

 LBNL-634E

Using SPARK as a Solver for Modelica

Michael Wetter, Philip Haves

Lawrence Berkeley National Laboratory

Michael A. Moshier

Chapman University

Edward F. Sowell

California State University, Fullerton

August 2008

Presented at SimBuild 2008,
Berkeley, CA
July 30 – August 1, 2008
and published in the Proceedings

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of
California.

USING SPARK AS A SOLVER FOR MODELICA

Michael Wetter1, Philip Haves1, Michael A. Moshier2 and Edward F. Sowell3

1Building Technologies Department, Environmental Energy Technologies Division,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

2 Dept. of Mathematics, Computer Science and Physics, Chapman University, CA 92866, USA.
3 Dept. of Computer Science, California State University, Fullerton, CA 92834, USA.

ABSTRACT

Modelica is an object-oriented acausal modeling lan-
guage that is well positioned to become a de-facto stan-
dard for expressing models of complex physical systems.
To simulate a model expressed in Modelica, it needs to be
translated into executable code. For generating run-time
efficient code, such a translation needs to employ alge-
braic formula manipulations. As the SPARK solver has
been shown to be competitive for generating such code
but currently cannot be used with the Modelica language,
we report in this paper how SPARK’s symbolic and nu-
merical algorithms can be implemented in OpenModel-
ica, an open-source implementation of a Modelica mod-
eling and simulation environment. We also report bench-
mark results that show that for our air flow network sim-
ulation benchmark, the SPARK solver is competitive with
Dymola, which is believed to provide the best solver for
Modelica.

INTRODUCTION

In 1996, a consortium formed to develop Modelica,
an equation-based, object-oriented, acausal language for
modeling of large physical systems. The goal of the con-
sortium is to combine the benefits of existing modeling
languages and to define a new uniform language for model
representation (Mattsson and Elmqvist 1997; Fritzson and
Engelson 1998). Over the past decade, the Modelica lan-
guage has gained significant adoption in various industrial
sectors and has been used in demanding industrial appli-
cations. It is well posed to become a de-facto standard for
modeling of complex physical systems that may contain
hydraulic, thermal, control, mechanical, electrical, elec-
tronic or process-oriented subsystems. There are several
modeling and simulation environments that assist model-
ers in developing models and that can translate models ex-
pressed in the Modelica language into an executable pro-
gram. OpenModelica is an open-source implementation
of such an environment.

Over the past twenty years, the Simulation Problem
Analysis and Research Kernel (SPARK) has been de-
veloped (Sowell, Buhl, and Nataf 1989; SPARK 2003).
SPARK uses the mathematical graph to describe and solve
nonlinear, deterministic, continuous differential algebraic
systems of equations (DAE systems) that are defined on

the real space. This solution approach has shown to be
competitive for the simulation of air flow networks that
are common in building energy systems and typically dif-
ficult and time-consuming to solve (Sowell and Haves
2001).

Given the significant adoption of the Modelica lan-
guage, its position to become a de-facto standard for mod-
eling of physical systems and its benefits for express-
ing large complex systems (Fritzson 2004) we investigate
the approach and benefits of making the SPARK solver
available within the OpenModelica environment. Having
available a computationally efficient free open-source im-
plementation of Modelica will lower the barrier for adopt-
ing Modelica by the rather first-cost sensitive small engi-
neering firms that are characteristic for the building indus-
try.
This paper addresses therefore

1. how SPARK can be used as a solver for the Open-
Modelica environment, enabling OpenModelica to
efficiently solve large, nonlinear sparse DAE sys-
tems, and

2. how SPARK compares in terms of reduction in prob-
lem size and execution speed with Dymola, which
contains what is believed to be the best symbolic and
numerical solver for Modelica (Cellier and Kofman
2006).

At the time of this writing, a prototype implementation of
SPARK in OpenModelica has been created.

Our computational results are based on an air flow net-
work of a variable air volume flow system (VAV system)
that is described by Haves et al. (1996). The algebraic
equation system is characteristic for the type of nonlinear
equation systems encountered when simulating building
heating, ventilation and air conditioning systems.

