
 

The Modelica Association  Modelica 2006, September 4th-5th,2006 

 

Advanced modeling and simulation techniques in MOSILAB:  
A system development case study 

Christoph Nytsch-Geusen1 

Thilo Ernst1    André Nordwig1 
Peter Schwarz 2  Peter Schneider2 
Matthias Vetter3 Christof Wittwer3 
Andreas Holm4 Thierry Nouidui4 
Jürgen Leopold5 Gerhard Schmidt5 
Alexander Mattes6  
 

 

1Fraunhofer Institute for Computer Architecture and Software Technology 
Kekuléstr. 7, D-12489 Berlin, christoph.nytsch@first.fhg.de 

 
Fraunhofer IIS/EAS2, Fraunhofer ISE3, Fraunhofer IBP4, Fraunhofer IWU5, Fraunhofer IPK6 

1 Abstract 

The design and the optimization of complex techni-
cal systems can be supported efficiently by using 
simulation methods and tools. For this reason, the 
generic simulation tool MOSILAB (Modeling and 
Simulation Laboratory) is being developed by a con-
sortium of six Fraunhofer institutes in the GENSIM 
project. For the modeling process, MOSILAB uses 
the object- and equation-oriented model description 
language Modelica®, with a backwards-compatible 
extension to incorporate elements for describing 
model structure dynamics [1]. 
In this article we will use illustrate how MOSILAB’s 
advanced modeling and simulation techniques sup-
port the user, with the help of two case studies: a 
complex energy system and a cutting tool system. 
Thus, the case studies illustrates very different uses 
MOSILAB.  

2 Case studies 

2.1 Complex energy system 

The case study of a solar heating system will demon-
strate MOSILAB’s advanced modeling and simula-
tion techniques, such as model-based development, 
model structure dynamics, external simulator cou-
pling, or the distributed execution of simulation ex-
periments. The considered system model includes a 

solar energy plant model, a building model, a model 
for the control strategy and an environment model 
for the climate parameters (see Figure 1). 

 
Figure 1: Energy system for solar heating system 
The solar energy plant model consists of a primary 
solar cycle with the collector field, the solar pump 
and some tubes. The solar energy is transferred by a 
counterflow heat exchanger to the secondary storage 
cycle, where a storage pump loads the thermal stor-
age. A discrete two-point controller switches on both 
mentioned pumps, if the temperature difference be-
tween the collector output is higher than the fluid 
temperature in the lowest point of the storage. The 
other side of the storage provides the building model 
with heating energy by a heating cycle. A continuous 
controller regulates the mass flow between zero and 
a maximum value, subject to the difference of the 
current room temperature and the set room tempera-
ture. An auxiliary heater delivers additional thermal 
energy, if the set flow temperature isn’t achieved by 
the storage output temperature. 

63

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study



 

The Modelica Association  Modelica 2006, September 4th-5th,2006 

 
2.2 Cutting tool system  

At present high performance and high precision cut-
ting tools often are designed as modular systems 
with a complex mechanical behavior. Static and dy-
namic tool deformations or deflections affect the re-
liability of the technological process as well as the 
quality of the workpiece. Tool designers need con-
venient modeling techniques to predict the tool be-
havior under working conditions in order to optimize 
the tool design. Simulation can also help users to 
choice the most suitable tool and to optimize the cut-
ting conditions. 

 
Figure 2: Coupling of FEM-simulators and MOSI-
LAB for cutting tool systems 
In the case study of a machining tool, MOSILAB is 
coupled with two external domain-specific FEM (Fi-
nite-Element-Methods) simulators. To simulate the 
behaviour of high performance cutting machine 
tools, the machining processes are considered to de-
termine the loading conditions, the tool deformation, 
the cutting edge displacement and possible malfunc-
tions caused by overloads. Non-linear effects at in-
terfaces between components of a modular cutting 
tool are also included. 
The mechanical and thermal tool loads undergo 
changes while complex workpiece geometries are 
machined e.g. dies and molds. Detailed knowledge 
of the occurring forces and temperatures caused by 
the chip building for any section of the tool path en-
ables an adjustment of the process parameters to the 
specific cutting conditions. Thus, the feed rate is op-
timized by using FEM and analytically based simula-
tion approaches.  
This coupled consideration of tool loading and the 
corresponding tool behaviour enables the choice of 
the most suitable tool, an estimation of the work-
piece quality and provides significant improvements 
in the efficiency of machining operations. 

