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Abstract
This paper discusses design decisions for exporting
Modelica thermofluid flow components as Functional
Mockup Units. The purpose is to provide guidelines
that will allow building energy simulation programs
and HVAC equipment manufacturers to effectively use
FMUs for modeling of HVAC components and systems.

We provide an analysis for direct input-output depen-
dencies of such components and discuss how these de-
pendencies can lead to algebraic loops that are formed
when connecting thermofluid flow components. Based
on this analysis, we provide recommendations that in-
crease the computing efficiency of such components and
systems that are formed by connecting multiple compo-
nents. We explain what code optimizations are lost when
providing thermofluid flow components as FMUs rather
than Modelica code. We present an implementation of
a package for FMU export of such components, explain
the rationale for selecting the connector variables of the
FMUs and finally provide computing benchmarks for
different design choices. It turns out that selecting tem-
perature rather than specific enthalpy as input and output
signals does not lead to a measurable increase in com-
puting time, but selecting nine small FMUs rather than a
large FMU increases computing time by 70%.

Keywords: FMI, Modelica, thermofluid flow

1 Introduction
The Functional Mockup Interface Standard (Modelica
Association, 2014) is an open standard that has been de-
veloped to export models or whole simulators from one
simulation software and import them into another simu-
lation software to perform a coupled simulation of time
dependent systems. It enables interoperability among
simulation software by standardizing (i) an application
programming interface and its semantics, (ii) an xml
schema that describes the model structure and capabil-
ities, and (iii) the structure of a zip file that is used to
package the model, its resources and documentation.

This type of simulation software interoperability is in-

teresting for various use cases in building energy simu-
lation. First, it allows building energy simulation pro-
grams, for which it currently is difficult for users to
add new models, to add an interface that allow users
to insert own component models that may be written
in and exported by a variety of simulation software
that support the FMI standard (see https://www.

fmi-standard.org/tools for a list). As a point
in case, EnergyPlus currently undergoes a prototype re-
design in which HVAC simulation will be based on
FMUs (Wetter et al., 2015). Second, the American Soci-
ety of Heating, Refrigerating, and Air-Conditioning En-
gineers (ASHRAE) is currently developing Standard 205
that standardizes the representation of HVAC equipment
performance data for building energy simulation.1 As
the built-in control and staging algorithms of such equip-
ment affects the performance, participants of the stan-
dards committee expressed the need for sharing mod-
els as executable code rather than simple performance
maps. Here, FMU may be a solution for such model rep-
resentation. Third, Swegon AB, an international HVAC
equipment manufacturer, expressed the need for receiv-
ing from their suppliers component models to allow them
to optimize the integration of these components into their
products. Swegon also is interested in providing equip-
ment models as FMUs to energy simulation programs.

For these use cases, FMI is an interesting technology
as it is an open standard that has been designed for the
exchange of such models. However, various design ques-
tions have to be answered for its effective use, namely:
(i) Are both versions of the standard, FMI for model-
exchange and FMI for co-simulation, applicable? (ii) If
an FMU represents an individual equipment, how would
a system simulation program have to execute this com-
ponent if used as part of an whole HVAC simulation?
(iii) What recommendations should one follow to allow
an efficient simulation of FMUs if part of an HVAC sys-
tem simulation? (iv) What code optimization is lost if
FMUs are used rather than Modelica, the latter allowing

1 See http://spc205.ashraepcs.org/.
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Figure 1. Plot of the function y = R(x,y1,y2,δ ).

symbolic processing prior to code generation. (v) What
variables should the parameters, inputs and outputs of an
FMU have? Would specific enthalpy as is used in the
Modelica.Fluid library be a good choice?

This paper addresses the above questions. It is struc-
tured as follows: Section 2 states assumptions and in-
troduces notation. In Section 3, we discuss the applica-
bility of the two standards. In Section 4, we provide an
analysis of execution sequences and provide recommen-
dations for efficient model implementation. In Section 5,
we discuss the design of connector variables. Section 6
explains code optimizations that are no longer possible if
FMUs rather than Modelica are used. Section 7 discusses
the implementation of FMU export for thermofluid flow
components in a development version of the Modelica
Buildings library (Wetter et al., 2014), and Section 8
shows numerical benchmarks for different implementa-
tions.

2 Terminology and assumptions

2.1 Conventions

1. If a component has two acausal fluid ports, then they
are denoted by subscript a and b, respectively, where
a is the port into which mass flows under the design
flow direction.

2. Consider a model that has an input u ∈ R, an out-
put y ∈ R2 and a parameter p ∈ R. Suppose y1 = pu
and dy2/dt = u. We say that there is a direct depen-
dency between u and y1 as the value of u needs to be
known to produce the output y1. In contrast, y2 does
not directly depend on u as it can be produced without
knowing the current value of u.

2.2 Notation

To enable robust iterative computation of a numerical
approximation to the solution of differential and alge-
braic systems of equations, the Modelica Specification
defines special functions to handle systems in which the
flow reverses its direction, and the Modelica Standard
Library 3.2 implements regularization functions (Franke
et al., 2009; Modelica, 2010). This section explains these
functions and the nomenclature that we will use for these
functions.

