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Abstract 

 
Buildings consume more than one third of the world’s total primary energy. Weather plays a 

unique and significant role as it directly affects the thermal loads and thus energy performance of 
buildings. The traditional simulated energy performance using Typical Meteorological Year 
(TMY) weather data represents the building performance for a typical year, but not necessarily 
the average or typical long-term performance as buildings with different energy systems and 
designs respond differently to weather changes. Furthermore, the single-year TMY simulations 
do not provide a range of results that capture yearly variations due to changing weather, which is 
important for building energy management, and for performing risk assessments of energy 
efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) 
to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 
2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two 
design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the 
AMY data are compared to those from the TMY3 data to determine and analyze the differences. 
Besides further demonstration, as done by other studies, that actual weather has a significant 
impact on both the peak electricity demand and energy use of buildings, the main findings from 
the current study include: 1) annual weather variation has a greater impact on the peak electricity 
demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 
weather data is not necessarily representative of the average energy use over a long period, and 
the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the 
weather impact is greater for buildings in colder climates than warmer climates; 4) the weather 
impact on the medium-sized office building was the greatest, followed by the large office and 
then the small office; and 5) simulated energy savings and peak demand reduction by energy 
conservation measures using the TMY3 weather data can be significantly underestimated or 
overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully 
assess the impact of weather on the long-term performance of buildings, and to evaluate the 
energy savings potential of energy conservation measures for new and existing buildings from a 
life cycle perspective.  
 
Keywords: Actual meteorological year; Building simulation; Energy use; Peak electricity 
demand; Typical meteorological year; Weather data  
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1. Introduction 
 

Buildings consume more than one third of the world’s total primary energy. The IEA Annex 
53 [1] identified and studied six influencing factors on building energy performance, including 
climate, building envelope, building equipment, operation and maintenance, occupant behavior, 
and indoor environmental conditions. Among these influencing factors, climate plays a unique 
and significant role. Weather contributes directly and significantly to the variations of thermal 
loads and energy use of HVAC (heating, ventilation, and air conditioning) systems, lighting (for 
buildings with daylighting controls), and energy production from solar-based renewable systems. 
In residential and commercial buildings in the US, heating and cooling accounts for more than 
40% of end-use energy demand. It is important to understand and estimate the impact of weather 
on the long-term performance of buildings in order to support policy making, and to allow 
building operators and owners to respond better to climate changes in terms of building energy 
supply and demand. Additionally, considering the impact of yearly variations in weather can 
improve the evaluation of investment risks of energy conservation measures (ECMs) for new and 
existing buildings by taking into account their life-cycle energy and cost savings. 

The accuracy of building energy simulations and economic assessments of renewable energy 
systems depend on the availability of reliable weather data. There are two primary sources of 
weather data that are used to generate weather data files used in building simulation: measured 
weather data using physical sensors and observations, and simulated data using mathematical 
weather models. Various methods to generate annual hourly weather data have been developed in 
the past. Such weather data include the typical metrological year (TMY), the test reference year 
(TRY), the weather year for energy calculation (WYEC), the design reference year (DRY), as 
well as the synthetically modeled meteorological year (SMY). However, the lack of long-term 
weather records usually limits the generation of typical annual weather data files in any format  
[2]. 

A TMY weather file contains hourly values of solar radiation and meteorological elements 
for a 1-year period. The 12 typical meteorological months (TMMs) are selected from various 
calendar months in a multi-year weather database. The criteria for TMM selection is based on the 
statistical analysis and evaluation of four weather parameters: the ambient dry-bulb temperature, 
the dew-point temperature, the wind speed and the global solar radiation. Algorithms are used to 
smooth discontinuities from the data to avoid drastic changes between two adjacent months 
selected from different years. The first generation of TMY weather data for the U.S. is derived 
from the 1952-1975 SOLMET/ERSATZ database, while the second generation of data (TMY2) 
is derived from the 1961-1990 National Solar Radiation Database (NSRDB) covering 239 U.S. 
locations. The latest, third generation data (TMY3) is derived from the 1976-1990 and 1991-
2005 National Solar Radiation Data Base (NSRDB). TMY3 covers 1,020 U.S. locations. TMY, 
TMY2 and TMY3 data sets cannot be used interchangeably because of differences in the data 
structure such as time (solar versus local), formats, elements, and units. The intended use of 
TMY weather data is for computer-based building performance simulations of solar energy 
conversion systems and building systems to facilitate performance comparisons of different 
system types, configurations, and locations in the U.S. and its territories. Because they represent 
typical rather than extreme conditions, they are not suited for designing systems to meet the 
worst-case conditions occurring at a location [3]. For the calculations of peak cooling and 
heating loads of buildings, and sizing HVAC equipment, design day weather data are used. 
Design-day weather data tend to represent more extreme weather conditions in order to 



guarantee that HVAC systems can meet peak loads for most of the time during their life cycle. 
Various methods are used to create design-day weather data [4].  

As TMY data may not be available for some cities or sites, SMY weather data provide a 
practical and useful alternative. SMY weather data can be generated from monthly average or 
total values of weather parameters using stochastic models and auto-regressive moving average 
processes to represent the seasonal and daily weather variations [5]. Such stochastic weather 
models can be used to generate AMY weather data for use in deterministic building simulations, 
or together with a stochastic internal loads model, can be integrated with a building thermal 
model to obtain directly the probability distribution of building performance to investigate the 
uncertainty caused by the random meteorological processes and internal heat gains [6].  

A new online weather data service with immediate access to precision, localized weather 
history, current conditions and forecasts are presented by Keller and Khuen [7]. Localized 
weather data is created by integrating all available ground station observations with high-
resolution datasets from NOAA (National Oceanic and Atmospheric Administration). Both 
historical and forecast time series data are available for direct user access and application/system 
access through Web Data Services and API interfaces. 

Selecting appropriate weather data to be used in building performance simulation is 
important. The use of inappropriate weather data can result in large discrepancies between the 
predicted and measured performance of buildings. In the late 1970s, Freeman [8] evaluated how 
well TMY represents actual long-term weather data based on simulations of an active residential 
space solar heating and cooling system for six U.S. climates, Albuquerque, Fort Worth, Madison, 
Miami, New York, and Washington DC. High variability of the weather and solar heating system 
performance year to year was noted. Crawley et al [9] compared the influence of the various 
weather data sets on simulated annual energy use and cost. Using different weather data sets can 
cause significant variations in annual energy consumption and cost from simulation results. The 
results show that the TMY and the WYEC data sets represent the closest typical weather patterns. 
Simulated results using the TMY weather data provides the average/typical energy use for 
buildings, but the peak electricity demand predictions and uncertainty analyses based on TMY 
are often not reliable because a single year cannot capture the full variability of the long-term 
climate change [10]. In view of the long-term climate change, the time period assigned for TMY 
selection should include the most recent meteorological data and should be reasonably long to 
reflect well the weather variations [11]. Most of the available TMY weather data are from 
weather stations located at airports. It is possible to create a new TMY file localized to a building 
location by integrating the weather station observations with gridded reanalysis data. However, 
there are limited complete weather data collected by weather stations over 15 to 30 years, so 
TMY data is only available for only 1,020 locations. Furthermore, some of the TMY weather 
data files were created up to 20 years ago. They are less representative of the typical present day 
climate and do not describe extreme weather conditions. Compared with the TMY weather data, 
the AMY is created from actual hourly data for a particular calendar year. AMY weather data is 
particularly useful for modeling years with extremes in weather and verifying the energy 
performance of buildings. However, as with the TMY weather data, the AMY weather data needs 
to be chosen as close to the building location as possible. 

