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Abstract 

Reducing energy consumption in the buildings sector requires significant changes, but technology alone 
may fail to guarantee efficient energy performance. Human behavior plays a pivotal role in building 
design, operation, management and retrofit, and is a crucial positive factor for improving the indoor 
environment, while reducing energy use at low cost. Over the past 40 years, a substantial body of 
literature has explored the impacts of human behavior on building technologies and operation. Often, 
need-action-event cognitive theoretical frameworks were used to represent human-machine interactions. 
In Part I of this paper a review of more than 130 published behavioral studies and frameworks was 
conducted. A large variety of data-driven behavioral models have been developed based on field 
monitoring of the human-building-system interaction. Studies have emerged scattered geographically 
around the world that lack in standardization and consistency, thus leading to difficulties when comparing 
one with another. To address this problem, an ontology to represent energy-related occupant behavior in 
buildings is presented. Accordingly, the technical DNAs framework is developed based on four key 
components: i) the Drivers of behavior, ii) the Needs of the occupants, iii) the Actions carried out by the 
occupants, and iv) the building systems acted upon by the occupants. This DNAs framework is envisioned 
to support the international research community to standardize a systematic representation of energy-
related occupant behavior in buildings. Part II of this paper further develops the DNAs framework as an 
XML (eXtensible Markup Language) schema, obXML, for exchange of occupant information modeling 
and integration with building simulation tools. 
 
Keywords: Occupant behavior, building energy, ontology, human-building-system interaction, 
simulation, modeling 

1. Introduction 

To secure sustainable energy development in the buildings sector, occupant behavior needs to be directed 
towards a more efficient use of energy. Due to the stochastic nature of occupant behavior, the mutual 
influences between humans, buildings, and the environment cannot be described in a simplistic way. 
Rather, it requires appropriate methodologies and techniques to be able to describe and reproduce the 
intricate network responsible for real energy performance during the whole building life cycle (design, 
operation and maintenance, retrofit). In 2013, the buildings sector was responsible for 41% of the total 
energy consumption in Europe [1] (27% for residential buildings and 14% for commercial buildings) and 
in the United States [2] (22% for residential buildings and 19% for commercial buildings). In 2010, 
China’s buildings sector surpassed the United States as the largest consumer of energy in the world, with 
carbon dioxide emissions following an increasing trend [2]. The energy crisis, diminishing natural 
resources and global warming are driving developed countries to conserve energy in the buildings sector. 
Organizations are making strong efforts to accelerate the uptake of energy-efficiency technologies and 
practices in buildings, by setting aggressive goals at different governmental levels. However, technology 
alone does not guarantee low energy use in buildings. Achieving energy conservation is a dual challenge: 
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partly technical and partly human. As stated by Turner and Frankel [3], “as technical performance 
standards ratchet tighter, behavioral factors gain relative importance”. Consequently, so-called energy-
efficient green buildings exhibit large fluctuations in energy consumption due to how occupants interact 
with building systems. Figure 1 shows the distribution of delivered energy use intensities (EUIs) for U.S. 
commercial buildings (Baltimore, MD) occupied by financial institutions. Even omitting the extreme 
cases, the EUIs can vary by up to a factor of five, from around 40 to 200 kBtu/ft2/year [4].  
 
Figure 1: Distribution of delivered energy use intensities for commercial buildings in Baltimore, USA 
[4].  
 
With reference to residential buildings, Andersen et al. [5] analyzed the energy consumption of a block of 
35 apartments located near Copenhagen, Denmark. The apartments had almost identical characteristics in 
terms of orientation, building systems and building envelope composition. Results showed that 
differences in household behavior might lead to differences in energy consumption by a factor of three, 
again omitting the extreme cases (Figure 2). Similarly, a study conducted on measured residential summer 
air-conditioning electricity consumption in China [6] showed that EUIs varied dramatically, up to a factor 
of 10, across apartments of similar sizes within a single building (Figure 3). 
 
Figure 2: Energy consumption of 35 apartments within the same block in Copenhagen, EU [5]. 
 
Figure 3: Residential building summer air-conditioning electricity consumption, Beijing, China [6]. 
 