The regularization function Modelica.Fluid.

Utilities.regStep(x,y1,y2,x_small) ap-
proximates

y =

{

y1, if x > 0,

y2, otherwise,
(1)

m2

a b
m1

b
m3

a

Figure 2. Connection diagram of three models that is used to
explain the concept of stream variables.

by the once continuously differentiable function that is
shown in Figure 1. In our discussions, we will denote this
function by y =R(x,y1,y2,δ ), with δ > 0. The function
is defined as

R(x,y1,y2,δ ) =

⎧

⎪

⎨

⎪

⎩

y1, if x > δ ,

y2, if x <−δ ,

r(x,y1,y2,δ ), otherwise.

(2)

where r(·, ·, ·, ·) is

r(x,y1,y2,δ ) =
x

δ

(

( x

δ

)2
−3

)

y2 − y1

4
+

y1 + y2

2
. (3)

Note that some models use Modelica.Media.Air.
MoistAir.Utilities.spliceFunction()

rather than Modelica.Fluid.Utilities.

regStep(). While these functions are different, their
input-output dependency is identical. We will therefore
always use the notation R(·, ·, ·, ·) as our discussion is
identical for both implementations. 2

To describe in a numerically reliable way the bi-
directional transport of specific quantities that are carried
by mass flow rate, such as enthalpy, Modelica 3.2 pro-
vides the inStream() function. Let m1, m2 and m3 be
models, and let a and b be fluid ports that are connected
as shown in Figure 2. Let h_outflow be the specific
enthalpy in the connection point if mass leaves the com-
ponent (regardless of the current flow direction). For
the configuration shown in Figure 2, the inStream()
function satisfies
inStream(m2.a.h_outflow) = m1.b.h_outflow;
inStream(m2.b.h_outflow) = m3.a.h_outflow;

In our discussions, we will use the notation ι(ha) to
denote the value of inStream(a.h_outflow).

2.3 Assumptions

We will make the following assumptions:

1. All components conserve mass, e.g., ∑i ṁi +∆ṁ = 0
where the sum is over all ports and ∆ṁ is the moisture
added or removed by a humidifier or a cooling coil.

2. Each component has as inputs the mass flow rate ṁa,
the pressure pa, the temperature Ta,i (or specific en-
thalpy ha,i) of the medium that flows into port a if
ṁa ≥ 0, and the temperature Tb,i (or specific enthalpy
hb,i) of the medium that flows into port b if ṁa < 0.

2In a benchmark for the Annex 60 model library (see https:

//github.com/iea-annex60/modelica-annex60/

issues/300) we measured that the function regStep() is on
average about 8% faster than spliceFunction(). Therefore,
work is in progress to update the Annex60 and Buildings

libraries accordingly.



3. Each component has as outputs the mass flow rate ṁb,
the pressure pb, the temperature Tb,o (or specific en-
thalpy hb,o) of the medium that flows out of port b if
ṁa ≥ 0, and the temperature Ta,o (or specific enthalpy
ha,o) of the medium that flows out of port a if ṁa < 0.

4. We assume the following direct dependencies: The
outlet temperatures are Tb,o = f (Ta,i, ṁa) and, simi-
larly, Ta,o = g(Tb,i, ṁa) for some functions f ,g : R×
R→ R.

5. The pressure drop of flow resistances is assumed to
be a function of the mass flow rate rather than volume
flow rate. The reason for this assumption will become
clear in Section 4.

Hence, to simplify the discussion, we typically say
that input and output to a component are temperature T .
Clearly, models that treat moist air also have water vapor
mass fraction Xw as input and output. Except for the dis-
cussion of dehumidifying or humidifying components,
we do not specifically mention water vapor mass frac-
tion as other components conserve mass. Furthermore
the discussion also holds if one were to use specific en-
thalpy rather than temperature as input and output vari-
ables.

3 FMI Standards
FMI 2.0 defines two standards: FMI for model-exchange
(FMI-ME) and FMI for co-simulation (FMI-CS): In
FMI-ME, the host simulator is responsible for the numer-
ical integration of the model equations, whereas in FMI-
CS, the FMU implements its own mechanism for advanc-
ing the values of its state variables. FMI-CS provides no
mechanism for an FMU to output an instantaneous reac-
tion to a changed input value.3 Hence, FMI-CS cannot be
used for steady-state component models of HVAC equip-
ment. However, FMI-ME is applicable. Specifically,
FMI-ME allows to set inputs by calling fmi2SetReal
followed directly by fmi2GetReal to obtain outputs.
Furthermore, the standard says that fmi2SetReal "re-
initializes caching of variables that depend on these vari-
ables [being set]". Hence, fmi2SetReal causes the
equations to be evaluated. Therefore, we restrict this dis-
cussion to FMI-ME.