The potential impacts of various types of weather forecast models, weather data, and building 
prototypes have been studied from a number of perspectives. A prototypical small office building 
was modeled operating at three energy efficiency levels, using typical and extreme 
meteorological weather data for 25 locations, to study various predicted climate change and heat 



island scenarios [12]. The largest change to the annual energy use due to climate change was 
seen in the temperate, mid-latitude climates, where there was a swapping of energy use from 
heating to cooling. The heating energy was reduced by more than 25% and cooling energy was 
increased by up to 15%. The TMY weather data provides more localized and comprehensive 
climate indicators to further support the HVAC system design in buildings [3, 13]. The space 
cooling plays a major role in determining the magnitude and timing of peak electricity demand. 
The archived General Circulation Model (GCM) projections were statistically downscaled to the 
site scale, which were then used for input to building cooling and heating simulations to study 
the California specific impact of global warming on building energy consumption [14]. The 
IPCC’s different carbon emission scenarios predict that climate change will lead to a 25% to 50% 
increase in space cooling electricity use over the next 100 years. Under the worst case carbon 
emission scenario the total energy consumption will increase between 8% and 20%. The energy 
performance of an office building in Hong Kong, using multi-year weather data sets was 
simulated to investigate the diversity in simulation predictions [15]. The results concluded that 
the choice of weather data sets was not crucial for the comparative energy studies during the 
initial design stage. However, it becomes important to select a particular standard weather year 
data set when absolute energy consumption data are required. Similar studies on office buildings 
were conducted in five major climate zones in China by using multi-year weather databases as 
well as TMY data [16-18]. The results showed a decreasing trend for heating loads and an 
increasing trend for cooling loads due to predicted climate change. The monthly loads and 
energy use profiles calculated using the TMY and long-term means profiles fell well within the 
maximum and minimum ranges of the 30-year individual predictions. It was concluded that 
building performance predictions using TMY weather data can be used in comparative energy 
efficiency studies. 

In recent years, various types of weather data have been used in building simulation to 
evaluate energy performance and demand response. Accurate estimation of building performance 
relies on the appropriate selection of accurate weather data. The quality of weather data and their 
impact on building cooling and heating loads and energy consumption were studied by 
comparing three weather datasets for a specific location for the calendar year 2010 [19]. The 
three sources of data included site measured data and AMY weather data provided by two 
vendors. Key weather variables from the three datasets were compared statistically, and building 
loads and energy use were simulated using EnergyPlus version 6.0. The study concluded that the 
maximum difference in individual hourly weather variables can be as high as 90%, annual 
building energy consumption can vary by ±7%, while monthly building loads can vary by ±40% 
when using different weather datasets. 

Using TMY weather data to calculate the energy use in buildings aims to represent the 
average or typical values. However, different types of buildings with different energy service 
systems and operation strategies have different responses to weather. Furthermore, a single set of 
energy use results from TMY simulations does not provide the range of variations due to the 
change of weather from year to year. The typical life of a building is more than 50 years; 
therefore the assessment of long-term building performance becomes very important. TMYs are 
often recommended to be used in building simulations to evaluate and compare performance of 
design alternatives under the assumption that energy savings from a design alternative would not 
vary noticeably with yearly weather variations. This assumption is not necessarily true. Although 
previous studies have demonstrated actual weather has a significant impact on peak electric 
demand and energy use in buildings, there are limited studies that focus on investigating the 



sensitivity of energy savings and peak demand reduction of energy conservation measures to the 
yearly variation of weather, using multi-decade AMY weather data across a complete coverage 
of climate zones for typical commercial buildings. This study aims to address that gap in the 
literature. 

This study does not touch the topics of previous studies on impacts of long-term climate 
change or local heat island effects on building performance; instead it focuses on providing 
insights to the following important questions: 

1) How significant is the weather impact on both the peak electricity demand and 
building energy use?  

2) Does the simulated building energy use using the TMY3 weather data represent the 
average or typical energy use over a 30-year period? 

3) Building simulation results from which climates are greater affected by using different 
weather data sets?  

4) What types of office buildings are subject to the greatest impact of weather?  
5) What are the risks from using the TMY3 weather data in building simulations to 

evaluate the energy savings and electricity demand reduction of energy efficiency 
technologies? 

Through better understanding of which building technologies and system designs are more 
sensitive to yearly weather variation, building designers, owners, operators, and policy makers 
can make more informed decisions on energy efficiency implementations to reduce peak 
electricity demand and building energy use. 

 
2. Methodology 
 
2.1. Overview  
 

To study the impact of weather on building performance, the most typical commercial 
buildings located in typical climate zones are the natural starting point. The U.S. 2003 
Commercial Building Energy Consumption Survey (CBECS) [20] indicates that office buildings 
are the most common building type, comprising the largest floor area, and consuming the most 
energy in the commercial building sector. Therefore, the prototypical office buildings with three 
different sizes at two design efficiency levels for 17 climates are chosen from the PNNL’s 
prototype buildings. Three building sizes represent large, medium, and small office buildings 
based on the statistics of the 2003 CBECS. The 17 climates represent all of the ASHRAE climate 
zones. The two design efficiency levels correspond to the ASHRAE Standard 90.1-2004 and 
2010. ASHRAE standard 90.1 is an energy standard providing prescriptive and mandatory 
requirements for energy efficiency levels of major building systems including building envelopes 
(opaque construction and fenestration), lighting systems, service water heating, and HVAC 
systems. The 90.1-2004 standard was published in 2004 and represented the minimum 
performance of recently built new constructions that comply with the standard. While 90.1-2010 
[21] represents more efficient designs, with about 30% energy savings over 90.1-2004 [22].  

The TMY3 weather data and 30 years of AMY weather data (1980 to 2009) are used in the 
building performance simulations. The simulations were run using EnergyPlus 7.1. There was a 
total of 3162 simulation runs: 3 office building types, 2 design efficiency levels, 17 climates, and 



31 weather files. The HVAC equipment is autosized by EnergyPlus to meet peak cooling and 
heating loads based on the 2009 ASHRAE design day weather data. The structure of the 
simulation runs is illustrated in Fig. 1. Performance metrics, including building total source 
energy (including all end uses), HVAC source energy (including end uses of cooling, heating, 
and ventilation), and peak electricity demand, of each simulation run were extracted from the 
EnergyPlus output reports. The performance metrics of each AMY run were then compared with 
those of the corresponding TMY3 run to calculate the percentage changes, equal to 100 x 
(AMY_Results – TMY3_Results) / TMY3_Results, as indicators of deviations from the TMY3 
results. The ranges of these percentage changes are graphed as key results for analysis and 
discussions. To filter out the extreme weather years, the variation ranges excluding those of the 
top three and the bottom three weather years were overlapped on the same graphs. The variation 
ranges of the percentage changes of building total source energy, HVAC source energy and peak 
electricity demand give a clear picture on how the AMY results differ from the TMY3 results. 
The smaller the range of difference, the closer of TMY3 results to AMY results.  

To investigate the weather impact on energy savings and demand reduction of building 
technologies, two office models under two design efficiency levels (ASHRAE standard 90.1-
2004 and 90.1-2010) were simulated using the TMY3 and 30-year AMY weather files. The 
energy savings and demand reductions of the 90.1-2010 models over the corresponding 90.1-
2004 models were determined using the same TMY3 or AMY weather files.  

Furthermore, values of key weather parameters, such as annual average ambient air 
temperature, global horizontal solar radiation, and heating and cooling degree days, were 
extracted from the EnergyPlus weather statistics (stat) files and used to identify potential 
variation patterns and trends. 

In this study, source energy (also referred to as primary energy) is used because it considers 
the energy loss during energy generation, transmission, and distribution. EnergyPlus calculates 
the source energy by multiplying the calculated site energy with corresponding source factors, 
which depend on types of energy sources and building location.  

  
 

2.2. Weather data 
 

In general, two kinds of weather data packaged in weather files are used in building 
performance simulation. One is the TMY weather data and the other is the AMY weather data. 
The TMY weather data is usually used for annual energy simulations during the building design 
process, either to evaluate the energy and cost effectiveness of design alternatives, to 
demonstrate code compliance, or to calculate credit points towards building rating systems or 
utility incentive programs. The AMY weather data, containing measured data for a particular 
year, is usually used in simulations post occupancy to verify and diagnose the actual building 
energy performance. The AMY weather data can be obtained from several sources, including 
Weather Bank, National Climatic Data Center (NCDC), Weather Source, Weather Analytics, and 
Meteonorm. Weather Bank maintains hourly and daily historical data records from every 
National Weather Service reporting station in the United States, as well as other locations around 
the world. The weather data are archived on a real-time basis and updates are made hourly. 
NCDC is the world’s largest active archive of weather data. The Integrated Surface Database 
(ISD) consists of global hourly and synoptic observations compiled from numerous sources. 
Currently there are over 11,000 stations active and updated daily in the database [23]. Weather 



Source provides historical and real-time digital weather information for tens of thousands of 
locations across the US and around the world. Weather Analytics [7] provides site-specific TMY 
and AMY weather files based on the last 30 years of hourly data. The files combine hourly 
weather station observations and the new NOAA reanalysis data sets. Meteonorm is a weather 
data generation tool. It integrates a climate database, a spatial interpolation tool and a stochastic 
weather generator. The typical years with hourly or one-minute time resolution can be calculated 
for any site [24]. 