Energy efficiency in buildings is not just about new technologies, it’s about optimal decisions and an 
overall improvement in human behavior. This paper refers alternately to “human” behavior with respect 
to the more general concept of the stochastic nature of a human being, and to “occupant” behavior when 
specifically indicating actions undertaken by building users. Occupant behavioral changes in the use of 
energy and water will help ensure a sustainable future for the buildings sector. This study focuses on 
energy-related building occupant behavior, taking into account actions and activities people perform in 
buildings to provide themselves with good indoor environmental quality (IEQ) (thermal comfort, visual 
comfort, acoustic comfort, indoor air quality, etc.). To define what is meant by energy-related occupant 
behavior, the International Energy Agency (IEA) Energy in Buildings and Communities Programme 
(EBC) Annex 53, “Total Energy Use in Buildings: Analysis and Evaluation Methods” [7], dedicated a 
section to occupant behavior modeling [8]. The term ‘behavior’ refers to “observable actions or reactions 
of a person in response to external or internal stimuli, or respectively actions or reactions of a person to 
adapt to ambient environmental conditions such as temperature, indoor air quality or sunlight”. Annex 
53 introduced quantitative descriptions of occupant behavior in the field of building energy performance, 
and reviewed probabilistic models for predicting occupant behavior in residential and office buildings. 
Hundreds of ongoing studies among the international scientific community focus on understanding how 
energy-related behaviors impact building energy performance. New methodologies (modeling 
approaches) and techniques (monitoring hardware and software platforms) for analyzing real building 
total energy use and for investigating the factors which influence occupant behavior in buildings, have 
emerge. In all of these studies, macroeconomic, cultural and climatic factors accounted for some of the 
locational variation, but not the variation across users. Different researchers and groups have developed 
models intended to predict the energy impact of building occupants. Studies scattered across the world 
(Europe, North America, Japan, and China), used different methodologies, and introduced different 
variables, instances, metrics, climates and contextual and cultural differences. Moreover, no standardized 
way of reporting or comparing results from different studies has emerged. This lack of structure in the 
field means that behavior models are difficult to compare and can be difficult to incorporate into building 
simulation tools. Currently, building simulation tools are used to predict the energy use of buildings 
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during the design phase. It is this predicted energy use to which the real, operating energy use of the 
building is compared. While the building physics models and algorithms used by the simulation tools are 
now fairly mature, there is a distinct shortcoming in quantifying the energy use attributable to the building 
occupants.  
The analysis methods, developed models and results of Annex 53 were taken as the starting point for the 
newly dedicated IEA EBC Annex 66, “Definition and Simulation of Occupant Behavior in Buildings” 
[9]. Through Annex 66, a survey was circulated to experts in the field on the use of occupant behavior 
models in simulation tools. The results indicated that among researchers, energy modelers and software 
developers, no common consensus has been reached on the standardization of modeling approaches, 
simulation tool usability and documentation or interoperability issues. Significantly, none of the surveyed 
experts appeared satisfied by the quality of existing models of energy-related behavior in buildings.  
To address these issues, a DNAs ‘Drivers - Needs - Actions - Systems’ framework providing an ontology 
to standardize the representation of energy-related occupant behavior in buildings, is described in this 
study. The study is composed of two parts (Part I and Part II).  
In Part I of this paper, Section 1 introduces the issues related to energy-related occupant behavior in 
buildings and highlights the needs for the proposed ontology. Section 2 contextualizes the DNAs 
framework. Section 3 provides a review of more than 130 published investigation studies on the 
monitoring, modeling and simulation of energy-related behavior in buildings to support the structure of 
the DNAs framework. Finally in Section 4, the technical details of the DNAs framework are illustrated, 
based on four key components: i) the drivers of behavior, ii) the needs of the occupants, iii) the actions 
carried out by the occupants, and iv) the building systems acted upon by the occupants. Part II of this 
paper describes the DNAs ontology in the form of an XML (eXtensible Markup Language) schema 
known as obXML (occupant behavior XML), and discusses its potential applications. 

2. Review of human behavioral frameworks  

Theorized in the literature over the last 40 years are several frameworks describing human behavior using 
a need-action-event cognitive process. Table 1 lists nine cognitive-behavioral frameworks that consider 
users as reactive agents instead of passive receptors within a contextual environment. These models try to 
capture the stochastic nature of the human cognition process by describing the connection between the 
human ‘inside world’ inputs (drivers and needs) and the environmental ‘outside world’ outputs (actions 
and events). The nine cognitive-behavioral frameworks are described as follows:  
 
Table 1. Theoretical frameworks of human behavior 

• Perceptual Control Theory (PCT) is one of the earliest theories of human cognitive behavior 
conceptualized by Powers [10]. PCT is based on the principle that “behavior is the control of 
perception”. The ‘controlling’ behavior fits in between the reaction to external events and 
circumstances such as stimuli, reinforcements (drivers), and the generation of actions by cognitive 
plans or needs. 