We will also discuss benefits of having additional Mod-
elica language constructs available that moves the bur-
den of creating efficient run-time models from the model
user to the tool that automatically parses the Modelica
model into executable code. Such a language construct
may allow a Modelica parser to automatically pick dif-
ferent function inverses for the equation that relates pres-
sure drop and mass flow rate. In our experiments, making
available to the Modelica parser one or the other inverse
led to a tenfold change in computation time.

In related work, Sowell and Haves (2001) compared
the computation time of SPARK and HVACSim+ (Park,
Clark, and Kelly 1985), for a variable air volume flow
system that serves six rooms. They attribute the 15 to 20
times faster computation time of SPARK to the graph de-
composition and cut set reduction. Wetter and Haugstet-
ter (Wetter and Haugstetter 2006) showed for a multizone
building energy model that Dymola was four times slower
than TRNSYS (Klein, Duffie, and Beckman 1976). This
despite the fact that the TRNSYS heat conduction model
is based on conduction transfer functions (Seem 1987)
that often lead to much faster integration than the finite
difference scheme that was used in the Modelica model.

SPARK METHODOLOGY
We will now give a brief description of the SPARK

methodology. See Sowell et al. (2004) for more details.
SPARK is best described in terms ofobjects, models,
andproblems. Here anobjectis an instance of an atomic
class1 which is based upon a single equation involving
the variables presented at its ports.2 Atomic classes
are acausal, i.e., there is no unique input or output set,
a characteristic achieved through provision of explicit
inverses for as many of the variables as possible. A
SPARK model is a collection of objects (instances of
atomic classes) linked together at their ports. The links
represent the model variables. Like atomic classes,
models are acausal. Finally, a SPARKproblemis defined
when the user specifies an input set.

Preprocessing of a SPARK problem begins by parsing
the input file, producing a more compact representation in
which all macro classes have been resolved into atomic
objects and redundant links are removed. Next, graph-
theoretic algorithms are used to construct an efficient nu-
merical solution sequence. First, abipartite graphis con-
structed with one node set representing objects and the
other representing variables. For each node in the object
set an edge is inserted for each of its ports that has been
provided an inverse, going to the corresponding node in
the variable node set. A matching algorithm is then used
to find acomplete matching, whereby each object node is
matched to a single variable node and vice versa. During
the numerical stage, this matching indicates which equa-
tion will be used to calculate each variable. After match-
ing, a directed graph (digraph)of the problem is con-
structed, with each node representing an object and pro-
ducing the variable to which it was previously matched.
The digraph is used to determine the actual numerical so-

1A macro class is available to represent larger modeling elements.
We omit them in this discussion since they are resolved to their con-
stituent atomic classes before graph-theoretic processing.

2Multi-valued atomic classes are allowed, but are omitted here for
brevity.

lution sequence.
Two reductions are performed on the digraph:com-

ponent decompositionand small cutset discovery.
Components are classified asstrong or weak. Weak
components are topologically sorted sequences of nodes,
i.e., having no cycles (closed circuits, loops). A strong
component is strongly connected in a graph-theoretic
sense, meaning it comprises a maximal set of nodes
and edges such that every node is reachable from every
other node, meaning that one or more cycles are present.
The set of components in the problem, including both
weak and strong, along with edges between components,
defines a topologically sortedreduced graph.3 From
a numerical perspective weak components represent
strictly sequential computations, i.e., no iterations,
whereas strong components require simultaneous, itera-
tive solution. The reduced graph prescribes the overall
problem solution sequence, i.e., each component is solved
in the topological sequence indicated by the reduced
graph, processing weak components sequentially and
strong components iteratively. Note that at this point we
have likely achieved the first stage of reduction since the
largest strong component is often far smaller than the
total number of problem unknown variables.