In this study, the weather data for 17 climate zones, including the 30-year AMY weather files 
covering 1980 to 2009 from Weather Analytics and the TMY3 weather data, were used in the 
simulations to investigate the weather impact on building performance. Table 1 lists the climate 
type, criteria, and representative cities for the 17 climates – major U.S. cities except Riyadh in 
Saudi Arabia and Vancouver in Canada.  
 
2.3. Prototype buildings 
 

To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National 
Laboratory (PNNL) created a suite of 16 prototype buildings [25] covering 80% of the 
commercial building floor area in the United States for new construction. These prototype 
buildings were derived from the U.S. Department of Energy (USDOE) [26] but with substantial 
modifications based on extensive inputs from ASHRAE 90.1 Standing Standards Project 
Committee members and other building industry experts. The prototype models include the 16 
building types in 17 climate locations for three editions of ASHRAE Standard 90.1 (90.1-2004, 
90.1-2007 and 90.1-2010). Table 2 summarizes the building types. The EnergyPlus models of 
these buildings are available; including EnergyPlus model input files (.idf) and output files 
(.html). The description of the building, HVAC systems, internal loads, operating schedules, and 
other key model inputs are summarized in scorecard spreadsheet files that are also available from 
the web site. The detailed methodology and modeling strategy used to develop these prototype 
models as well as the energy and cost saving analysis is presented in [22].  

From these prototype buildings, the three types of office buildings with different sizes, small, 
medium and large, were chosen for this study. Office buildings represent the most typical 
commercial buildings in the United States in terms of buildings numbers and total floor area [20]. 
The large-size office building is served by a central built-up variable air volume (VAV) system 
with a central plant. The medium office has packaged VAV systems, and the small office has 
packaged single zone systems. The key features of these office buildings are summarized in 
Table 3. The EnergyPlus models for the three office buildings in 17 climates based on ASHRAE 
Standard 90.1-2004 and 90.1-2010 were downloaded and converted for use with EnergyPlus 
version 7.1. The 90.1-2010 models represent high energy-efficiency designs, with better 
insulation and windows, more efficient lighting and HVAC systems, exceeding the performance 
of the 90.1-2004 models by approximately a 30% reduction in site energy use. 
 
2.4. Simulation engine 

 
EnergyPlus [27] version 7.1, released in June 2012, was used to perform the building 

simulations. EnergyPlus is developed by USDOE as a new generation building energy modeling 
program that builds upon the most popular features and capabilities of BLAST [28] and DOE-2 
[29]. EnergyPlus has innovative simulation capabilities including sub-hourly time steps, an 



integrated solver for system models with a zone heat balance model, and user definable and 
configurable HVAC systems and components. It calculates space temperature, occupant thermal 
comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air 
emissions, water usage, renewable energy, etc. EnergyPlus is a stand-alone simulation program 
without a 'user friendly' graphical interface. It reads input and writes output as text files. Since 
the first release in April 2001, EnergyPlus has been evolving with new and enhanced modeling 
features and improved usability. EnergyPlus has been validated through three types of tests, 
including analytical tests, comparative tests and empirical tests. 

The EnergyPlus weather file, an epw file, contains 29 weather variables at one-hour intervals 
(but can be sub-hourly), among which nine important variables were used in the simulations. 
These key variables can be sorted into four groups: 1) outdoor air conditions: dry-bulb 
temperature, dew-point temperature, relative humidity, and atmospheric pressure; 2) solar 
radiation: direct normal solar radiation and diffuse horizontal solar radiation; 3) sky radiation: 
horizontal infrared radiation; and 4) wind conditions: wind direction and wind speed. Another 
important weather variable contained in the epw weather file and used by EnergyPlus is the 
monthly ground temperature at various soil depth levels. EnergyPlus is usually run with a time 
step of 10 or 15 minutes, and the hourly weather variables are interpolated to the half-hour 
intervals. 
 
3. Results and discussion 
 
3.1. Variations of weather data  

 
Variations of weather data and climate zone classification for each of the 17 cities based on 

the annual HDD18 (Heating Degree Days with base temperature of 18⁰C) and CDD10 (Cooling 
Degree Days with base temperature of 10⁰C) of the AMY data from 1980 to 2009 are illustrated 
in Fig. 2. The climate zones displayed in Fig. 2 correspond to the criteria listed in Table 1. It can 
be seen that most cities do not belong to only one climate zone. For the 30-year period, the 
climates of some cities vary across two zones and some even across three or more zones. For 
example, Fairbanks exhibits climatic conditions indicative of the very cold Climate Zone 7 and 
the subarctic Climate Zone 8, while Helena shows conditions typical of five climate zones: the 
cool-humid 5A, the cool-dry 5B, the cool-marine 5C, the cold-humid 6A, and the cold-dry 6B. 
The spread of climate zones for a city based on 30-year AMY weather data is a good indicator of 
weather change year-over-year, which cannot be represented by a single-year TMY3 weather 
data file. Therefore, running simulations using multi-decade AMY weather data is necessary to 
evaluate fully the effect of weather on the energy performance of buildings. 

The variation in annual average global horizontal solar radiation for the 17 cities from 1980 
to 2009 is listed in Table 4. In general, the highest and lowest levels of annual average global 
horizontal solar radiation occur in the hotter and colder climates respectively. For example, 
Riyadh has the highest value of 6588 Wh/m2 in 2001, while Fairbanks has the lowest value of 
2473 Wh/m2 in 1995. Table 4 also shows the maximum variations, defined as the maximum of 
the annual difference between the highest and the lowest values of all cities across the 30-year 
period. Among the 17 cities, Chicago has the largest variation of 652 Wh/m2, while Boise has the 
smallest variation of 360 Wh/m2. The values listed in the fifth and sixth columns represent the 
average global horizontal solar radiation over the 30 years for the AMY data and TMY3 data 
respectively. The values listed in the last two columns are the absolute and relative differences 



between the TMY3 values and the average values. The largest difference between TMY3 and the 
average AMY is 809 Wh/m2 which occurs in Miami, a hot climate. However, compared with the 
cities in hotter and colder climates, cities in mixed climates tend to have greater differences. 
There is a noted trend that the AMY data have higher global horizontal solar radiation than the 
TMY3 data, which can lead to the AMYs overestimating the cooling energy use and 
underestimating the heating energy use when compared to the TMY3s. Further discussion is 
provided in Section 3.7. 

Table 5 shows the variations in annual average dry-bulb temperature of the 17 cities from 
1980 to 2009. The variations are more significant for cold climates. For example Fairbanks, 
Helena and Duluth all have variations greater than 3.7°C. In general, the differences between the 
TMY3 values and the average AMY are small, except the TMY3 values have a higher average 
temperature by 0.6°C for Fairbanks and a lower temperature by 0.8°C for Vancouver.  

In summary, the variation in weather data year-over-year is significant, especially for cold 
climates. Such variations should not be ignored and cannot be represented by single-year weather 
data - either a historical year or a synthetic year such as TMY. 

 
 

3.2 Weather impact on HVAC source energy use for individual cities 
 
HVAC energy use is directly affected by weather, because the cooling and heating loads of 

buildings are dependent upon weather conditions such as outdoor air temperature and humidity, 
wind speed, and solar radiation. The percentage variation of HVAC source energy use intensity 
(EUI, kWh/m2) for the three types of office buildings with two design efficiency levels in the 17 
cities are shown in Fig. 3. The simulation results from using the TMY3 weather data are used as 
the baseline and are represented as 0% in these figures. The red bars represent the variation of 
the percentage changes across the 30-year period (1980 to 2009). The green bars show the same 
results but excluding the top three largest and the bottom three smallest values to filter out the 
extreme AMY cases. The left side bars with negative values indicate TMY3 results are over-
estimating the AMY results while the right side bars with positive values indicate TMY3 results 
are under-estimating the AMY results. The cities on the vertical axis of the figures from the top 
to the bottom are arranged by climate zone from the very hot and humid climate zone 1A to the 
subarctic climate zone 8.  