3 Model-based development with the 
MOSILAB-IDE 

An integrated development environment offers users 
support at every step of the simulation – from model 
building to simulation to post-processing [6]. In or-

der to the traditional component diagrams (compare 
Figure 2), which give overviews about the structures 
of the plant- or sub-models, further UMLH - diagram 
types are available. The class diagrams are used to 
organize classes and their relationships in libraries. 
Statechart diagrams can be used to model reactive 
behaviour of components, e.g. the drivers for model 
structural dynamics. An integrated meta-model en-
sures model consistency for all diagram types [8]. 
Thus, the behaviour of a solar thermal plant during 
„normal operation“ or in different unscheduled states  
can be represented in an integrated state-dependent 
structure variable model. Unscheduled states could 
be the plant behaviour whilst damaged pumps or 
self-activated pressure control valves, when the solar 
collector becomes overheated. 

 
Figure 2: Solar heating system as component Dia-
gram in the MOSILAB-IDE 
To support a gap-free model-based development 
process, a code generator plug-in can be used to pro-
duce native embedded system code for controller 
relevant sub-models.  
With this feature, a newly designed controller algo-
rithm can be tested in combination with the virtual 
model of the controlled system. After successful test-
ing, the same controller algorithm can work on the 
real controller hardware.  
Technically, the description of such controller mod-
els uses Modelica’s block and algorithm concepts. 
Each block implementation can be automatically 
transformed into controller code for the target oper-
ating system. The approach was tested on the em-
bedded Linux derivate BOSS [2]. 

4 Use of model structural dynamics 

Using model structural dynamics [1], MOSILAB is 
able to adapt the model description, depending on 
the model state.  One example of MOSILAB’s flexi-

64

C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schwarz, P. Schneider, M. Vetter, C. Wittwer, A. Holm, T. Nouidui, J.
Leopold, G. Schmidt, A. Mattes



 

The Modelica Association  Modelica 2006, September 4th-5th,2006 

 
bility is its capability to switch between simulation 
models varying in local resolution. We have chosen 
the application of a 1D-thermal storage model, em-
bedded in the solar heating system model to illustrate 
this advantage. 
During periods of low collector temperatures or 
when the storage pump is off, the thermal stratifica-
tion in the storage can be calculated sufficiently with 
few numerical nodes (n_zones = 4). When hot water 
enters the storage, it is necessary to use a storage 
model with substantially more numerical nodes for 
the thermal gradient calculation (n_zones = 12, com-
pare Figure 3). 

 
Figure 3: Structural variable storage model, which 
uses a different number of zones in dependency of 
the current thermal layering. 
The following code fragments of the system model 
show the implemented strategy for switching be-
tween both models. The first part includes the decla-
ration of the component models.  
model SolarHeatingSystem 
  ... 
  ThermalCollectorDynamic collector(...); 
  Pump pump_solar(...), pump_storage(...), 
       pump_heating(...); 
  Tube tube1(...), tube2(...), tube3(...),  
       tube4(...); 
  HeatExchangerCounterflow heat_exchanger(...); 
  TwoPointController controller_solar(...); 
  TanhController controller_heating(...); 
  FlowHeater heater(...); 
  ThermalBuildingHeatEx building(...); 
  dynamic Storage storage, tempStorage; 
  event Boolean finer(start=false); 

 
The dynamic parts of the system model are marked 
with the prefix dynamic, in our use case the storage 
model. Further, the Boolean-variable finer has the 
prefix event, which is needed to trigger the re-
placement from the coarser to the finer storage 
model. 
equation 
  finer = pre(finer) or  
          collector.out.T-pump_storage.in.T > 3.0  
          and controller_solar.out > 0; 
    