The second stage of reduction is small cutset discovery.
Here we seek to identify a small set of nodes that break all
cycles within the strong components using a contraction
algorithm similar to that described by Levy and Low
(1988). From the numerical perspective, the variables
corresponding to the nodes in the cutset comprise the
iteration vector. SPARK uses this vector and the equa-
tions in the strong component to compute a numerical
approximation to the Jacobian used in Newton-Raphson
iteration.4 For many problems, including flow networks,
the Jacobian is significantly smaller than the total number
of variables in the strong component, thus achieving the
second level of problem reduction.

The process described above often proceeds automati-
cally, producing a viable solution without user interven-
tion. However, sometimes no matching is found in a
well-posed problem simply because needed inverses were
omitted in the definitions of atomic classes. Or, a match-
ing may be found, but one that results in a solution se-
quence exhibiting poor convergence properties. To deal
with issues like this, the SPARK language provides op-
tional user specifications to guide the development of a
solution sequence. For example, the key wordRESIDUAL
allows the developer of an atomic class to use animplicit

3Note that due to the definition of strong component, there canbe no
cycles in the reduced graph.

4This is the basic solving method; several other strategies are em-
ployed if convergence is not progressing adequately.

inversewhen an explicit one is not available, and the key
words MATCH_LEVEL and BREAK_LEVEL can be used to
give hints to the matching and cutset algorithms. An-
other powerful feature isPREDICT_FROM_LINK which al-
lows an iteration variable to be initialized based on some
other problem variable, perhaps calculated from a simpli-
fied auxiliary equation. Seasoned users often use these
features to improve solution efficiency.

DYMOLA METHODOLOGY
When translating Modelica models into executable

code, Dymola usespartitioningandtearing to reduce the
dimensionality of the system of equations. Partitioning
discovers which equations are coupled to each other and
hence need to be solved simultaneously. Partitioning can
conceptually be described as converting the structure in-
cidence matrix5 to block lower-triangular form. (Since
the memory requirements to store the structure incidence
matrix is prohibitive for large system, the matrix is not
actually formed but rather used here for the sake of expla-
nation.) If partitioning yields a true lower-triangular form
(i.e., a matrix with only scalars on the diagonal, and ze-
ros everywhere above the diagonal), then all equations can
be solved individually. In general, however, the diagonal
contains matrices, although their dimension is typically
considerably smaller than the dimension of the original
system. The partitioning algorithm in Dymola is based on
the algorithm of Tarjan (1972).

To reduce the size of an individual coupled system of
equation, Dymola uses a process calledtearing. Suppose
there is a system of equations with an unknownx ∈ R

n,
with n > 1, and letx be partitioned into the two vectorsx1

andx2. In tearing, the system of equation is rewritten in
the form

Lx1 = f 1(x2), (1)

0 = f 2(x1,x2), (2)

whereL is a lower triangular matrix with constant non-
zero diagonals andx2 is called the tearing variable.
Now, the solver provides a guess value forx2, obtainsx1

from (1) and computes a new value forx2 using (2). This
procedure is repeated iteratively untilx2 converges to a
solution. Dymola’s tearing algorithm guarantees that the
selection of tearing variables never leads to a division by
zero at run-time, which is non-trivial to implement since
parameter values can change after compilation. The de-
tails of the tearing algorithm implemented in Dymola are
unpublished. For a more detailed discussion of Dymola’s
algorithms, including its algorithms for index reduction
and inline integration, which have not been used in our al-

5For a system of equationsf (x) = 0, the structure incidence matrix
is a matrix whose element(i, j) is 1 if f i(·) depends onxj , and zero
otherwise.

gebraic problems, we refer to Cellier and Kofman (2006)
and Elmqvist, Otter, and Cellier (1995).

APPROACH FOR IMPLEMENTING SPARK
IN OPENMODELICA

To understand the potential for integrating the SPARK
analyzer and solver into OpenModelica, one must first
recognize that these components of SPARK are indepen-
dent of the SPARK language. The algebraic aspects of
SPARK analysis requires only that the DAE system of
equations be presented in a general form that includes
two main specifications:

• A bipartite dependency graph indicating which vari-
ables appear in which equations.

• For each individual equation occurring in the model,
a list of inverses, i.e., C++ functions that represent a
solution of the equation in the formy = f (x) where
f : R

n → R for somen∈ N.