In general, the AMY results show large differences when compared to results using the 
TMY3 weather data. The TMY3 results can over-estimate AMY results as much as 18% and 
under-predict as much as 37%. Three-dimensional comparisons are made to analyze the relative 
weather impact by climate zone, building type, and building design efficiency. First, it can be 
seen that most large changes occur in colder climates, regardless of the building type (large-, 
medium-, or small-size office) or building design efficiency level (low, 90.1-2004, or high, 90.1-
2010). Usually the largest under-estimates occur in Boise, followed by Helena and then San 
Francisco, while the largest over-estimates occur in Fairbanks, followed by Chicago and then 
Duluth. Secondly, the larger changes occur for the medium-size office building, followed by the 
large-size and then the small-size building. The medium office building has a larger perimeter 
area than the large office, and has air-side economizers, while the small office does not. Thirdly, 
the larger changes occur for the large and medium offices with the high-efficiency design level 
(90.1-2010) than the low- efficiency design level (90.1-2004). The opposite is true for the small 
office - the low-efficiency design level shows larger changes. Fourthly, the differences between 



the red and the green bars for each case are compared. The largest differences occur in Boise 
regardless of building type and building efficiency design level, followed by Helena, Fairbanks, 
and Miami. In general, the differences in the hotter and colder climates are larger than those in 
the mixed climates. Finally, comparing the HVAC source EUI between the average of the 30-
year AMYs and the TMY3 for the large office at both efficiency design levels in Table 6 and 
Table 7, it can be seen that the TMY3 results are usually lower than the AMY results, occurring 
in 13 out of the 17 cities, and by as much as 9 to 9.2% in Riyadh, 5.6 to 8.7% in Boise, and 5.2 to 
7.7% in San Francisco. Similar trends can be observed for the medium and small offices.  

As an example, detailed variations of the HVAC source EUI of the large office in Chicago 
with low and high building efficiency levels from 1980 to 2009 are illustrated in Fig. 4. The 
TMY3 results, the average of the AMY results, as well as the average results plus and minus one 
and two standard deviations are plotted on the same figures. The TMY3 results are fairly close to 
those of the average AMY results, within the range of +2.6% and one standard deviation. Except 
for 1992, all AMY results fall within one standard deviation. The variation, in percentage 
changes,  between the maximum and minimum AMY results is large, 22.6% for the 90.1-2004 
office and 28% for the 90.1-2010 office. 

In summary, the weather impacts on the HVAC source energy use are significant, especially 
for the medium-size office building and for all office buildings in cold climates. The impacts are 
the least for the small-size office among the three office types. The medium-size office buildings 
have air-side economizers, as required by ASHRAE standard 90.1 in appropriate climates, and 
more window area than the small offices, but have less window area and more perimeter zone 
area than the large offices. This makes the medium offices more sensitive to weather variation 
than the other two. 

Weather impacts on buildings are about the same across the two efficiency design levels. 
Meanwhile, large differences between the simulated results using TMY3 weather data and the 
AMY weather data are observed across the 30-year period. The TMY3 results are lower than the 
AMYs mainly due to the AMYs having higher solar irradiance. Further discussion is provided in 
Section 3.7. 

 
3.3 Weather impact on the building total source energy use for individual cities 

 
Similar results as shown in Fig. 3 are shown in Fig. 5, but for the building total source energy 

use intensity (EUI, kWh/m2). The variation of the building total source EUI are about one-third 
of those of the HVAC source EUI, because weather changes only affect the HVAC source energy 
use. The percentage changes of the building total source energy, although much smaller, 
represent a significant amount of the absolute differences in the building total source energy use.  

Similar but slightly different patterns are observed for the building total source EUI. In 
general, the AMY results show noticeable differences from those from the TMY3. The TMY3 
results over-estimate the AMY results by as much as 7.8% and under-estimate by as much as 
9.7%. First, it can be seen that most large changes occur in colder climates, regardless of the 
building type or building efficiency design level. Usually the largest under-estimates occur in 
four climates: Riyadh, Boise, Helena and Fairbanks, while the largest over-estimates occur in 
four climates: Miami, Chicago, Duluth and Fairbanks. Secondly, the larger changes occur for the 
medium-size office, followed by the large-size and then the small-size. Thirdly, the slightly 
larger changes occur for the large and medium offices with the high efficiency design level than 
the low efficiency design level. The opposite is true for the small office - the low efficiency 



design level shows larger changes. Fourthly, the differences between the red and the green bars 
for each case are compared. The largest differences occur in five climates: Miami, Chicago, 
Boise, Helena, and Fairbanks. This implies that these climates tend to have more severe weather 
impacts. Finally, comparing the building total source energy use between the TMY3 weather data 
and the average of the 30-year AMY weather data, for the large office at both efficiency design 
levels in Table 8 and Table 9, it can be seen that the TMY3 results are usually lower than the 
AMY results, occurring in 13 out of the 17 cities; but except for Riyadh, the under-estimates are 
less than 2% for all other climates.  

 
3.4 Weather impact on the HVAC and building total source energy use aggregated for the U.S. 
office building stock 

 
To analyze the variation in the HVAC and building total source energy for all office buildings 

in the U.S., the source energy use are aggregated across the 15 U.S. cities using weighting factors 
based on the volume of new construction in each of the 15 cities [22]. The percentage changes at 
the national level are then calculated and shown in Fig. 6. 

 From Fig. 6, the simulated HVAC source energy use using the TMY3 data can over-estimate 
and under-estimate the AMY results by 4.8% and 6.1% respectively for the large office, by 4.7% 
and 7.6% for the medium office, and by 2.5% and 4.8% for the small office. The corresponding 
percentage changes for the building total source energy use are 1.4% and 1.7%, 1.7% and 2.7%, 
and 0.8% and 1.7%. In general, the weather impacts are about the same for buildings with the 
two efficiency design levels, with slightly larger impacts for the low-efficiency buildings. The 
largest impacts are for the medium-size office followed by the large and then the small office. 

Compared with the variations shown in Fig. 3 and Fig. 5, the variations in Fig. 6 are much 
smaller. This implies the weather impacts across different climates are not uniform and tend to 
cancel out each other. For example, during a particular year, the TMY3 results may over-estimate 
the AMY results for some climates but under-estimate for others, so the overall TMY3 results at 
the national level are not so different from the AMY results. However, this should not 
overshadow the large discrepancies between the TMY3 results and the AMY results for 
individual climates, because energy efficiency technologies are evaluated and applied locally, 
and energy policy is made by local jurisdictions.  
 
3.5 Weather impact on the peak electricity demand of buildings 

 
The variations of the percentage changes of the building peak electricity demand are 

displayed in Fig. 7. The peak demands of the medium office using the TMY3 weather data can 
under-estimate that from the AMY data by up to 32.4%, and over-estimate by up to 21%. Unlike 
the variation in the HVAC source energy use mentioned above, there is no clear correlation 
between the change in peak demand and the climate/city. Except for the medium office, the 
mixed climates show larger percentage differences. The variations for the medium office, as 
shown in Figs. 7(c) and (d), are much larger than those for the large and small offices. 

 Additionally, the percentage changes for the small office are mostly within ±6% except for a 
few cases as shown in Figs. 7(e) and (f). For a particular city, if only one green bar can be seen, it 
is because the red bar is almost the same as the green bar but overlapped by the red bar, and thus 
cannot be seen. This implies that for the small office building in this city, the peak demand is not 
so sensitive to extreme weather conditions (the top three and bottom three years). On the other 



hand, if only one red bar can be seen, it is because the green bar is too small to be seen. This 
implies that the peak demand is sensitive to extreme weather conditions. When the top three and 
the bottom three years are eliminated, peak demands from the remaining 24-year AMY data and 
the TMY3 data are very close or equal, thus the differences cannot be seen.   