4 Direct input-output dependencies

of thermofluid flow components

and systems
The purpose of this section is to provide guidance to
users and developers who connect multiple thermofluid
flow component models so they understand when
algebraic loops are performed, and how such algebraic
loops can be avoided. While in general the existence

3 Specifically, FMU-CS does not allow calling fmi2SetReal

followed by fmi2GetReal without first invoking fmi2DoStep

(see p. 104 of the standard). Furthermore, fmi2DoStep does not
allow a communication step size of 0.

of algebraic loops can readily be obtained from the
translation information of Modelica tools, the insight we
give in this section should inform users and developers
a-priori about how different component formulations,
system compositions and media selections affect the
existence of algebraic loops, and how such algebraic
loops can be avoided. Based on these discussions, we
also provide recommendations for efficient component
model formulation.

Questions that this sections answers are:

1. Suppose we know the mass flow rate at each flow leg.
Under which arrangements do FMUs, each represent-
ing a steady-state fluid flow component, cause an al-
gebraic loop?

2. How does the answer to the above question change
if computing the value of the mass flow rate requires
solving a flow rate versus pressure drop calculation?

3. Under what conditions does the use of the regulariza-
tion function to treat near zero mass flow rates cause
algebraic loops, and how can they be avoided?

In the next section, we discuss direct input-output de-
pendencies in major HVAC components, and afterwards
discuss situations where these components are connected
to form HVAC systems.

4.1 Major HVAC components

This section describes the direct input-output dependen-
cies of major HVAC components under the assumption
that they are modeled steady-state, as is common in
building energy simulation. The purpose of the discus-
sion in this section is to understand what outputs depend
directly on what inputs and how direct dependencies can
be reduced.

4.1.1 Heater

heater

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 3. FMU of a heater.

We will start with a simple component of a heater that
injects a known amount of heat Q̇ into a fluid stream. In
such a component, the outlet pressure is pb = pa+ f (ṁa)
for some function f : R→ R, and the outlet temperature
is Tb = g(ṁa, ι(Ta)) for some function g : R×R → R.
For example, for an ideal water heater, g(ṁa, ι(Ta)) =
ι(Ta) + Q̇/(ṁa cp). We will depict graphically such a
component as shown in Figure 3, where the arrows indi-
cate inputs (for this component, inputs are on the left and
outputs on the right). The dotted lines inside the compo-
nent show on what inputs an output directly depends on.
We selected to use this graphical representation rather
than writing the incidence matrix as the graphical repre-



sentation allows us to graphically connect components to
form HVAC systems.

4.1.2 Dehumidifying or humidifying components

humidifying or
dehumidifying component
(with exact mass balance)

humidifying or
dehumidifying component
(mass balance ignores change
in water vapor)

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 4. FMU of a humidifying or dehumidifying compo-
nent. The component on the right implements Recommenda-
tion 4.2, and hence the red dashed line is removed.

We now discuss the situation in which the heat ex-
changer in Figure 3 dehumidifies or humidifies the air.
This can be the case for a humidifier or for a cooling
coil that cools the air below its dew point. In this situ-
ation, the rate of heat and mass transfer affect the out-
let mass flow rate. Therefore, if the outlet mass frac-
tion of the humidifying or dehumidifying component
depends on the thermodynamic state of the inlet fluid,
which generally is the case, then the pressure drop equa-
tions are coupled to the heat transfer equations. Hence,
such a component has the structure shown in Figure 4.
Note that for this component, there generally is no need
to properly characterize its thermodynamic behavior for
reverse flow because such equipment is only operated
when the fan is on. When the fan is off, small re-
verse flows may occur, but for this situation, it suffices
to set Ta = ι(Tb) and Xa = ι(Xb), or Ta = Tde f ault and
Xa = ι(Xde f ault), where Tde f ault and Xde f ault are default
values for temperature and mass fraction. The latter ver-
sion can lead to smaller system of equations if compo-
nents are used in a flow network.4 We therefore de-
cided in Figure 4 that the change in mass flow rate has
the functional form ṁb−ṁa = f (ṁa, ι(Ta), ι(Xa)) rather
than ṁb − ṁa = f (ṁa, ι(Ta), ι(Xa), ι(Tb), ι(Xb)). I.e.,
the thermodynamic properties of the reverse flow are not
used to compute the amount of humidification or dehu-
midification. We therefore make the following recom-
mendation:

Recommendation 4.1 To reduce the number of direct
input-output dependencies of components that humid-
ify or dehumidify the air, such components should im-
plement for the reverse flow port_a.h_outflow=

Medium.h_default, where Medium.h_default
is the default specific enthalpy of the medium. Otherwise,

4See https://github.com/iea-annex60/

modelica-annex60/issues/281 for a discussion.

the energy equations for the backward flow become part
of the residual functions of the pressure and mass flow
rate equations.