Importantly but somewhat subtly, an inverse is not re-
quired to be explicit. That isy = f̂ (x, y) where f̂ : R

n×
R → R for somen ∈ N is permissible and can be auto-
matically generated using theRESIDUAL keyword. The
analyzer will generally be able to construct a more effi-
cient solution if fewer implicit inverses are present, but
SPARK manages them with a graceful degradation of per-
formance.

The analyzer performs the matching described above.
After the matching, the system is essentially a directed
graph in which a node represents an equation in the form
y = f (x) and an edge from such a node represents the ap-
pearance of the variabley in the independent variables
of another inverse. SPARK then performs the graph-
theoretic equivalent to Dymola’s partitioning algorithm,
and finally constructs a small cut-set.

The cut-set construction serves the same purpose as
the tearing algorithm of Dymola. That is, it identifies a
subset of the variables occurring in a partition that breaks
all dependency cycles in the partition.

Integration of SPARK into the OpenModelica system
involves the following main tasks.

1. Constructing the bipartite graph of variables versus
equations from a Modelica model.

2. Deriving, or in some way specifying, inverses of
equations.

3. Expressing heuristic informationMATCH_LEVEL and
BREAK_LEVEL in the Modelica model, and commu-
nicating it to the SPARK analyzer.

The first of these is essentially a task of exploiting the
OpenModelica open source architecture to gain access to
information that encodes which problem variables appear
in which equations. All of this information is already
present in OpenModelica’s parser, so the task is simply

to extract it. The second task would, in principle, be
implemented best using an open source symbolic alge-
bra system such as SAGE6. In the first version, however,
we support the derivation of inverses for equations built
from a short list of basic functions. For more complicated
equations, we require the user to provide the inverses ex-
plicitly in the form of annotations on equations. In later
versions, we anticipate integrating a full symbolic algebra
system with the SPARK/OpenModelica system. For the
third task, we again use Modelica annotations. Because
the annotations are maintained by OpenModelica’s sym-
bol table, this is also a relatively simple task.

Although experienced SPARK users exploit
PREDICT_FROM_LINK and other features to improve
the numerical behavior of integration, these features are
not supported in the current integration of SPARK in
OpenModelica. We anticipate supporting these features
through the annotation mechanism of Modelica.

Currently, we have modified the OpenModelica parser
to emit a form of the bipartite graph. This confirms that
the open source architecture can be successfully exploited
for this integration task. However, putting this informa-
tion in a format that is usable by SPARK is not yet com-
pleted. Also, generation of inverses and communication
of the annotated information regardingMATCH_LEVEL and
BREAK_LEVEL to the SPARK analyzer are not yet imple-
mented. The generation of inverses is a big design task, so
in the earliest version we will produce inverses by hand.

Two additional open issues remain to be resolved in
future versions. First, to be fully functional as a part of
OpenModelica, the SPARK solver must communicate its
results and error messages back to OpenModelica via the
same API as the system’s native solver. In principle, this
will be possible, but we have deferred implementation un-
til we have an otherwise functioning prototype. Second,
the Modelica language supports discrete variables and
variables that are set via algorithms expressed in the Mod-
elica language as opposed to being constrained by acausal
equations. SPARK provides limited indirect support for
discrete variables via thePREDICT_FROM_LINK feature. It
also provides algorithmic control over variables, but the
algorithms are expressed in C++. Thus these present sig-
nificant design problems for the SPARK/OpenModelica
integration. In principle, a code generator can be imple-
mented to translate Modelica algorithms into C++ code
usable by SPARK, but we have not yet engaged in the de-
sign of such a translator.