• Human Operator Simulator (HOS) was proposed by Wherry [11] to describe human behavior as 
interactions among agents. The agents represented different user types in a specific environment, able 
to perform different tasks and activities for which no executive or pre-defined schedules or controls 
existed. 

• Cognitive Complex Theory (CCT) was proposed by Card et al. [12] as a framework of the human 
cognition based on the concept of Goal – Operator – Method – Selection (GOMS) topology. 
Accordingly, users attain their goals through rational actions. Given the structure of the task, the inputs 
coming from the contextual environment are systematically organized based on users’ experiences, 
abilities and available devices and hence selected to perform actions. 
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• The Executive Process Interactive Control (EPIC) framework was proposed by Kieras and Meyer [13] 
and was suited for modelling human multi-task performances, especially in the field of human-
computer interactions. 

• The State, Operator and Result (SOAR) framework was proposed by Lehman et al. [14]. Human 
behavior was modelled as movement throughout the space environment, in a specific time and as a 
function of the goal which motivated the driver to solve a task. 

• The Adaptive Control of Thought (ACT) framework was proposed by Anderson and Liebere [15]. 
ACT is a cognition framework that can be used to implement predictive models of human behavior. 
Specifically, ACT focused on how humans organize their knowledge in order to behave intelligently. 

• The Cognition as a Network of Tasks (COGNET) framework was proposed by Zachary et al. [16] as a 
theoretical framework of tools and techniques for building real-time models of human interactions 
within multi-tasking environments. In the COGNET framework, the ‘outside world’ (visual, acoustical 
and thermal environments) is conceptualized as human sensations and perceptions. The model 
developed a human-working memory which translated these ‘inside world’ inputs into cognitions 
(drivers, needs, etc...) leading humans into physical actions. 

• The Architecture for Procedure Execution (APEX) framework was postulated by Freed [17] to 
simulate the human performance in complex, dynamic environments. APEX is a model used to predict 
human actions based on limited information resources, also taking into account human error causing 
system performance to deviate under certain circumstances. 

• More recently, the Business Redesign Agent-Based Holistic Modelling System (BRAHMS) was 
proposed and tested by Sierhuis et al. [18] as a multi-agent modelling environment for simulating work 
practices in working spaces, such as users’ interaction, activities, use of tools as well as presence and 
movement over time. 

Most of the above models capture the stochastic and reactive nature of human behavior in a complex 
environment, simulating users as agents acting in a specific space as a function of time. However, none of 
the models focus on energy-related behavior in the building indoor environment, framing the cognitive 
processes of the ‘inside world’ that lead building occupants to perform actions in the ‘outside world’, 
such as interacting with control systems in the building spaces, when driven by needs from the ‘inside 
world’.  

3. Review of Occupant Behavior Investigation Methodologies 

Over the last few decades, a number of studies have focused on overcoming the ‘credibility gap’ [19] - 
the loss of credibility when designed building energy performance and actual building energy 
consumption differ substantially due to variations in operation. Researchers have devised various 
approaches to assess the impact of occupant behavior on building energy performance. A stochastic 
approach to modelling occupant behavior has recently gained popularity, in contrast to the static 
description of occupant behavior based on assumptions made using fixed profiles. This new approach 
accounts for the fact that occupants do not always make logical choices and act stochastically rather than 
deterministically [20]. The human-building interaction has been typically studied according to a three-
step methodology: monitor, model, and simulate, with the eventual outcome including validation (Figure 
4). 
 
Figure 4: Graphical representation of the methodological approach on occupant behavior modeling 
 
Existing monitoring studies of drivers, needs, actions and systems, behavioral models, and simulation 
studies, have captured the principal aspects of energy-related human behavior within a building (see 
Appendices for details). Monitoring studies which assessed the correlations between building components 
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and control system states, have mostly focused on windows, shades and blinds, lighting systems, 
thermostat set points, space occupancy, and electrical equipment. From the correlations identified in this 
review, the DNAs behavioral ontology was developed and refined.  

3.1 Monitoring studies  

Researchers have monitored building systems (i.e. natural ventilation, heating, shading or lighting 
systems) in order to identify the correlation between observed system states (i.e. window open/closed), 
indoor and outdoor conditions/variables (i.e. indoor and outdoor air temperature, relative humidity), 
subjective occupant behaviors and energy performance. Two main methodological approaches, one more 
objective (field monitoring) and one more subjective (self-reporting and questionnaires) are used widely 
by the scientific community to gain a better understanding of energy-related occupant behavior in 
buildings (see Appendix A for details) [21-90]. 