Because the outlet mass flow rate is ṁb = ṁa (1 +
∆Xw), where ∆Xw is the change in water vapor mass frac-
tion across the component, this component couples the
energy calculation to the pressure drop versus mass flow
rate calculations. However, in typical building HVAC
systems, ∆Xw < 0.005kg/kg. Hence, by tolerating a rel-
ative error of 0.005 in the mass balance, one can decou-
ple these equations. Decoupling these equations avoids
having to compute the energy balance of the humidifier
and its upstream components when solving for the pres-
sure drop of downstream components5. We therefore
make the following recommendation:

Recommendation 4.2 If an error in the mass balance
of about 0.5% is acceptable, then one can implement a
humidifier or dehumidifier that neglects in the mass bal-
ance equation the change in water vapor mass fraction.
This can allow computing the mass flow rate versus pres-
sure drop equations without having to couple the energy
balance, or the control input of a humidifier or dehumid-
ifier, to these equations.

As in building simulation, there is considerable uncer-
tainty in air flow rate calculations, and also because
larger effects such as duct leakage are generally ignored,
taking a relative error of 0.5% into account seems ac-
ceptable in typical applications. See also Jorissen et al.
(2015) for a discussion.

4.1.3 Fan

fan (head dependent 
on actual density)

fan (head simplified to be
independent of actual density)

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 5. FMU of a fan. The component on the right imple-
ments Recommendation 4.3, and hence the red dashed line is
removed.

According to the laws of fluid dynamics, the pres-
sure rise over a fan is related to the volume flow rate
rather than the mass flow rate. Therefore, the functional
form for the fan head is pb − pa = f (ṁa, ι(Ta), ι(Xa))
and the input-output dependency is as shown in the left-
hand side of Figure 5. However, if one were to simplify

5In the Buildings library, only downstream components are af-
fected because the humidifier evaluates a component’s pressure drop
for ṁa and not for ṁb.



the fan laws and use a constant mass density, then the di-
rect input-output dependency of the inlet thermodynamic
properties could be eliminated, as shown in the right-
hand side of Figure 5. We therefore make the following
recommendation:

Recommendation 4.3 If the operating temperature of a
fan (or pump) does not change much, or if large uncer-
tainties exist in parameters or the models for the pressure
drop calculation of the duct (or pipe) network, then one
should assume a constant mass density in the fan model,
as this leads to fewer coupled equations.

4.1.4 Heat exchanger between supply and return air

heat exchanger

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 6. FMU of a component that exchanges heat between
two fluid streams.

Figure 6 shows the direct input-output dependency of
a heat exchanger. On top left is the inlet of one fluid
stream and on the bottom right is the inlet of the other
fluid stream. Such heat exchangers are typically modeled
using two different implementations.

1. The simplest form is a constant effectiveness heat ex-
changer. In this situation, the rate of heat transfer is
Q̇ = ε Ċmin (Tin,1 − Tin,2), where ε ∈ (0, 1) is a con-
stant, Ċmin = min(|ṁa,1 cp,1|, |ṁa,2 cp,2|) is the min-
imum heat capacity flow rate and Tin,1 is the inlet
temperature of the fluid 1, which is equal to ι(Ta,1)
or ι(Tb,1). Hence, the in-streaming thermodynamic
properties of the forward and reverse flow must be
known in order to compute the thermodynamic prop-
erties of the out-streaming fluid for forward and re-
verse flow.

2. A more elaborate model is one that uses the ε −NTU
model. In this situation the same direct input-output
dependency is obtained as for the model with constant
effectiveness.

This discussion shows that heat exchangers lead to com-
plex direct input-output dependencies. If one were to
compromise on not being able to properly compute the
heat transfer if one or both streams reverse their di-
rection, then one could simplify the model to the form
shown in Figure 7. Here, we changed the model so that

the transferred heat is zero if any of the flows is differ-
ent from the design flow direction. Initial experiments
indeed confirmed that such a simplified implementation
leads to smaller systems of coupled equations. We there-

heat exchanger

Legend

pressure

mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 7. FMU of a component that exchanges heat between
two fluid streams but with the simplification that no heat is
exchanged if any of the flows is different from the design flow
direction.

fore make the following recommendation:

Recommendation 4.4 If the thermodynamic behavior
of a heat exchanger under reverse flow directions is not
of interest to the application, then the equations should
only be formulated for forward flow. For reverse flow sit-
uations, one should simply assign Tb,k = ι(Ta,k) for both
streams k ∈ {1, 2}. Note that reverse flow may occur in
HVAC systems due physical reasons such as wind pres-
sure on the facade (when the fan is off) or due to numeri-
cal artifacts because numerical solvers only compute an
approximate numerical solution and hence small nega-
tive flows can exist when the HVAC system is off.

4.1.5 Temperature or humidity control

The user guide Annex60.Fluid.Sensors.

UsersGuide and of libraries that use Annex60, such
as AixLib, Buildings, BuildingSystems and
IDEAS, recommend to measure temperature, relative
humidity, mass fraction, trace substances and specific
enthalpy with a sensor that has two ports, and use a
dynamic balance to compute the measured quantity.
This dynamic balance has shown to be beneficial in large
systems that can have zero flow rate. If such sensors
are used as an FMU, they have the advantage that the
dynamic balance causes the measured quantity to be a
state variable. Hence, if used in combination with a P or
PI controller, the use of this state variable avoids having
to solve an algebraic loop.