As an example, detailed variations of the simulated peak demand of the large office in 
Chicago with low and high efficiency levels from 1980 to 2009 are illustrated in Fig. 8. The 
TMY3 results, the average of the AMY results, as well as the average results plus and minus one 
and two standard deviations are plotted on the same figures. The TMY3 result is higher than the 
average AMY result by 1.1% (within one standard deviation) for the 90.1-2004 office, but lower 
by 6% (outside two standard deviations) for the 90.1-2010 office. For the 90.1-2004 office, the 
variation of peak demand is relatively small except for 1991, 2004, and 2008 which has lower 
peak demand by as much as 7.7% compared to the average value. For the 90.1-2010 office, the 
variation of peak demand from individual AMY results is more significant, up to 13.4% between 
the minimum and maximum values.  

In summary, the weather impact on the peak electricity demand is significant, even greater 
than the impact on building energy use. The simulated peak demands from TMY3 can 
significantly under- or over- estimate those from the AMY. It is necessary to run simulations 
using multi-decade of AMY weather data to assess accurately demand response strategies.   
 
3.6 Weather impact on peak electricity demand reduction and energy savings of energy 
conservation measures 

 
The peak demand reduction (in %) and the HVAC and building total source energy savings 

(in %) are calculated by comparing the peak demand and source energy use of the building with 
the high energy efficiency level, to those of the same building with the low energy efficiency 
level, using the TMY3 and the 30-year AMY weather data for the three building types across the 
17 climates. The results are shown in Fig. 9, where the green bars represent the variation in the 
demand reduction and source energy savings, using the 30-year AMY weather data. The red 
marks represent the corresponding results using the TMY3 weather data. A few key points can be 
seen from the results in Fig. 9: 

• Weather impact on peak demand reduction and HVAC source energy savings are large. 
There are no consistent patterns across the building type or climate. 

• Generally the weather impact on the peak demand reduction is much greater than on the 
HVAC source energy savings. 

• For HVAC source energy savings, larger weather impacts occur for the mixed to cold 
climates, from San Francisco to Fairbanks. The savings based on TMY3 weather files are 
usually within the ranges of savings based on the AMY weather files, except for over-
estimates in San Francisco, Albuquerque, Boise, Vancouver, and Helena, where the red 
marks are usually at the very right end or outside of the green bars.  

• The peak demand reduction can vary significantly year-over-year for most climates. The 
differences in demand reduction can be as high as 15% for Chicago and Fairbanks across 
the 30-year period for the large office, as shown in Fig. 9(a).  

• Generally the peak demand reductions based on the TMY3 data are within the ranges of 
reductions based on the AMY data, but a few cases show the TMY3 results (the red 
marks) are at the high or low end of, or even outside the AMY results (the green bars). 
Furthermore, some climates even demonstrate opposing weather impacts. For example, in 



Phoenix, the TMY3 demand reduction is greater than that from the AMY data for the 
large office, but less for the small office. El Paso shows the totally opposite situation as 
Phoenix. 

• To assess accurately the peak demand reduction and energy savings of ECMs, it is 
necessary and important to run simulations using multi-decade AMY weather data in 
comparative studies of energy conservation measures. Results from TMY3 data can 
sometimes significantly over- or under-estimate the actual energy and cost savings. 
 

It should be noted that the calculated peak demand reduction and source energy savings come 
from a combination of energy efficiency improvements from ASHRAE standard 90.1-2004 to 
90.1-2010. Whether similar trends apply to an individual energy efficiency improvement, such as 
better wall or roof insulation, better windows, high efficiency lighting systems, or high efficiency 
HVAC systems, is an open question worth further studies. 

 
3.7 Discrepancies of weather data from different sources and different time periods 

 
Radhi [30] studied the impact of weather data from two different periods, 1961-1990 and 

1961-2005, on the simulated electricity use of a low-rise and a high-rise commercial building in 
Bahrain. Significant variations in simulated energy use from the two different weather periods 
were found and weather data covering more recent periods were recommended to be used for 
better prediction of actual energy use in buildings. Bhandari et al [19] studied the quality of 
weather data from two different sources by comparing them to actual measured weather data, and 
the associated impact on building cooling and heating loads and energy consumption for a single 
year at a specific U.S. location. 

The AMY weather data from Weather Analytics and the TMY3 from NREL were used in the 
current study, although they are from different sources and cover slightly different time periods. 
The AMYs cover 1980 to 2009, about four years ahead of the TMY3s which cover 1976 to 2005. 
Two constraints determined the choice of the AMYs and TMY3s: 1) both data sources are 
reliable and available to the public [3, 7]; 2) Weather Analytics does not provide TMY3 (based 
on same selection criteria as the NREL TMY3) weather files created from their 30-year AMYs, 
and the AMYs used to create NREL TMY3 weather files, although available to the public at 
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/NCDCStationData/, are not in EnergyPlus 
weather data epw format and thus need data mapping and conversion.  

The temperature data from both sources tend to be more consistent than the solar radiation 
data, as seen from Table 4 which shows that the TMY3s have lower global horizontal solar 
radiation than the average of the AMYs across all the 17 climates. Although both sources used 
similar algorithms, either the original or the enhanced Perez model [31-33] to calculate solar 
radiation, Weather Analytics data sets lack high quality aerosol data which can lead to a high bias 
of modeled solar radiation under certain cloudy / high humidity conditions. This explains that, in 
Table 4, Miami (a humid climate) and San Francisco (with frequent morning fog) have the 
greatest deviations in solar radiation between the average AMYs and the TMY3. Another source 
of discrepancies in the solar data is the NREL TMY3s do not include data for certain calendar 
years due to eruptions of the volcanoes El Chichón and Mount Pinatubo (1982–1984 and 1992–
1994, respectively) that decreased solar radiation in the U.S. [3]. This explains that, in Table 4, 8 
out of the 15 U.S. cities have the lowest solar radiation in those years across the 30-year period. 

 To quantify what portion of the overestimate of HVAC source energy by the AMYs in tables 

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/NCDCStationData/�


6 and 7 is attributable to the high bias of solar radiation, there is a need to study the correlation 
between the key weather variables and the simulated building performance. Apadula et al [34] 
studied the effect of the meteorological variability on the national monthly electricity demand in 
Italy. A multiple linear regression model based on calendar and four weather variables, including 
air temperature, wind speed, relative humidity and cloud cover, is developed to study the 
relationships between meteorological variables and electricity demand as well as to predict the 
monthly electricity demand up to 1 month ahead. The model demonstrated an accuracy of better 
than 1% over the data covering the period 1994–2009. Lam et al [35] used principal component 
analysis to study prevailing weather conditions in subtropical Hong Kong. Regression models 
were developed to correlate the simulated monthly building cooling loads and total energy use, 
for a generic office building, with a developed climatic index Z, which is a function of the dry-
bulb temperature, wet-bulb temperature and global solar radiation. The regression models 
showed an accuracy of 1% for annual and 4% for monthly simulated energy use over the period 
1979–2008. 

In the current study, a regression model is derived to calculate the HVAC source energy EUI 
based on the annual cooling degree days (CDD10), annual heating degree days (HDD18), and 
the annual average daily global horizontal solar radiation (GHSR): 

 
HVAC Source Energy EUI = c0 + c1 × CDD10 + c2 × HDD18 + c3 × GHSR 
 
Where, c0 to c3 are regression coefficients.  
Table 10 lists the regression results for the large office buildings compliant with ASHRAE 

Standard 90.1-2004, when the above regression was applied to the 30-year AMYs in the four 
climates, Miami, San Francisco, Boise, and Fairbanks. The results show that there are more 
significant discrepancies in solar radiation between the average AMYs and the TMY3s (Table 4). 
The linear regressions are reasonable with R-squared between 0.84 and 0.95. The variations of 
CDD10, HDD18, and GHSR in the AMYs directly contribute to the variations of the simulated 
HVAC source energy. AMYs with higher CDD10 and HDD18 will lead to higher HVAC source 
energy use. Except for the cooling dominated climate of Miami, the other three climates show 
that higher solar radiation leads to lower HVAC source energy use. The impact of solar radiation 
on building performance depends on climate – lower or higher solar radiation does not 
necessarily always dominate. 