The first equation in the equation-section is true, 
if the difference of the collector temperature and the 
temperature in the lowest storage zone exceeds 3 K 
(and the solar pump is on). Then the storage model 
has to switch from 4 to 12 zones for a better repro-
duction of the thermal gradient. 
The following code illustrates that only the static  
connect-equations are available in the equa-
tion-section. All dynamic connects between the 
storage model and its surrounding components are 
not closed: 
     
  // controller solar and storage cycle 
  collector.out.T = controller_solar.in1; 
  pump_storage.in.T = controller_solar.in2; 
  pump_solar.alpha = controller_solar.out; 
  pump_storage.alpha = controller_solar.out; 
     
  // controller heating cycle 
  building.T_air = controller_heating.in2; 
  273.15 + 20.0 = controller_heating.in1; 
  pump_heating.alpha = controller_heating.out; 
  ... 
  // solar circle: 
  connect(collector.out, tube1.in); 
  connect(tube1.out, heat_exchanger.in1); 
  connect(heat_exchanger.out1, tube2.in); 
  connect(tube2.out, pump_solar.in); 
  connect(pump_solar.out, collector.in); 
  // storage solar circle: 
  // no static  connect between  
  // heat_exchanger.out2 and storage.in_supply1 
  // no static connect between  
  // storage.out_supply1 and pump_storage.in 
  connect(pump_storage.out,heat_exchanger.in2); 
  // heating circle: 
  // no static connect between  
  // storage.out_load_1 and  heater.in 
  connect(heater.out, tube3.in); 
  connect(tube3.out, building.in); 
  connect(building.out, tube4.in); 
  connect(tube4.out, pump_heating.in); 
  // no static connect between  
  // pump_heating.out and storage.in_load1 
  ...      

 
In the statechart-section, which is responsible 
for the model structure dynamics, the states of the 
system model (startState, lowResolution, highReso-
lution) are declared and the transitions between the 
states (startState -> lowResolution, lowResolution -> 
highResolution) are modelled: 
 
statechart  
  state SolarHeatingSystemBasic 
    extends State; 
    State lowResolution, highResolution; 
    State startState(isInitial = true); 
     
    entry action 
      storage := new Storage(n_zones = 4, 
                             volume = 30.0, 
                             ...); 
    end entry; 

 

65

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study



 

The Modelica Association  Modelica 2006, September 4th-5th,2006 

 
At the beginning of the simulation experiment 
(startState -> lowResolution) the storage model is 
added to the system model and the connections of 
the storage model to its surrounding components are 
closed. 
 
    transition startState -> lowResolution 
      add(storage); 
      connect(heat_exchanger.out2,   
              storage.in_supply1); 
      connect(storage.out_supply1,           
              pump_storage.in); 
      connect(storage.out_load1, heater.in); 
      connect(pump_heating.out,  
              storage.in_load1); 
    end transition; 
 

If the transition lowResolution -> highResolution is 
triggered by the variable finer during the simulation 
experiment, the connections from the storage model 
are cut by using disconnect(a.p,b.p) and the old 
storage model is removed. 
     
    transition lowResolution -> highResolution    
      event finer action 
      disconnect(heat_exchanger.out2,  
                 storage.in_supply1); 
      disconnect(storage.out_supply1,  
                 pump_storage.in); 
      disconnect(storage.out_load1, heater.in); 
      disconnect(pump_heating.out,  
                 storage.in_load1); 
      remove(storage); 
 

Now a new storage model is instantiated with new in 
a higher resolution (n_zones = 12). The start values 
of the new storage model are determined from the 
current state of the old storage model: 
 
      tempStorage := new Storage(n_zones = 12, 
                                 volume = 30.0, 
                                 ...): 
      tempStorage.content.T_zone[1] :=  
                      storage.content.T_zone[1]; 
      tempStorage.content.T_zone[2] :=  
                      storage.content.T_zone[1]; 
      tempStorage.content.T_zone[3] :=  
                      storage.content.T_zone[1]; 
      tempStorage.content.T_zone[4] :=  
                      storage.content.T_zone[2]; 
      ... 
      tempStorage.content.T_zone[10] :=  
                      storage.content.T_zone[4]; 
      ...       