Therefore, in the subsequent discussion, we will as-
sume that a dynamic sensor is used.

4.2 Components in series

Figure 8 shows four FMUs in series. This represents
the case where a mass flow rate of outside air is con-
ditioned and transported to a room that has a dynamic
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Legend
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mass flow rate

temperature in design flow direction

temperature in reverse flow direction

Figure 8. FMUs connected in series.

energy balance, and hence the room air temperature is a
state variable whose value is determined by an integra-
tion algorithm. The outside air imposes a pressure and
temperature boundary condition. The outdoor mass flow
rate is either an independent variable or a boundary con-
dition. In the first case, the outdoor mass flow rate is
iterated upon until the pressure equations are satisfied.
In the second case, the pressure drop equations could be
removed from the set of equations.

The equations for this arrangement can be solved as
follows. First, by assumption, the pressure drop only
depends on the mass flow rate and not on temperature.
Therefore, the mass flow rate can be solved iteratively
by setting an initial value, evaluating the pressure drop
equations of component 1, 2, 3 and 4 in series until a
convergence criteria on the difference between the out-
let pressure of component 3 and the room air pressure
(component 4) is met. Once the mass flow rate is known,
components 1, 2, 3 and 4 can be called in sequence to
obtain the temperatures for the forward flow direction.
For the reverse flow direction, components 4, 3, 2 and 1
need to be called in sequence.

The red line in the fan of Figure 8 is only present if
Recommendation 4.3 is not implemented. In this situa-
tion, the energy equation of the heater need to be eval-
uated in order to compute the mass flow rate, thereby
increasing the number of operations required to evaluate
the residual function.

Analyzing Figure 8 leads us to the following remark:

Remark 4.1 Evaluating the energy equations for for-
ward flow and then for backward flow is only possible if
the energy equations only depend on the thermodynamic
state of the inflowing medium. For example, if a compo-
nent were to use the regularization

h_in = spliceFunction(
pos = inStream(port_a.h_outflow),
neg = inStream(port_b.h_outflow),
x = m_flow,
deltax = m_flow_nominal/100)

then the thermodynamic properties of the backward flow
must be known to compute the thermodynamic properties

of the forward flow. Moreover, if, in Figure 8, compo-
nents 2 and 3 both use the above spliceFunction,
then a nonlinear equation must be solved to compute the
thermodynamic properties.

Hence, we make the following recommendation:

Recommendation 4.5 Regularization in which the ar-
guments of the regularization function directly depend
on the thermodynamic properties of the forward and re-
verse flow should be avoided as this can lead to nonlin-
ear equations.

Note, however, the following:

Remark 4.2 Simply replacing

h_in = spliceFunction(
pos = inStream(port_a.h_outflow),
neg = inStream(port_b.h_outflow),
x = m_flow,
deltax = m_flow_nominal/100)

with

h_in = if m_flow >= 0
then inStream(port_a.h_outflow),
else inStream(port_b.h_outflow);

is not a solution to Recommendation 4.5. In fact, this
would also lead to a non-linear equation, but with a
discontinuity in the residual equation, which can lead
to problems in Netwon-Raphson solvers. Rather, one
could attempt to set h_in=inStream(port_a.h_
outflow) and let the transfered heat go to zero as the
mass flow rate approaches zero from above.

4.3 Components in parallel

Figure 9 is as Figure 8 except that it has two rooms, each
with a variable air volume (VAV) terminal. The VAV ter-
minals can increase the flow resistance based on a con-
trol signal, and possibly provide heating or cooling (here,
we assumed no dehumidification at the terminal unit).
To implement such a system, a flow splitter is needed.
The flow splitter has as an input the split of the mass
flow fraction between the two outlet ports. This input
is required as otherwise the splitter is underdetermined.
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Figure 9. FMUs connected in series that serve two rooms.

The input may be a variable determined by a numerical
solver. The VAV terminal has the same input-output re-
lation as the heater.

The equations for this arrangement can be solved as
follows: A solver determines the outdoor mass flow rate
and the split of the mass flow rates until the residual func-
tion of the pressure is satisfied. This can be accomplished
by evaluating the pressure drop equations of all FMUs
along the flow direction. If the fan does not implement
Recommendation 4.3, then the energy equation of com-
ponents 2 and 3 also need to be evaluated. Once the mass
flow rate has converged to its solution, components 1, 2,
3, 4, 5, 6, 7 and 8 can be evaluated for forward flow.
Finally, components 7, 8, 5, 6, 4, 3, 2 and 1 can be eval-
uated for reverse flow.

4.4 Air loops

Figure 10 shows an air loop that consists of the heat ex-
changer that implements Recommendation 4.4, two fans
that implement Recommendation 4.3, and a return duct.
The room conserves mass and has a pressure equation for
the outlet pressure. Therefore, during the iterative solu-
tion of the mass flow rate, convergence is checked on the
pressure of the exhaust air.