6http://www.sagemath.org/

NUMERICAL BENCHMARKS
Problem Definition

The simulation model represents the airflow network
of a variable air volume flow system in building E 51 at
the Massachusetts Institute of Technology. The models
are described in detail by Haves et al. (1996). To facil-
itate the model implementation in SPARK, we modeled
the pressure and mass flow distribution, but not the tem-
perature, enthalpy and species concentration. In Haves
et al. (1996) as well as in our implementations, the air-
flow network is described by a system of algebraic equa-
tions, i.e., the pressure dynamics of the room is neglected.
All flow resistances are based on a partial model that
computes ˙m= f (∆p) or its inverse (in an explicit form),
∆p = g(ṁ), where f (·) andg(·) are implemented using
the functionsregSquare2 andregRoot2 from the pack-
ageModelica_Fluid 1.0β2. The medium, however, is
implemented using a class of typerecord that defines the
density and viscosity7.

Fig. 1 shows the Dymola representation of the air flow
network of the system model. The red connectors are con-
stant pressure boundary conditions. The green connectors
are control signals, which are defined as ramps as shown
in Fig. 3. The blue lines are air flow paths, with dashed
lines indicating connections that connect the ports of dif-
ferent instances of a vectorized model of five rooms. The
five rooms have been vectorized to scale the problem size.
We call this five rooms asuite, and denote with the pa-
rameterNsui ∈ {1,2, . . . ,5} how many instances we used.
Fig. 2 shows the flow network of one suite. Since there
is one more room at the end of the last suite (shown as
the modelroo50 in Fig. 1), the number of rooms is be-
tween six and 26, and is equal to 5Nsui+ 1. The model
has constant properties for the atmospheric pressure.

Experiments of Symbolic and Numerical Solver

We conducted experiments using Dymola 6.0d and
SPARK 2.10v7. The experiments were run on Windows
XP on an Intel Core 2 Duo Processor 6600 @ 2.40 GHz.

In Dymola, an integration algorithm needed to be
selected even for the algebraic problem. We selected the
Euler method. In Dymola and SPARK, we simulated
the problem on the time intervalt ∈ [0, 1] using a fixed
step size and output interval of 0.01 seconds. We set
the solver tolerance to 10−5 and the number of suites to
Nsui = {1,2, . . . ,5}. For the simulation withε = 10−5,
the maximum relative error between the supply fan mass
flow rate computed by Dymola and SPARK was 0.04%
for Nsui = 1 and 1% forNsui = 5, which shows that both

7Future versions of our library will be based onModelica.Media,
but we used a simpler implementation to facilitate the implementation
of a model with identical physics in SPARK.

Figure 1: System model of the air flow network as implemented in Dymola.

Figure 2: Model of the air flow network of one suite as
implemented in Dymola.

simulators implemented the same model.

In Dymola, we run the following experiments:

1. For the flow relation, we setfrom_dp = true for
all flow resistances. Hence, Dymola computes ˙m =
f (∆p).

2. For the flow relation, we setfrom_dp = false for
all flow elements. Hence, Dymola computes∆p =
g(ṁ).

In SPARK, we run the following experiments:

1. No use of the SPARKMATCH_LEVEL keyword has
been made.

2. In the flow splitter, the SPARKMATCH_LEVEL key-
word was set to aid the symbolic formula manipula-
tion in tearing the equation graph.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

time (s)

y fa
n in

 (
1/

s)

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

time (s)

y da
m

 in
 (

de
gr

ee
s)

supply
return

OSA
VAV

Figure 3: Control signals used in the numerical experi-
ments. The top figure shows the fan revolutions, and the
bottom figure the damper opening angle. OSA denotes the
outside air dampers and VAV denotes VAV box damper.

All SPARK cases were run with default values for solv-
ing methods, i.e., they employ non-sparse LU decomposi-
tion, method 2.8 For the problem with 5 suites, three other
methods have been tested: Gaussian gives about the same
execution time and Sparse LU is a little slower. The SVD
method fails to solve at about time=0.73.

Results

Tab. 1 shows the dimension of the biggest nonlinear
system of equations. For SPARK, there was only one

8Note that the SPARK reference manual wrongly says the default is
Gaussian.

Table 1: Dimension of biggest nonlinear system of equa-
tions. For the SPARK, no ML denotes noMATCH LEVEL
and with ML denotes withMATCH LEVEL.

