integration, and occupant con-
nectivity, as indicated by a number of research demonstrations. However, the845

strategy has not yet been implemented at any scale. One major reason for
this is the significant effort required to configure the model used in the MPC
controller. While many studies have focused on methods to improve model ac-
curacy, few have studied their impact, along with other factors affecting model
accuracy, on a wide range of possible cases. In addition, few have continued on850

to analyze their impact on ultimate MPC controller performance. Therefore,
this study has set out to identify the practical factors affecting model accu-
racy, analyze their individual influence, and then analyze the impact on MPC
controller performance.

The factors analyzed included building design, model structure, identifica-855

tion algorithm, initial parameter guesses, training data length, training data
noise, training data gaps, and strategies for accounting for missing data. The
ASHRAE / ANSI BESTEST lightweight Case 600 and heavyweight Case 900
building envelopes were used along with a simple HVAC system with direct
heating and cooling to the building air and constant efficiency and COP. RMSE860

of zone temperature was used as an indicator of model accuracy, as is done in
previous literature. Data was presented for the many trials of parameter esti-
mation that were performed in a way that indicates the relative effect of each
factor on model accuracy. Finally, a subset of models resulting from the many
parameter estimation trials were implemented in an MPC controller, tested in865
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simulation, and compared to a conventional feedback controller as well as each
other.

The first main conclusion from the study is that low RMSE is necessary for
good MPC control, but not sufficient. Over-training of parameters and improper
model structure can lead to MPC controllers where the optimal control solution870

determined by the controller is actually a bad control function for the actual
building. For the specific cases studied in this paper through building emulation,
these issues lead to a difference in energy cost of up to 20% between the best
and worst performing controllers, and an increase of 10% energy cost compared
to conventional control for the worst performing controller. Such issues can be875

avoided with the appropriate model complexity and access to comprehensive
building design documentation for good initial parameter estimates. A second
conclusion is that the optimal length of training data for the single zone enve-
lope models studied is a few days, indicating promise for adaptive parameter
estimation frameworks that update parameters often. A third conclusion is that880

a gradient-based optimization algorithm with an associated global start algo-
rithm, such as latin hybercube sampling, can estimate parameters as well as a
global optimization algorithm with less computational cost. Finally, significant
noise and missing data can reduce the ability to identify models, particularly if
applied to variables used to measure the accuracy of the model, such as indoor885

air temperature, and those that directly affect such variables, such as solar gain
through a window. However, moderate amounts of missing data can be handled
by simple interpolation or more complex averaging strategies.

This study forms a foundation of future work on how to analyze MPC per-
formance. While it is necessary to show successful demonstrations and case890

studies, it is important to begin characterizing controller performance with re-
spect to the many factors that play a role. This paper begins with model setup
factors and relatively simple case studies. However, future work can expand to
other factors, including control time steps, state estimators, control optimiza-
tion algorithms, objective functions, and building designs. In addition, other895

research pathways involve quantifying the effort and cost required to achieve
the data and control integration with building automation systems necessary
for MPC implementation, as well as other advanced building control strategies
and analytics. Combined, such work would enable better evaluation of the effort
required to implement MPC control that is good enough, the marginal gain in900

performance resulting from extra efforts, and ultimately the ability to predict
the cost-benefit ratio before embarking on implementation. Such an upfront
evaluation is critical for adoption at scale.
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