The regression coefficient c3 represents the sensitivity of the HVAC Source Energy EUI to 
the annual average daily global horizontal solar radiation, assuming the indirect impact of solar 
radiation on ambient air temperature is considered separately in the sensitivity of CDD10 and 
HDD18. Based on the regression models, the lower solar radiation of the TMY3s in Miami (by 
14.4%), San Francisco (11.6%), Boise (10.1%), and Fairbanks (9.7%) would contribute to the 
underestimate (for Miami) or overestimate (for the other three climates) of HVAC Source Energy 
EUI of the TMY3s by 3.6%, 16.6%, 14.8%, and 0.9% respectively. The percentages for San 
Francisco and Boise are much higher mainly due to their much lower HVAC source energy EUI 
compared to those of Miami and Fairbanks. In conclusion, the discrepancy in solar radiation 
between different weather data sources can have a significant impact on differences in the 
simulated HVAC source energy. High quality solar radiation data is key to improving the 
accuracy of simulated building performance.    

It should be noted that the regression model is used to appropriately estimate the effect of the 
high bias solar data, it is not recommended to replace whole building dynamic simulation for 



calculating the HVAC source energy. 
 

4. Conclusions 
 

Nowadays with the availability of long-term AMY weather data and sufficient computational 
power of personal computers, it is feasible and necessary to run simulations with AMY weather 
data covering multiple decades to fully assess the impact of weather on the long-term 
performance of buildings, and to evaluate the energy savings potential of energy conservation 
measures for new and existing buildings from a life cycle perspective. Main findings from this 
study are: 1) annual weather variation has a greater impact on the peak electricity demand than 
on the energy use in buildings; 2) simulated building energy use using the TMY3 weather data is 
not necessarily representative of the average energy use using the AMY data, across the 30-year 
period. The TMY3 results can be significantly higher or lower than those from the AMY data; 3) 
the weather impact is greater for buildings in cold climates; 4) the weather has the greatest 
impact on the medium-size office building, followed by the large office and then the small office; 
and 5) simulated energy savings and peak demand reduction by energy conservation measures 
using the TMY3 weather data can be significantly lower or higher when compared to the results 
using the AMY data. These findings can support energy policy making, energy code 
development, building technologies evaluation, and utility incentive programs planning. 

Future work will continue to investigate the weather impact for other building types, and 
aggregate the impact across the entire U.S. building stock. If more AMY weather data, for 
example 50 to 100 years, is available, methods will be developed to define and select various 
TMY weather data representing different conditions. For example, cool vs. warm years, dry vs. 
wet years, cloudy vs. sunny years, for various applications including HVAC design, demand 
response for smart grids, and solar renewable energy systems. 
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Table 1 Climate zone classification based on ASHRAE Standard 90.1-2010. 
Climate zone  Climate type Criteria Representative city 

1A Very Hot – Humid 5000 < CDD10℃ Miami, USA 
1B Very Hot – Dry 5000 < CDD10℃  Riyadh, Saudi Arabia 
2A Hot – Humid 3500 < CDD10℃ ≤ 5000 Houston, USA 
2B Hot – Dry 3500 < CDD10℃ ≤ 5000 Phoenix, USA 
3A Warm – Humid 2500 < CDD10℃ ≤ 3500 Memphis, USA 
3B Warm – Dry 2500 < CDD10℃ ≤ 3500 EI Paso, USA 
3C Warm – Marine CDD10℃ ≤ 2500 and HDD18℃ ≤ 2000 San Francisco, USA 
4A Mixed – Humid CDD10℃ ≤ 2500 and 2000 < HDD18℃ ≤ 3000 Baltimore, USA 
4B Mixed – Dry CDD10℃ ≤ 2500 and 2000 < HDD18℃ ≤ 3000 Albuquerque, USA 
4C Mixed – Marine 2000 < HDD18℃ ≤ 3000 Salem, USA 
5A Cool – Humid 3000 < HDD18℃ ≤ 4000 Chicago, USA 
5B Cool – Dry 3000 < HDD18℃ ≤ 4000 Boise, USA 
5C Cool – Marine 3000 < HDD18℃ ≤ 4000 Vancouver, Canada 
6A Cold – Humid 4000 < HDD18℃ ≤ 5000 Burlington, USA 
6B Cold – Dry 4000 < HDD18℃ ≤ 5000 Helena, USA 
7 Very Cold 5000 < HDD18℃ ≤ 7000 Duluth, USA 
8 Subarctic 7000 < HDD18℃ Fairbanks, USA 

 
Table 2 Commercial reference buildings. 
Building type Subtype 
Offices Small office; Medium office; Large office 
Retails Stand-alone retail; Strip mall 
Schools Primary school; Secondary school 
Hospitals Outpatient healthcare; Hospital 
Hotels Small hotel; Large hotel 
Restaurants Quick service restaurant; Full service restaurant 
Apartments Mid-rise apartment; High-rise apartment 
Others Warehouse (non-refrigerated) 
 
  



Table 3 Summary of key features of the three types of office buildings. 
 Large-size office Medium-size office Small-size office 

Total Floor Area 
(m2) 46320 4980 510 

Number of stories 12 3 1 
% Perimeter Zone 

Area 30% 40% 70% 

Envelope 

Window-wall-
ratio (WWR) 

40% 
 33% 

24.4% for South and 19.8% 
for the other three 

orientations 
Walls, roofs, 

floors: U-factor 
ASHRAE 90.1 Requirements, Nonresidential; Walls, Above-Grade, Steel-Framed; Roofs, 

Insulation entirely above deck 

Windows: U-
factor and SHGC 

ASHRAE 90.1 Requirements 
Nonresidential 

ASHRAE 90.1 Requirements 
Nonresidential; Vertical 

Glazing, 31.1-40%, U fixed 

ASHRAE 90.1 Requirements 
Nonresidential; Vertical 

Glazing, 20-30%, U fixed 
HVAC systems 

System type Central built-up VAV systems Packaged VAV systems Packaged single zone systems 

Heating source Gas boiler Gas furnace Air-source heat pump with 
gas furnace as back up 

Cooling source 
Water-cooled centrifugal 

chillers 
 

Air-cooled direct expansion Air-source heat pump 

Air distribution 
and terminal units 

VAV terminal box with hot-
water reheat coil, minimum 
damper position set at 30%  

VAV terminal box with hot-
water reheat coil, minimum 
damper position set at 30% 

No terminal unit 

Thermostat 
setpoint 24°C Cooling / 21°C Heating 24°C Cooling / 21°C Heating 24°C Cooling / 21°C Heating 

Air-side 
economizer Applicable based on 90.1 Applicable based on 90.1 None 

Internal loads 
Average lighting 

power density 
(W/m2) 

90.1-2004: 10.76 
90.1-2010: 8.99 

90.1-2004: 10.76 
90.1-2010: 8.87 

90.1-2004: 10.76 
90.1-2010: 9.15 

Average plug-load 
power density 

(W/m2) 
7.8 8.07 6.78 

Average occupant 
density 

(m²/person) 
18.6 18.6 16.6 

Operating schedules 

Lighting, plug-
loads, and 
occupants 

   
Misc. 

Exterior Lighting    
Peak Power (W) 

90.1-2004: 62787 
90.1-2010: 43305 

90.1-2004: 14385 
90.1-2010: 7476 

90.1-2004: 1634 
90.1-2010: 896 

 
  



Table 4 Statistics of the annual average global horizontal solar radiation of the 17 cities from 
year 1980 to 2009. 