 
Then the new storage model substitutes the old 
model, must be added to the system model and the 
connection to its adequate components are closed 
again. 
       
      storage := tempStorage; 
      add(storage); 
      connect(heat_exchanger.out2,  
              storage.in_supply1); 
      connect(storage.out_supply1,          
              pump_storage.in); 
      connect(storage.out_load1, heater.in); 
      connect(pump_heating.out,  
              storage.in_load1); 

    end transition; 
  end SolarHeatingSystem_SC; 
end SolarHeatingSystem; 

 
The simulation experiment with MOSILAB for this 
system model for a summer day is shown in Figure 
4. The diagram shows the implemented behaviour. 
During the morning hours, the solar controller 
switches the pumps on first (third curve). Two hours 
later the temperature between the collector output 
and the temperature in the lowest layer of the storage 
is greater than 3 K. (This temperature is equal to the 
input temperature of the storage pump.) As a result, 
MOSILAB exchanges the coarse storage model with 
the higher-resolution model (n_zones = 4 -> n_zones 
= 12, fourth curve).   

 
Figure 4: Simulation experiment for a summer day: 
MOSILAB switches to the detailed model, when hot 
water enters the storage model and its thermal gradi-
ent has to be recalculated in a finer resolution. 

5 Numerical coupling with external 
simulators 

Building on the MOSILAB platform, reusable com-
ponents for simulator coupling have been developed 
within the GENSIM project. The components sup-
port integration with standard tools, such as MAT-
LAB/Simulink or FEMLAB/COMSOL Multiphysics 
and also domain-specific FEM-Tools such as MARC 
and DEFORM. This represents a departure from and 
an improvement upon the typical separate handling 
of system simulation and FEM (Finite Element 
Method) simulation. 

5.1 MATLAB/Simulink 

MOSILAB offers an optional generic interface for 
MATLAB/Simulink [3]. Thus, it is possible to de-
velop control strategies for embedded systems within 
MATLAB/Simulink and combine them with a 
Modelica model of the mixed-continuous discrete 
system environment. In this scenario each sub-

66

C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schwarz, P. Schneider, M. Vetter, C. Wittwer, A. Holm, T. Nouidui, J.
Leopold, G. Schmidt, A. Mattes



 

The Modelica Association  Modelica 2006, September 4th-5th,2006 

 
system is modelled in with the appropriate modelling 
paradigm within adequate simulation engineering 
tools. 
For a smooth integration of both modelling views, a 
proxy object is introduced in each view. Within a 
view, the proxy object represents the wrapped simu-
lator which is realized in the other view. This leads 
to symmetric model perspectives, which are close to 
the mental model of the engineer.  
In MATLAB/Simulink a generic MOSILAB proxy 
model can be imported and parameterized via the 
block parameter dialog. (Compare with Figure 5.) 

 
Figure 5: Simulink with an embedded MOSILAB-
model  
The controlled system model itself (in the case study, 
the solar energy plant and the building model) is de-
veloped using MOSILAB and will be associated 
with this proxy model, which is shown in the follow-
ing code fragment: 
block RemoteModel 
 constant Boolean isRemoteModel=true; 
 parameter Integer nInp, nOutp; 
 input  Real inp[nInp]; 
 output Real outp[nOutp]; 
end RemoteModel; 

 
The constant isRemoteModel indicates the presence 
of a further simulator/driver behind this model. Thus, 
the numeric algorithms can handle the input and out-
put vectors correctly. The number of input and out-
put variables can be given by nInp and nOutp. The 
vectors itself are given by inp and outp. 
The following code illustrates the direct use of this 
generic remote interface within a Modelica model: 
model SolarHeatingSystem 
  ThermalCollectorDynamic collector 
  Pump pump_solar(...); 
  StorageSimple storage(...); 
  ... 
  // the Simulink interface model 
  RemoteModel ctrl_solar(nInp=2, nOutp=1); 
  ...  
equation 
  ... 
  // controller solar cycle 
  collector.port_out.T = ctrl_solar.inp[1]; 
  storage.content.T_zone[4] = ctrl_solar.inp[2]; 
  pump_solar.alpha = ctrl_solar.outp[1]; 

  pump_storage.alpha = ctrl_solar.outp[1]; 
   