The equations can be solved as follows: First, compo-
nents 1, 2, 3, 4, 5, 6 and again 2 are evaluated to solve
for the mass flow rate. Next, the energy equation can be
solved for forward flow by evaluating components 5 (to
get the state T ) and 6 to obtain the return air inlet temper-
ature of the heat exchanger. Then, components 1, 2, 3,
4 and 5 can be evaluated, which concludes the computa-
tions for the forward flow. For the reverse flow direction,
components 1, 5, 4, 3, 2, 6 and again 1 and 5 can be eval-
uated. Note that the order is not unique as one could have

started with component 5.

Remark 4.3 Note that the heat exchanger is called at
least four times if flow reversal is allowed, i.e., twice for
the iteration for the mass flow rate, once for forward flow
and once for reverse flow. Without flow reversal, the heat
exchanger is called at least three times. This indicates
the inherent inefficiencies when using FMUs for individ-
ual fluid flow components, rather than letting the sym-
bolic processor of a Modelica tool rearrange the equa-
tions to a block lower triangular form.

4.5 Control Loops

As discussed in Section 4.1.5, feedback control loops
for thermodynamic properties such as temperature or
humidity do not cause an algebraic loop if a dynamic
sensor is used. Specifically, if a sensor from the pack-
age Buildings.Fluid.Sensor is used and its time
constant tau is set to a value larger than zero, then
the sensor will output a state variable and hence the
feedback control loop does not cause an algebraic loop.
If tau=0 and the controller has direct feedthrough,
then such control loops for steady-state HVAC com-
ponents cause an algebraic loop. To avoid such al-
gebraic loops, the controller could be idealized and
implemented directly in the HVAC component, as is
done for example in the model Buildings.Fluid.
HeatExchangers.HeaterCooler_T.

5 Connector variables
In this section, we discuss the selection of the vari-
ables that will appear as inputs and outputs of the
FMU. We recall that Modelica.Fluid, Annex60.
Fluid and libraries that depend on it such as AixLib,
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Figure 10. FMUs connected in a loop with a heat exchanger between the outside air intake and the exhaust air.

Buildings, BuildingSystems and IDEAS, use
for the pressure the total pressure in Pascal, for the mass
flow rate kg/s and for the mass concentration for moist
air kg/kg total air. We will use the same variables for the
parameters, input and output signals of the FMU. While
the connectors in the above libraries use specific enthalpy
h, we will use the absolute temperature T in Kelvin in-
stead. The reasons for this selection are as follows:

1. If we were to use the specific enthalpy h as a connector
variable, then an FMU would not be self-contained.
Rather, to use the FMU, one would require knowledge
of the function that is used by the FMU to relate tem-
perature and mass fraction to enthalpy. Consequently,
exchanging models in FMUs would not be possible
without also providing such a function.

2. In Modelica, using h is motivated as it allows mix-
ing of fluid streams in a port, e.g., in a port, hmix =
∑i max(0, ṁi)hi/∑i max(0, ṁi), where hi is the en-
thalpy of the fluid that flows into the port. Using
temperature in the mixing equations that are gener-
ated by the fluid connections can give wrong results
as Tmix = ∑i max(0, ṁi)Ti/∑i max(0, ṁi) only holds if
the specific heat capacity cp is constant. However, this
is not a concern for FMUs as mixing in ports is sup-
ported in Modelica but not when FMUs are connected
among each other.

We also had to make a choice about using Kelvin or de-
gree Celsius for the temperature. Whereas users may be
more accustomed to use degree Celsius, we decided to
use Kelvin for the following reasons:

1. FMUs for model-exchange and for co-simulation not
only expose input and output signal, but also state
variable and parameters. The state variables in models
of the Buildings library are temperature in Kelvin.
Changing them to degree Celsius would require re-

designing the library, and hence using a unit conven-
tion in the Buildings library that is different from
what is used in the Modelica Standard Library.

2. Without such a redesign, FMUs would require some
temperatures in Celsius and others in Kelvin.

3. Many models have parameters for design tempera-
tures, and also compute outputs that are temperatures,
such as temperature sensors or the temperature of a
furnace. These quantities have units of Kelvin. Hence,
for all parameters and all such signals, a unit conver-
sion would need to be implemented, which would be
quite cumbersome. Moreover, such parameters and
variables may still show up as an FMU interface vari-
able, thereby introducing mixed units.

Because using mixed units is confusing and error-prone,
we use Kelvin and propose that tools handle unit
conversions between the computed quantities and the
quantities that are displayed to the user, as is done for
example in Dymola 2016.

With these design decisions, an FMU that has two
fluid ports called inlet and outlet will have the fol-
lowing interface variables.
inlet.m_flow

p
forward.T

X_w
C

backward.T
X_w
C

where m_flow is the mass flow rate, p is the abso-
lute pressure (which is conditionally removed if use_
p_in=false) and forward and backward are the
thermodynamic properties for the forward flow and
backward flow. If allowFlowReversal=false,
then backward is removed. The thermodynamic vari-



ables are temperature T in Kelvin, water vapor mass frac-
tion X_w in kg/kg total air, which is removed for water,
and trace substances C, which is removed if Medium.
nC=0.