Nsui SPARK Dymola
no ML with ML ṁ= f (∆p) ∆p = g(ṁ)

1 21 18 41 26
2 36 34 71 47
3 51 50 101 66
4 66 65 131 87
5 81 80 161 106

strong component with the dimension of the nonlinear
system of equations as shown in Tab. 1. In addition, there
were three weak components. For Dymola, for the ex-
periments that use the function ˙m= f (∆p), the nonlinear
system of equations is solved for the pressure at ports of
the flow elements, whereas for the experiments that use
∆p = g(ṁ), the unknowns are the mass flow rates and
some pressures variables. There is one nonlinear system
of equations of the size shown in Tab. 1. In addition,
for all Dymola experiments, there are also 5NSui+1 one-
dimensional system of equations for the flow coefficients
of all variable air volume flow boxes.

For the experiments with∆p = g(ṁ), Dymola finds a
symbolic expression for all Jacobian matrices, as it does
for all one-dimensional algebraic equations. For the other
experiments, Dymola computes a numerical approxima-
tion for the largest Jacobian, i.e., the Jacobian with the
dimension listed as in Tab. 1. SPARK always computes a
numerical approximation to the Jacobian.

1 2 3 4 5
0

2

4

6

8

10

12

N
Sui

t C
P

U
 (

s)

SPARK (no match level)
SPARK (with match level)
Dymola (∆p given)
Dymola (m given)

Figure 4: Comparison of computation time.

Fig. 4 shows the computation time for Dymola and
SPARK, both with a solver tolerance of 10−5. Run

times are shown vs. problem size, the latter expressed as
number of suites.

In Dymola, changing the value of the parameter
from_dp so that Dymola uses∆p = g(ṁ) for all flow re-
sistances yields a tenfold reduction in computation time
for Nsui = 5. In view of this reduction in computation
time and in the dimensionality of the nonlinear system
of equations, a Modelica language extension that allows
a symbolic processor, instead of the user, to select the
most appropriate inverse for complicated functions that
the symbolic processor cannot invert automatically would
be desirable.

In contrast, in SPARK atomic classes, a model
builder routinely provides multiple inverses, and the
matching process determines which of these inverses
gets selected for use in the numerical stage. As a
performance-enhancing feature, a user can provide hints
for the preferred matchings. Based on experience with
pressure/flow networks in general we reasoned that the
first resistance in each zone branch should be used to
calculate mass flow rate from pressure drop, since that
would allow the pressure drop across all others in the
branch to be calculated sequentially. To express this
domain knowledge theMATCH_LEVEL key word on that
particular resistance in all zones was used to encourage
a matching that favored this strategy. The solution
sequence thereby determined used the expected matching
in all but one of the zones. Apparently, other portions of
the system, e.g., the fans and mixing box, exert their own
influence on the matching process, working against our
effort to impose a strategy based only on the zone flow
branches. Nonetheless, the found matching produced a
solution strategy that gave shorter solution times relative
to the no-hint solutions.

Returning to the plot in Fig. 4, we can see that both
Dymola and SPARK yield solutions for all experiments.
Interestingly, the solution times for the two tools are
quite different if Dymola is instructed by the user to
use ṁ = f (∆p), but become comparable for the other
configurations. We will now discuss reasons for the
different computation time.

To explain these difference, we consider the steps in the
solution process and their contribution to solution time.
When using Newton-based solution schemes for nonlin-
ear equations, as SPARK and Dymola do, the main com-
ponents of the time to perform a single Newton iteration
are: (a) evaluation of functions (residuals or inverses), (b)
computation of the elements of the Jacobian, and (c) so-
lution of the linear set to arrive at the next estimate of the
break variables. Consequently, overall solution time can

be improved by more efficient performance of any one of
these components or by reducing the number of Newton
iterations.

Both programs do symbolic reduction in an effort to
reduce component (c), so we look first at this component.
For Nsui = 5, we observe that the largest cutset found
by Dymola drops from 161 to 106 when the selection
of flow-pressure drop inverse is changed, resulting in
a 34% reduction in the size of the linear set. Since
solution of linear systems is typicallyO(n2) to O(n3),
one might expect the solution time to drop by a factor of
10(= 1/0.342) to 25(= 1/0.343). We indeed observed a
tenfold reduction in computation time.