  // solar cycle: 
  connect(collector.out, tube1.in); 
  connect(tube1.out, heatexchanger.in1); 
  connect(heat_exchanger.out1, tube2.in); 
  connect(tube2.out,pump_solar.in); 
  connect(pump_solar.out,collector.in); 
 
  // storage solar cycle: 
  connect(heatexchanger.out2,storage.in_supply1); 
  connect(storage.out_supply1,pump_storage.in); 
  connect(pump_storage.out,heat_exchanger.in2); 
  ... 
end SolarHeatingSystems; 
 

In this configuration the simulation is driven by 
MATLAB/Simulink as the master simulator. Figure 
6 illustrates a coupled simulation experiment for the 
solar heating system during a simulation period of 
one week in spring. The top screen shows the output 
signal of the discrete controller, calculated in MAT-
LAB/Simulink. This signal switches the solar pump 
depending on the temperature difference between the 
collector output temperature and the temperature in 
lowest level within the water storage.  

 

 
Figure 6: Coupled simulation of MOSILAB with 
MATLAB/Simulink. 

67

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study



 

The Modelica Association  Modelica 2006, September 4th-5th,2006 

 
The bottom screen illustrates the dynamic behaviour 
of the controlled system, calculated in MOSILAB, 
for the same time period. The curves represent both 
state variables, which are the input signals of the 
controller (collector output and storage temperature).   

5.2 FEMLAB/COMSOL Multiphysics 

One other aspect within the project was the devel-
opment of a numeric coupling between the simula-
tors MOSILAB and FEMLAB [4]. For simulator 
couplings which incorporate FEMLAB, two basic 
principles exist: 
1. Coupling within the MATLAB Framework – 

here the MATLAB engine is used in a C-
program or a dedicated coupling model is im-
plemented based on the MEX-interface.  

2. FEMLAB is used as a stand-alone simulator – 
within FEMLAB Java-API models can be 
loaded, the simulation can be controlled, and 
the data exchange can be organized.  

The second principle is used for this implementation. 
Figure 7 illustrates the basic structure of the cou-
pling. 

 
Figure 7: Numerical coupling between MOSILAB 
and FEMLB/ COMSOL Multiphysics 
 The communication between the two sides is han-
dled by TCP/IP sockets. This extends the usage of 
the simulator coupling for a distributed computer 
environment. Due to a lean coupling implementation, 
the communication time for the data exchange is 
much shorter than the simulation time for simple 
FEM-models. This allows an effective simulation 
including realistic transient boundary conditions 
even in combination with models requiring small 
simulation time steps. 
Hence, simulator coupling is suitable for a wide 
range of applications. This enables the analysis of 
control systems with a detailed consideration of the 
controlled process. Furthermore, components in a 
complex system can be analysed in detail using the 
MOSILAB-FEMLAB environment, e.g. the multi-
dimensional flow within the heat storage as a part of 
a solar heating system.  

5.3 MARC 

The finite element code MARC can be used to model 
complex nonlinear mechanical and thermo-
mechanical structures such as machining tools con-
sisting of different components with contact and fric-
tion problems. Thus, it is possible to simulate com-
plex system behavior which cannot be adequately 
described by analytical functions. For example, non-
linear load dependent contact behavior between tool 
components may results in non-linear tool deforma-
tions which require an expensive finite element 
analysis (FEA). Because of long computing times 
with FEA the coupling between MOSILAB and 
MARC will be off-line in most cases. For that pur-
pose a special interface has been developed. The 
coupling of MOSILAB with MARC will enable to 
opt between analytical models for relatively simple 
cutting tools or the more complex FEM-models. That 
way it is possible to optimize the accuracy of the 
description of the tool behavior and the expense of 
the calculations.  
Finite element analyses will run outside of MOSI-
LAB and the input and output streams to respectively 
from the MOSILAB databases will be realized by 
readData() and writeData() commands. Using that 
interface it will also be possible to use predefined 
FEM-models from a tool model library without spe-
cial knowledge of finite element modeling.  
The loading conditions required by analytical or fi-
nite element analyses are provided by the simulation 
of the cutting process (see chapter 5.4).    