City 

Annual average global horizontal 
solar radiation (Wh/m2), year Average 

AMYs TMY3 
Variation 
(Highest – 
Lowest) 

Variation 
(TMY3 – 
Average) 

Variation % 
(TMY3 – 
Average)/ 
Average Highest Medium Lowest 

Miami 5825, 1986 5614, 1991 5444, 1992 5612 4803 380 -809 -14.4 
Riyadh 6588, 2001 6329, 1983 5977, 1982 6318 6114 611 -204 -3.2 

Houston 5099, 1999 4765, 1992 4474, 1982 4750 4459 624 -291 -6.1 
Phoenix 6069, 2002 5868, 1980 5531, 1983 5832 5738 538 -94 -1.6 

Memphis 4799, 1999 4560, 1996 4230, 1991 4564 4493 570 -71 -1.6 
EI Paso 6072, 2003 5749, 1997 5519, 1986 5758 5657 554 -101 -1.8 

San Francisco 5520, 1988 5352, 1981 4952, 1998 5322 4703 568 -619 -11.6 
Baltimore 4435, 2006 4240, 1987 3918, 2003 4223 4078 517 -145 -3.4 

Albuquerque 6054, 2003 5906, 2009 5635, 1983 5881 5426 419 -455 -7.7 
Salem 4110, 1987 3865, 1995 3692, 1998 3881 3701 418 -180 -4.6 

Chicago 4484, 1988 4099, 2008 3832, 1993 4100 3854 652 -246 -6.0 
Boise 5106, 2002 4927, 1990 4746, 1982 4926 4429 360 -497 -10.1 

Vancouver 3946, 1985 3682, 1998 3361, 2007 3674 3369 585 -305 -8.3 
Burlington 3863, 1995 3715, 2002 3465, 2000 3699 3675 398 -24 -0.6 

Helena 4598, 2001 4367, 1981 4082, 1998 4377 3997 517 -380 -8.7 
Duluth 4069, 1988 3746, 1999 3525, 1993 3744 3678 544 -66 -1.8 

Fairbanks 3018, 1987 2860, 1998 2473, 1995 2868 2591 545 -277 -9.7 

 
Table 5 Statistics of the annual average dry-bulb temperature of the 17 cities from year 1980 to 
2009. 

City 

Annual average dry-bulb  
temperature (℃), year Average 

AMYs TMY3 
Variation 
(Highest – 
Lowest) 

Variation 
(TMY3 – 
Average) Highest Medium Lowest 

Miami 25.3, 1998 24.8, 2003 23.8, 1984 24.7 24.5 1.5 -0.2 
Riyadh 27.8, 1999 26.7, 1981 25.0, 1992 26.6 26.2 2.8 -0.4 

Houston 21.4, 2006 20.6, 2003 19.0, 1983 20.5 20.4 2.4 -0.1 
Phoenix 24.8, 1989 23.9, 2000 22.5, 1998 23.9 23.8 2.3 -0.1 

Memphis 18.5, 2007 17.1, 2002 16.2, 1997 17.2 17 2.3 -0.2 
EI Paso 19.8, 1994 18.5, 2008 16.7, 1987 18.3 18 3.1 -0.3 

San Francisco 14.7, 1997 13.8, 2009 12.8, 1982 13.8 13.8 1.9 0 
Baltimore 14.4, 1990 13.2, 2005 12.2, 2003 13.2 13.2 2.2 0 

Albuquerque 15.0, 2003 14.1, 2008 13.0, 1984 14.0 13.7 2.0 -0.3 
Salem 12.9, 1992 11.6, 2002 10.0, 1985 11.6 11.7 2.9 0.1 

Chicago 12.1, 1998 10.1, 2000 8.7, 1985 10.0 10 3.4 0 
Boise 12.7, 2003 11.3, 2005 8.1, 1985 11.1 11.2 4.6 0.1 

Vancouver 11.6, 2004 10.5, 2002 9.1, 1985 10.5 9.7 2.5 -0.8 
Burlington 9.2, 1998 7.8, 2007 7.0, 1980 7.9 7.9 2.2 0 

Helena 9.1, 2007 7.4, 2005 4.8, 1996 7.1 7.2 4.3 0.1 
Duluth 6.3, 1998 4.3, 2000 2.6, 1996 4.3 4 3.7 -0.3 

Fairbanks 0.3, 1981 -1.8, 2001 -4.4, 1999 -2.0 -1.4 4.7 0.6 

 
 
 
 
  



Table 6 Statistics of the HVAC source EUI of the Large Office, 90.1-2004 during the 30-year 
period 

City 
HVAC source EUI (kWh/m2), year 

Average 
AMYs TMY3 

Variation 
(Highest – 
Lowest) 

Variation 
(TMY3 – 
Average) 

Variation % 
(TMY3 – 
Average)/ 
Average Highest Medium Lowest 

Miami 250.8,1998 229.3,1999 206.1,1984 228.9 227.6 44.7 -1.4 -0.6 
Riyadh 217.4,1998 197.9,1980 181.7,1992 200.1 182.1 35.7 -18.1 -9 
Houston 206.7,1980 193.6,1986 178.3,1984 193.8 189.2 28.4 -4.7 -2.4 
Phoenix 205.2,1984 196.5,2008 185.3,2004 195.9 189.8 19.9 -6.1 -3.1 
Memphis 165.3,1985 151.4,1996 140.5,1992 152.6 148.8 24.9 -3.8 -2.5 
EI Paso 108.2,1981 103.1,1982 96.5,2004 102.5 97.8 11.7 -4.7 -4.6 

San Francisco 74.9,1997 65.9,1998 60.9,1999 66.9 63.5 13.9 -3.4 -5.2 
Baltimore 144.9,1994 134.9,2004 125.1,1984 133.6 136.5 19.9 2.8 2.1 

Albuquerque 102,2007 96.8,1981 91.5,1986 96.8 93.1 10.5 -3.7 -3.8 
Salem 83.1,1990 74.7,1988 71.4,1981 75.1 75.1 11.7 -0.1 -0.1 

Chicago 138.2,1983 128,1986 112.7,1992 127.6 130.9 25.5 3.3 2.6 
Boise 111.3,1985 92.8,1982 83.7,1995 93.2 87.9 27.6 -5.2 -5.6 

Vancouver 74.9,1990 67.1,1989 61.1,1983 66.8 67.5 13.8 0.6 0.9 
Burlington 133.3,1989 118.9,2004 108.2,2006 120.1 118.4 25.1 -1.6 -1.4 

Helena 116.6,1985 99.5,1986 88.7,1999 100.1 95.5 27.9 -4.6 -4.6 
Duluth 146.2,1989 128.6,2005 117.9,1992 130.7 133.1 28.2 2.5 1.9 

Fairbanks 180.1,1999 163.6,1997 135.8,1981 161.3 157.7 44.2 -3.6 -2.2 

 
Table 7 Statistics of the HVAC source EUI of the Large Office, 90.1-2010 during the 30-year 
period 

City 
HVAC source EUI (kWh/m2), year 

Average 
AMYs TMY3 

Variation 
(Highest – 
Lowest) 

Variation 
(TMY3 – 
Average) 

Variation % 
(TMY3 – 
Average)/ 
Average Highest Medium Lowest 

Miami 167.2,1998 151.9,1991 136.2,1984 151.2 151.4 31.1 0.2 0.2 
Riyadh 164.1,1998 151.2,1980 137.4,1992 152 138 26.7 -14 -9.2 
Houston 122.2,1998 114.2,2003 106.1,1984 114.4 111.3 16.1 -3.1 -2.7 
Phoenix 129,1981 122.9,2009 116.3,1982 122.9 119.6 12.7 -3.3 -2.7 
Memphis 99.5,1985 92,1991 85.1,1992 92.5 90 14.4 -2.5 -2.7 
EI Paso 79.2,1981 75.8,1990 71.3,2004 75.5 71.7 7.9 -3.8 -5 

San Francisco 45.5,1997 38.2,2008 35.3,1999 39 36 11.2 -2.9 -7.7 
Baltimore 84.1,1994 76,1985 69.7,1984 76.1 77.3 14.3 1.2 1.6 

Albuquerque 74.9,2007 71.1,1981 66.9,1986 71.6 66.9 7.9 -4.6 -6.4 
Salem 53.7,1990 48.4,2002 45.3,1980 48.7 48 8.3 -0.7 -1.5 

Chicago 88.7,1985 80.8,1986 69.2,1992 80.9 83 19.5 2.1 2.6 
Boise 75.4,1985 62.4,1991 55.3,1981 62.5 57.1 20.1 -5.4 -8.7 

Vancouver 47.8,1998 42.1,2008 38.2,2001 42.3 39.9 9.6 -2.4 -5.7 
Burlington 85.5,1989 74.9,1983 66.9,2006 75.7 74.5 18.6 -1.3 -1.7 