The user intervention with SPARK changes the cutset
only from 80 to 81, so we should not expect much im-
provement in component (c). This is the principal reason
we see far less dramatic change in solution time. That
which we do see must be due to either component (a),
(b), or reduction in Newton iterations. Optional diag-
nostic reports allow us to investigate these possibilities.
Fig. 5 shows the total solution times (upper curves), and
the time spent solving the linear set in the Newton step
(lower curves), what we have called the component (c)
time. Note that the latter is essentially independent of
user effect, as we should expect because the cutset size
changed very little. Thus all of the solution time reduction
was due to reduction of component (a) or (b). Moreover,
we see that the component (c) time is a small fraction of
the total time, meaning that any further significant reduc-
tions must come from these components, or reduction of
the number of Newton iterations.

+
+

+

+

+

+ + + + +b
b

b

b

b

b b b b b

number of break variables

normalized computation time

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1.0

Figure 5: Normalized SPARK solution time for the whole
simulation (upper two curves) and normalized time spent
to solve the linear system of equations of the Newton iter-
ation (lower two curves). The bold solid curves are with
MATCH LEVEL specified, the thin dashed curves are with-
outMATCH LEVEL specification.

The next step towards understanding the results we

show in Fig. 6 the average number of Newton iterations
as a function of cutset size. We see a weak effect of cut-
size, but a difference of about 1 to 2 iterations for each
solution, or about 25% for the largest problem size,9 ex-
plaining about half of the observed 50% solution time re-
duction for that case. The underlying reason is probably
that the new matching reversed the direction of calculation
around circuits in the computation graph, thus improving
convergence properties.

+
+ +

+ +

b
b

b b
b

number of break variables

average number of Newton iterations

0 10 20 30 40 50 60 70 80 90 100
6
7
8
9

10

Figure 6: Average number of Newton iterations with
MATCH LEVEL (lower points) and withoutMATCH LEVEL
(upper points) and linear fit.

As a final step we analyze the number of function eval-
uations for solving the strong component. In Fig. 7, the
upper two curves are for the total number of evaluations,
while the lower two are for calculations related to updat-
ing the break values. The two lower curves are essentially
the same because the cutset size change was small. The
difference between the upper and lower curves is more
important, because it represents the function evaluations
needed to calculate the numerical approximation to the Ja-
cobian. Since Dymola reportedly calculates the Jacobian
matrices symbolically for the experiments withfrom dp
= true, this suggests that the main difference in solution
times may be attributable to that methodology.

CONCLUSIONS
The work performed in developing a prototype

SPARK/OpenModelica implementation confirms that the
OpenModelica software architecture can be used to emit
the bipartite graph for subsequent use by SPARK. The
prototype work did not reveal any fundamental problems
for such an integration, although significant design chal-
lenges with regard to addressing discrete variables need to
be addressed.

Our numerical experiments give us confidence that
SPARK’s performance is for the solution of algebraic set
of equations defined by the air flow problem comparable
with Dymola, which is believed to provide the best sym-
bolic and numerical solver for Modelica. In view of the
prototype work and the encouraging numerical results, we

9Keep in mind that the system is solved at 101 steps in time.

+
+

+

+

+

+ + + + +b
b

b

b

b

b b b b b

number of break variables

number of function evaluations

0 10 20 30 40 50 60 70 80 90100
0 ·106
2 ·106
4 ·106
6 ·106
8 ·106

10·106
12·106
14·106
16·106
18·106
20·106

Figure 7: Total number of SPARK function evaluations to
solve the strong component (upper two curves) and num-
ber of function evaluations to compute the residuals of
the strong component (lower two curves). The bold solid
curves are withMATCH LEVEL specified, the thin dashed
curves are withoutMATCH LEVEL specification. The dif-
ference between the two sets of curves are the number of
function evaluations to compute the numerical approxi-
mation to the Jacobian.

believe that integrating SPARK into OpenModelica would
be a viable path for providing a free Modelica implemen-
tation to building energy analysts which are typically em-
ployed by small companies that are sensitive to software
costs, thereby decreasing the barrier for adopting Model-
ica by the building energy community.