6 Code optimizations lost by using

small FMUs
This section describes code optimizations that are no
longer done when models are shared as an FMU as op-
posed to sharing Modelica mode, because FMUs either
contain compiled code or C-code, neither of which al-
lows the level of computer algebra possible with Model-
ica. While the Modelica specification does not prescribe
the code optimization, most Modelica compilers are ex-
pected to conduct the optimizations described below.

1. Consider Figure 8. A Modelica compiler would use
one variable for the mass flow rate that enters the com-
ponent, and one for the leaving mass flow rate. Results
can be written efficiently by storing only the mass
flow rate ṁ1,b that leaves component 1, and declaring
in the output file that ṁk,b = ṁ1,b for k ∈ {2,3} and
ṁk,a = ṁ1,b for k ∈ {2,3,4}. However, such knowl-
edge is no longer available if multiple FMUs are used.
Hence, mass flow rates must be set, read, stored and
written to disk multiple times. Similar discussions
apply for thermodynamic properties that remain un-
changed in a component, such as T , Xw and C in an
air damper.

The efficiency loss that incurs if the output has
the same value as the input could, however, be
avoided using optional features of the FMI stan-
dard. For example, first, if variables share the same
valueReference in the modelDescription.
xml file, then they have the same value. Second, if
dependenciesKind="fixed" is declared in the
modelDescription.xml file, then the output is,
after fmi2ExitInitializationMode, equal to
a fixed factor times the input, and hence a master al-
gorithm can deduce that they are equal. Dymola 2016
uses the latter construct.

2. Consider Figure 8. If ṁ1,b is an iteration variable,
components 2 and 3 can be configured to compute
pressure drop as a function of the mass flow rate,
rather than mass flow rate as a function of the pres-
sure drop, thereby keeping the number of iteration
variables as small as possible. Such a selection is no
longer possible if a component is exported as an FMU.
See also Jorissen et al. (2015) for how this can affect
computing time.

3. Consider Figure 8. A Modelica compiler may do au-
tomatic differentiation of the Modelica code to com-
pute a symbolic expression of the Jacobian matrix that
is used to iteratively solve for the mass flow rate that
satisfies the constraint on the pressure.

4. In Figure 9, if the VAV terminals 5 and 6 both require
the evaluation of psychometric functions that depend
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Figure 11. Block that contains a replaceable model of a heater
and that defines input and output signals for export as an FMU.

on its inlet temperature and humidity, which are equal
for components 5 and 6, then Modelica compilers can
compute these functions once and assign the results to
both components using what is called common subex-
pression evaluation.

5. If no pressure drop calculation is requested, in Mod-
elica it is possible to remove all these computations.
In FMUs, while computations can be disabled with a
boolean parameter, there will still be an input-output
dependency, causing a system simulator to wrongfully
believe that there is an algebraic loop.

6. If multiple components form a system of equations,
Modelica compilers may solve it explicitly if it is
small and linear. If it is nonlinear, a Modelica com-
piler can use block-lower triangularization and tearing
to reduce its dimension (Cellier and Kofman, 2006).

As a drawback when allowing these optimizations, one
would require a Modelica translator and a C-compiler
on the host simulator. Also, for large Modelica mod-
els that involve buildings and HVAC systems, translation
and compilation time can be in the order of minutes in
tools such as Dymola or OpenModelica. This, however,
could be reduced by compiling only the HVAC system,
and by doing incremental parallel compilation.

7 Implementation
We implemented the package Buildings.Fluid.

FMI that contains connectors, blocks that have replace-
able thermofluid components, examples blocks that can
be exported as FMUs, and examples in which we con-
nected these example blocks to form system models.

Figure 11 shows such an example block. In the mid-
dle is the actual thermofluid component. In this case, it
is a heater or cooler, but it may be a whole subsystem
that contains multiple thermofluid components as long
as it extends Buildings.Fluid.Interfaces.

PartialTwoPort. To the left and right are adaptors
that convert between the signal flow and the acausal fluid
connectors. At the bottom is the computation of the pres-
sure difference across the component. This is required



as one adaptor needs to set the flow rate and the other
the pressure in order for the component to be balanced.
The connectors inlet and outlet contain the input
and output signals. The inlet connector is defined as
follows (most annotations have been removed for better
readability):
within Buildings.Fluid.FMI.Interfaces;
connector Inlet " Connec tor f o r f l u i d i n l e t "
import FMI = Buildings.Fluid.FMI;
replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium
" Medium model ";

parameter Boolean use_p_in = true
"= t r u e t o use a p r e s s u r e from c o n n e c t o r ";

parameter Boolean allowFlowReversal = true
"= t r u e t o a l l o w f l o w r e v e r s a l ";

input Medium.MassFlowRate m_flow
" Mass f l o w r a t e i n t o t h e component ";

FMI.Interfaces.PressureInput p
if use_p_in
" Thermodynamic p r e s s u r e ";

input FMI.Interfaces.FluidProperties
forward(

redeclare final package Medium = Medium)
" I n f l o w i n g p r o p e r t i e s ";

output FMI.Interfaces.FluidProperties
backward(

redeclare final package Medium = Medium)
if allowFlowReversal
" O u t f l o w i n g p r o p e r t i e s ";

end Inlet;

The connector Buildings.Fluid.FMI.