Helena 78.5,1985 63.7,1980 55.8,1999 64.8 60.1 22.7 -4.4 -7.1 
Duluth 93.9,1989 79.6,2005 70.6,1992 81.7 83.6 23.3 1.8 2.2 

Fairbanks 134.2,1999 116.3,1988 91.8,1981 115.9 111.7 42.4 -4.2 -3.7 

 
  



Table 8 Statistics of the total building total source EUI of the Large Office, 90.1-2004 during the 
30-year period 

City 

Total building source EUI (kWh/m2), 
year Average 

AMYs TMY3 
Variation 
(Highest – 
Lowest) 

Variation 
(TMY3 – 
Average) 

Variation % 
(TMY3 – 
Average)/ 
Average Highest Medium Lowest 

Miami 533,1998 511.5,1999 488.3,1984 511.2 509.9 44.7 -1.4 -0.3 
Riyadh 499.5,1998 479.9,1980 463.8,1992 482.2 464.1 35.7 -18.1 -3.7 
Houston 489.3,1980 476.2,1986 460.9,1984 476.4 471.7 28.4 -4.7 -1 
Phoenix 487.6,1984 478.9,2008 467.7,2004 478.3 472.1 19.9 -6.1 -1.3 
Memphis 448.2,1985 434.3,1996 423.3,1992 435.5 431.7 24.9 -3.8 -0.9 
EI Paso 391,1981 385.9,1982 379.3,2004 385.3 380.6 11.7 -4.7 -1.2 

San Francisco 358.1,1997 349.2,1998 344.2,1999 350.2 346.7 13.9 -3.4 -1 
Baltimore 428.2,1994 418.1,1981 408.3,1984 416.9 419.7 19.9 2.8 0.7 

Albuquerque 385.2,2007 380,1981 374.7,1986 379.9 376.3 10.5 -3.7 -1 
Salem 366.5,1990 358.2,1988 354.8,1981 358.5 358.4 11.7 -0.1 0 

Chicago 421.6,1983 411.5,1986 396.2,1992 411.1 414.3 25.5 3.3 0.8 
Boise 394.7,1985 376.3,1982 367.1,1995 376.6 371.4 27.6 -5.2 -1.4 

Vancouver 358.4,1990 350.5,1989 344.6,1983 350.3 350.9 13.8 0.6 0.2 
Burlington 417,1989 402.6,2004 391.9,2006 403.7 402.1 25.1 -1.6 -0.4 

Helena 400.4,1985 383.2,1986 372.5,1999 383.8 379.2 27.9 -4.6 -1.2 
Duluth 430.2,1989 412.7,2005 402,1992 414.7 417.1 28.2 2.5 0.6 

Fairbanks 464.3,1999 447.9,1997 420.2,1981 445.7 442.1 44.2 -3.6 -0.8 

 
Table 9 Statistics of the total building source EUI of the Large Office, 90.1-2010 during the 30-
year period 

City 

Total building source EUI (kWh/m2), 
year Average 

AMYs TMY3 
Variation 
(Highest – 
Lowest) 

Variation 
(TMY3 – 
Average) 

Variation % 
(TMY3 – 
Average)/ 
Average Highest Medium Lowest 

Miami 401.1,1998 385.8,1991 369.9,1984 385 384.9 31.1 -0.1 0 
Riyadh 397.9,1998 385,1980 371.2,1992 385.8 371.6 26.6 -14.2 -3.7 
Houston 357.6,1998 349.6,2003 341.2,1984 349.5 345.8 16.4 -3.7 -1.1 
Phoenix 363.3,1981 357.3,2009 350.6,1982 357.2 354 12.7 -3.2 -0.9 
Memphis 333.9,1985 326.4,1983 319.4,1992 326.9 323.9 14.6 -3.1 -0.9 
EI Paso 312.7,1981 309.3,2005 304.7,2004 308.9 305.2 8 -3.7 -1.2 

San Francisco 279.5,1997 272.6,1995 268.5,1999 273.2 270.1 11 -3.1 -1.1 
Baltimore 318.3,1994 310.1,1985 303.8,1984 310.2 310.9 14.5 0.7 0.2 

Albuquerque 308.1,2007 304.2,1981 300.1,1986 304.7 300.3 7.9 -4.3 -1.4 
Salem 288.6,1990 293.2,1988 280,1980 283.5 282.2 8.5 -1.3 -0.5 

Chicago 323.1,1985 315.2,1986 303.5,1992 315.3 317.1 19.6 1.8 0.6 
Boise 309.1,1985 296.2,1991 289.2,1981 296.3 291.1 19.9 -5.3 -1.8 

Vancouver 282.9,1998 277.3,1995 273.4,2001 277.4 275.3 9.5 -2.1 -0.8 
Burlington 320.3,1989 309.8,1983 302,2006 310.6 308.9 18.3 -1.6 -0.5 

Helena 312.7,1985 298.1,1980 290.1,1999 299 294.5 22.6 -4.5 -1.5 
Duluth 328.8,1989 314.8,2005 305.7,1992 316.9 318.3 23.1 1.5 0.5 

Fairbanks 371.6,1999 353.8,1988 329.4,1981 353.5 349.3 42.2 -4.2 -1.2 

 
Table 10 Regression of HVAC source energy for the 90.1-2004 Large Office during the 30-year 
period 

City c0 c1 c2 c3 R2 

Miami -69.19 0.05367 0.02736 0.0101 0.84 
San Francisco 6.57 0.03674 0.01388 -0.01795 0.95 

Boise 13.15 0.02675 0.01932 -0.02778 0.86 
Fairbanks -40.46 0.05493 0.02366 -0.00532 0.92 

 
 
 



 
Fig. 1. The structure of simulation runs. 
 

 
Fig. 2. Variations of climate zone based on annual HDD and CDD for 17 cities using AMY 
weather data from year 1980 to 2009. 
 
 
  



     
 

     
 

     
 
Fig. 3. Variations of percentage changes of HVAC source EUI between AMY and TMY3. (a) 
large office, 90.1-2004 models; (b) large office, 90.1-2010 models; (c) medium office, 90.1-2004 
models; (d) medium office, 90.1-2010 models; (e) small office, 90.1-2004 models; (f) small 
office, 90.1-2010 models. The red bars represent the variations across the 30-year while the 
green bars excluding the six percentage changes from the top three and the bottom three extreme 
weather years. 
  



 

  
Fig. 4. Variations of HVAC source energy of the large office buildings in Chicago from year 1980 to 2009.  
  



     
 

     
 

     
 
Fig. 5. Variations of percentage changes of total building source EUI. (a) large office, 90.1-2004 
models; (b) large office, 90.1-2010 models; (c) medium office, 90.1-2004 models; (d) medium 
office, 90.1-2010 models; (e) small office, 90.1-2004 models; (f) small office, 90.1-2010 models. 
The red bars represent the variations across the 30-year while the green bars excluding the six 
percentage changes from the top three and the bottom three extreme weather years. 
 
  



 
 

 
Fig. 6. Variations of percentage changes of HVAC and total source EUIs of the three types of 
office buildings with low (90.1-2004 standard) and high (90.1-2010 standard) energy efficiency 
levels. (a) changes in HVAC source EUI; (b) changes in total source EUI. 
 
  



     
 

     
 

     
 
Fig. 7. Variations of percentage changes of peak electricity demand. (a) large office, 90.1-2004 
models; (b) large office, 90.1-2010 models; (c) medium office, 90.1-2004 models; (d) medium 
office, 90.1-2010 models; (e) small office, 90.1-2004 models; (f) small office, 90.1-2010 models. 
The red bars represent the variations across the 30-year while the green bars excluding the six 
percentage changes from the top three and the bottom three extreme weather years. 
 
  



  

 
Fig. 8. Variations of peak electricity demand of the large office buildings in Chicago from year 1980 to 2009. 
  



   

   

   
Fig. 9. Variations of percentage reduction of peak electricity demand, and percentage savings of HVAC source energy and total source 
energy of the 90.1-2010 models over the 90.1-2004 models. (a)-(c) large office; (d)-(f) medium office; (g)-(i) small office. 