5.4 DEFORM 

Originally developed for metal forming processes, 
the FEM-tool DEFORM is also suited for simulation 
of the chip formation during the machining process. 
DEFORM is advantageous for an efficient handling 
of the mesh distortion, which is caused by the high 
strains within the chip formation zone. Through the 
remeshing function it is possible to generate a new 
mesh and to transfer the interpolated values for each 
node. Thereby the program is able to simulate the 
mechanical and thermo-mechanical behavior.  
In addition, a simplified and fast model for the chip 
building process in Modelica was developed, which 
is based on analytical equations (e.g. cutting force 
calculation according to Kienzle [5]). First of all, the 
parameters of the simplified Modelica-model have to 
be calculated with a large number of detailed DE-
FORM simulations. As a result, the fast Modelica 
model can be used in the area of validity of these 
DEFORM calculations.  

68

C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schwarz, P. Schneider, M. Vetter, C. Wittwer, A. Holm, T. Nouidui, J.
Leopold, G. Schmidt, A. Mattes



 

The Modelica Association  Modelica 2006, September 4th-5th,2006 

 
The cooperation between MOSILAB and DEFORM 
for the determination of these parameters has been 
fully automated. First, a routine for automated pre- 
and post processing for DEFORM was developed. 
The execution of DEFORM by an external program 
is possible using the text mode of the software. This 
enables set up and run of simulations without going 
through the graphic user interface. The routine needs 
initial input information about tool geometry and 
machining parameters provided in a text file. To 
transfer amongst others, the values for the angles of 
the cutting wedge or for the feed rate and width of 
cut from MOSILAB the commands readData() and 
writeData() are applied. 
 
model DataExchange 
  model Kienzle  
  ...   
  end Kienzle; 
   
  parameter String fname = "inputData.txt" ; 
  parameter String fnameOut = "outputData.txt"; 
  Kienzle k; 
  algorithm 
    when initial() then 
      readData(fname, k); 
    end when; 
    when terminal() then 
      writeData(fnameOut,k); 
    end when; 
end DataExchange; 

 
These loose coupling of MOSILAB with DEFORM 
helps to combine the advantages of both methods: 
First, the short computation time, when solving ana-
lytical equations in Modelica and second, the mani-
fold possibilities by analyzing the chip building 
process through FEM-Analysis.  

6 Distributed execution of simulation 
experiments 

Simulators developed using MOSILAB can be gen-
erated in various configurations – from a “barebone” 
variant suitable for constrained environments, such 
as embedded systems, to a regular desktop applica-
tion, to a web service for distributed simulation. 

6.1 Simulator Services and Interoperability 

MOSILAB follows a service-based architectural 
style. For all configurations except the minimal one, 
the simulators generated by MOSILAB are created 
as services communicating through a standard inter-
face. The standard interface is based on the 
W3C/OASIS web services protocol suite (most im-
portantly, HTTP and SOAP), which allows MOSI-

LAB-developed simulators to be controlled from a 
wide variety of software environments such as Java, 
C++, C#/.NET, MATLAB, Python, Perl, and Ruby. 
MOSILAB also supports a more bandwidth-efficient 
proprietary stream command interface, a direct C++ 
API, and a Python API. The Python layer abstracts 
from the underlying transport mechanism; i.e. the 
same Python experiment script can be used to control 
a simulator running as a local subprocess and com-
municating via OS standard I/O pipes, or to control a 
simulation web service running on a remote machine 
but having been generated from the same Modelica 
model (compare figure 8).   

Simulation

Kernel

Steering

Server

C
+

+
 A

P
I 
 

S
tr

e
a

m
 

S
O

A
P
 

Runtime

System
Numerical

Solver

Simulator

Service

Python API

 
Figure 8: MOSILAB steering interface options 
These interfaces are all manifestations of one and the 
same abstract protocol (called the MOSILAB unified 
steering protocol), which is only expressed in differ-
ent programming languages. The generic interfaces 
to other simulators described in section 5 have been 
developed using these interfacing options specific to 
MOSILAB, in addition to Modelica’s standard ex-
ternal function interface. 