ACKNOWLEDGMENT
This research was supported by the Assistant Secretary

for Energy Efficiency and Renewable Energy, Office of
Building Technologies of the U.S. Department of Energy,
under Contract No. DE-AC02-05CH11231.

REFERENCES
Cellier, François E., and Ernesto Kofman. 2006.Con-

tinuous System Simulation. Springer.

Elmqvist, H., M. Otter, and F. Cellier. 1995, June. “In-
line Integration: A New Mixed Symbolic/Numeric
Approach for Solving Differential– Algebraic Equa-
tion Systems.”Keynote Address, Proc. ESM’95. Eu-
ropean Simulation Multiconference, Prague, Czech
Republic, xxiii–xxxiv”.

Fritzson, Peter. 2004.Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1. John
Wiley & Sons.

Fritzson, Peter, and Vadim Engelson. 1998. “Modelica
– A Unified Object-Oriented Language for System
Modeling and Simulation.”Lecture Notes in Com-
puter Science, vol. 1445.

Haves, P., L. K. Norford, M. DeSimone, and L. Mei.
1996. “A Standard Simulation Testbed for the Eval-
uation of Control Algorithms & Strategies.” Final
report 825-RP, ASHRAE, Atlanta, GA.

Klein, S. A., J. A. Duffie, and W. A. Beckman.
1976. “TRNSYS – A Transient Simulation Pro-
gram.” ASHRAE Transactions82 (1): 623–633.

Levy, Hanoch, and David W. Low. 1988. “A contraction
algorithm for finding small cycle cutsets.”Journal of
Algorithms9 (4): 470–493.

Mattsson, Sven Erik, and Hilding Elmqvist. 1997,
April. “Modelica – An international effort to de-
sign the next generation modeling language.” Edited
by L. Boullart, M. Loccufier, and Sven Erik Matts-
son,7th IFAC Symposium on Computer Aided Con-
trol Systems Design. Gent, Belgium.

Park, Cheol, Daniel R. Clark, and George E. Kelly.
1985, August. “An overview of HVACSIM+, a
dynamic building/HVAC/control systems simulation
program.” Proceedings of the 1st International
IBPSA Conference. Seattle, WA, 175–185.

Seem, J. E. 1987. “Modeling of Heat Transfer in Build-
ings.” Ph.D. diss., University of Madison-Wisconsin.

Sowell, Edward F., W. Fred Buhl, and Jean-Michel
Nataf. 1989, June. “Object-Oriented Programmingg,
Equation-Based Submodels, and System Reduction
in SPANK.” Proceedings of the Second International
IBPSA Conference. Vancouver, BC, Canada, 141–
146.

Sowell, Edward F., and Philip Haves. 2001. “Efficient
solution strategies for building energy system simu-
lation.” Energy and Buildings33 (4): 309–317.

Sowell, Edward F., Michael A. Moshier, Philip Haves,
and Dimitri Curtil. 2004, August. “Graph-theoretic
Methods in Simulation Using SPARK.” Technical
Report LBNL-55522, Lawrence Berkeley National
Laboratory, Berkeley, CA.

SPARK (Lawrence Berkeley National Laboratory and
Ayres Sowell Associates Inc.). 2003.SPARK, Refer-
ence Manual. Berkeley, CA, USA: Lawrence Berke-
ley National Laboratory and Ayres Sowell Asso-
ciates Inc.

Tarjan, Robert. 1972. “Depth-First Search and Linear
Graph Algorithms.”SIAM Journal on Computing1
(2): 146–160.

Wetter, Michael, and Christoph Haugstetter. 2006, Au-
gust. “Modelica versus TRNSYS – A Comparison
Between an Equation-Based and a Procedural Mod-
eling Language for Building Energy Simulation.”
Proc. of SimBuild. IBPSA-USA, Cambridge, MA.