Interfaces.FluidProperties contains the
thermodynamic properties, and is defined as follows:
within Buildings.Fluid.FMI.Interfaces;
connector FluidProperties

" Type d e f i n i t i o n f o r f l u i d p r o p e r t i e s "
import FMI = Buildings.Fluid.FMI;
replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium

" Medium model ";
Medium.SpecificEnthalpy h

" S p e c i f i c thermodynamic e n t h a l p y ";
FMI.Interfaces.MassFractionConnector X_w
if Medium.nXi > 0
" Water vapor mass f r a c t i o n s per kg t o t a l a i r ";

Medium.ExtraProperty C[Medium.nC]
" P r o p e r t i e s c _ i /m";

end FluidProperties;

Note that we introduced the new connectors
Buildings.Fluid.FMI.Interfaces.

PressureInput and Buildings.Fluid.

FMI.Interfaces.MassFractionConnector.
The first was required to conditionally remove the
pressure from the connector. For example, if a user
is not interested in computing the pressure drop, then
setting the parameter use_p_in=false will elim-
inate p from the connector, remove all pressure drop
calculations and setting the pressure of the component to
Medium.p_default. We also decided to introduce
the new connector
within Buildings.Fluid.FMI.Interfaces;
connector MassFractionConnector =
Modelica.SIunits.MassFraction
" Water vapor mass f r a c t i o n per kg t o t a l mass ";

to avoid having a vector with one component for the
water vapor mass fraction. This was done so that the

FMUs have as an input or output for the water mass
fraction a scalar variable X_w rather than having a vector
with one component for the water vapor mass fraction.

In the Buildings library, when running the regres-
sion tests, for each model that is exported as an FMU
a file will be generated that shows the dependencies of
outputs, states and initial unknowns. This file can be in-
spected to see what dependencies thermofluid flow com-
ponents have, and the file will be used in subsequent re-
gression tests to verify that the dependencies do not in-
advertently change when models are revised.

8 Numerical experiments

8.1 Connector Variables

To benchmark the computing time with temperature T
versus specific enthalpy h in the FMU input and output,
we simulated an HVAC system. The HVAC system is a
VAV system with economizer, heating and cooling coil
in the air handler unit, and models of return duct, split-
ter, terminal heaters and controls. The FMUs either had
T or h as input and output variables. Internally, the mod-
els use enthalpy balance, and hence if T is an input and
output variable, a conversion from T to h is required for
the input and from h to T for the output. We exported
the components as nine FMUs from Dymola 2015 FD01
and connected and simulated them in Ptolemy II (Ptole-
maeus, 2014) for the same number of steps. To bridge
from Java used in Ptolemy II to FMI, we used the Java
Native Interface (JNI). This experiment did not show a
difference in computing time.

Next, we simulated the Modelica implementations
with T or h in the inlet and outlet signals, connected to
a first order room response, directly in Dymola with the
Rkfix3 integration algorithm, without use of any FMUs.
This experiment also showed no difference in computing
time.

These two experiments indicate that there is no perfor-
mance penalty of choosing T rather than h for the input
and output signals.

8.2 Code optimizations lost by using small
FMUs

To investigate the impact of lost code optimization, we
simulated the HVAC model of Section 8.1 that was ex-
ported as either one or as nine FMUs. Both systems were
simulated in Ptolemy II for 35,040 steps, which would
correspond to an annual simulation with an average time
step of 15 minutes. The simulation time was 2 seconds
for the case with one FMU, and 3.4 seconds for the case
with nine FMUs. Hence, using nine FMUs increased the
computing time by 70%. The difference is attributed to
the lost code optimization in FMUs, the overhead of call-
ing many FMUs, and transferring data between outputs
and inputs of FMUs. Note however that the version of
Ptolemy II that we used for our experiments does not



make use of the dependenciesKind information ex-
plained in Section 6, item 1.

9 Conclusions
The analysis in Section 4 showed that regularization
and the use of the inStream function can cause direct
input-output dependencies in FMUs that contain steady-
state HVAC equipment models. Recommendations to
avoid such dependencies are provided. We also pro-
vided various recommendations to implement approxi-
mate equations in thermofluid flow models that lead to
fewer input-output dependencies, and hence smaller cou-
pled systems of equations.

Our analysis showed that using multiple small FMUs
prevents system-level code optimization that is otherwise
done in Modelica. This was confirmed by our numerical
experiments.

For users, we provide a Modelica package that allows
export of thermofluid flow components and systems for
different media, with and without pressure drop calcula-
tions.

In summary, the efficiency of using FMUs for ther-
mofluid flow components strongly depends on compo-
nent design, and various code optimizations are lost
when using small FMUs rather than Modelica models.
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