6.2 Speeding up parameter studies by distrib-
uted simulation 

Often, the system design task at hand requires a large 
number of simulation runs with differing parameter 
values, e.g. to obtain knowledge about the system’s 
behaviour under parameter variations (“robust de-
sign”), or to approximate a certain desired property 
of the system being designed (“optimization”). In the 
system model from the case study, it  makes sense to 
consider variations of the model parameters “collec-
tor area”, “heat store volume” or “building orienta-
tion”, as well as parameters of the controller model. 
The following Figures 9 and 10 illustrate a variation 
of the collector area parameter. 

69

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study



 

The Modelica Association  Modelica 2006, September 4th-5th,2006 

 

 
Figure 9: Multiple simulation experiments in the 
MOSILAB-IDE for varying the collector area  
 

  
Figure 10: Impact of different collector areas on the 
storage temperature during a period of 3 days 
Variations of multiple parameters lead to multidi-
mensional variant spaces, the size of which (i.e. the 
total number of simulation runs needed) soon be-
comes impractical, due to the sheer computation time 
needed. Statistics-based methods exist to achieve a 
substantial reduction of the variant space with only a 
marginal loss of result quality, but even with such 
methods in place, a large number of necessary simu-
lation experiments are likely to remain. MOSILAB’s 
service-based architecture allows for distribution of 
simulation experiments as independent, parallel jobs 
in clusters and computational grids, thus empower-
ing the user to make optimal use of the computa-
tional resources available. The individual distributed 
simulators can nevertheless be interactively con-
trolled and supervised from the MOSILAB-IDE (see 
Figure 10).  

Development

Environment

(Mosilab IDE)

Experiment

Support

Visuali-

zation

Modeling

Support

Desktop PC

Simulation

Kernel

Steering

Server

C
+

 -
A

P
I 

S
tr

e
a
m

 

S
O

A
P
 

Runtime

System
Numerical

Solver

Simulator

Service

Node_N

Simulation

Kernel

Steering

Server

C
+

+
 A

P
I 
 

S
tr

e
a
m

 

S
O

A
P
 

Runtime

System
Numerical

Solver

Simulator

Service

Node_1

TCP/IP   

...

 
Figure 10: Executing simulator services in the Grid 
For very large numbers of parallel experiments, cen-
tral steering limits scalability, and interactive super-
vision becomes impractical. In this case, MOSILAB-
generated simulators can be distributed in the Grid as 
independent batch jobs. For more information on 
MOSILAB and Grid computing, see [7].    

70

C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schwarz, P. Schneider, M. Vetter, C. Wittwer, A. Holm, T. Nouidui, J.
Leopold, G. Schmidt, A. Mattes



 

The Modelica Association  Modelica 2006, September 4th-5th,2006 

 

References 

[1] Nytsch-Geusen, C. et al. MOSILAB: 
Development of a Modelica based 
generic simulation tool supporting 
model structural dynamics. Proceed-
ings of the 4th International Mode-
lica Conference TU Hamburg-
Harburg, 2005. 

[2] Nordwig, A. et. al: Codegenerierung 
aus Simulationsmodellen von hetero-
genen technischen Systemen am Bei-
spiel einer Pendelsteuerung, VSEK-
Report. FKZ01ISC65, 2005. 

[3] Nordwig, A.: Coupling of Modelica 
and Matlab/Simulink models. Tech-
nical Report, Fraunhofer FIRST 
2006. 

[4] Clauß, C. et. al: Simulatorkopplung 
mit FEMLAB. Proceedings of the 
1th FEMLAB Conference, Frankfurt 
am Main, 2005. 

[5] König, W.: Fertigungsverfahren – 
Band 1: Drehen, Fräsen, Bohren. 
VDI-Verlag, 1990. 

[6] MOSILAB-Homepage: 
http://www.mosilab.de 

[7] Ernst, T. et al.: MOSILAB: Modeli-
ca Simulation from Desktop to Grid. 
2. Workshop "Grid-Technologie für 
den Entwurf technischer Systeme", 
Dresden, 2006. 

[8] Nordwig, A.: Integration von Sichten 
für die objektorientierte Modellie-
rung hybrider Systeme, Verlag dis-
sertation.de, ISBN 3-89825-692-8, 
2003. 

71

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study