3.1.1 Field monitoring 

In almost all of the published experimental studies, observations of occupant behavior are coupled with 
‘primary indicators’ such as indoor and outdoor environmental conditions. This includes data from a large 
array of field sensors (thermometers, anemometers, globe thermostats, CO2 sensors, lux meters, 
photometers, etc.) as well as from weather stations (outdoor temperature and relative humidity, wind 
speed, rainfall, solar radiation and solar hours, etc.). Data collection techniques often include direct 
monitoring of the building control systems, using magnetic switches for windows [22-26], 
electromechanical sensors for shading systems, blinds and electric lighting [27-32], recording TRV 
(thermostatic radiator valve) switches [26, 33-35], AC thermostat set points [36,37], presence detectors 
such as motion sensors [38-40], intelligent control of building systems and real-time building 
visualization [41], security systems [42], PIR (passive infrared) sensors [43], ultrasonic detectors for light 
switching [44] , and smart/wireless electric outlet meters [45-52]. Occupant behavior can also be 
indirectly monitored by sensing ‘secondary’ environmental variables, parameters or actions and then 
performing extrapolation. Relevant secondary indicators include the CO2 concentration level [26, 53-54], 
other tracer gas techniques [55-58], or metering the building energy flows (thermal, hydronic, power, etc.) 
[59]. Surrogate information on energy-related behaviors can be deduced by using already available data 
such as occupancy derived from light switch sensors [41, 58-60], computer switches [61, 62], IT 
(information technology) infrastructure [63] and from equipment load profiles [64]. Other widespread 
techniques to monitor control system state or occupancy movement and presence include imaging 
analysis such as time-lapse photography taken from the exterior building façade [23, 28, 29, 32, 65-73] as 
well as camera-based [74, 75] and internal personal visual survey, such as personal building walkthroughs 
[28, 31, 41, 73, 76]. 

3.1.2 Questionnaires and self-reporting 

Another data collection approach is to ask occupants to provide information through self-reporting [26] or 
by using different interview techniques such as questionnaires [23, 24, 29-31, 37, 50, 52, 55, 65, 73, 77-
87], web-based questionnaires [88], computer-assisted telephone interviews [33, 89] or mail surveys [90]. 
Questionnaire surveys are often used to identify the most important factors affecting occupant interactions 
with building control systems including: window opening behavior [23, 24, 26, 55, 73, 76-78, 88], the use 
of heating [26, 33, 83, 85, 89] and cooling [37, 84, 87], solar shading and blinds [20, 26, 29, 65], 
electrical lighting [26, 31, 81] and equipment [52, 86]. The surveys are typically carried out by sending 
out invitations to a consistent amount of building occupants which are representative of the building 
population. Subjects are asked about preferences in control system settings and repetitive actions. Often 
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self-reporting techniques are used to record the human-building interaction when direct monitoring is not 
allowed. Data on occupant behaviors and preferences are typically coupled with information on dwelling 
characteristics, meteorological and census data (when available).  

3.2 Modelling studies  

Based on monitoring and questionnaire data, researchers have investigated which predictor variables 
drive occupant decisions to interact with building systems. Behavioral models are then developed to 
predict the probability of an occupant interacting with a building system. Implicit models are used to 
understand the driving forces behind the behavior itself or to predict the state of a building system or the 
occurrence of an occupant’s action, based on the predictor variable(s). Explicit models are used to provide 
a personalized description (or future prediction) of the state of a building system or the actions of an agent 
(i.e. the occupant in a building), based on the monitored real behavior (movement and control action) of 
the agent itself (See Appendix B) [91-134]. In both cases, statistical and data-mining methods are used to 
obtain information on repetitive patterns of occupant behaviors and human-building interactions, and to 
provide insights into user profiles related to occupant behavior [42, 131-136]. 

3.2.1 Implicit models 

Implicit models of energy-related human behavior include linear regression models [36, 37, 55, 76, 91], 
logistic regression models with a single variable [22, 23, 25, 29, 37, 47, 48, 68, 73, 92-100] or multiple 
variables [27, 35, 36, 53, 68, 92, 101-109]. Other types of statistical models have been used to simulate 
the stochastic nature of human interaction in buildings, such as simple probability equations [42, 71, 72, 
110-112], sub-hourly occupancy-based control models (SHOCC) [113] and Bayesian estimations [114]. 

3.2.2 Explicit models  

Explicit models of human behavior are commonly based on occupancy presence and movement data and 
are used to predict the probability distribution of an event (e.g. occupant being present in a space) or 
behavior (e.g. occupant moving within a space) to occur. Such action- and agent-based models are 
centered on the use of random numbers to generate stochastic variables. Typical Monte Carlo methods are 
Markov Chain models [32, 49, 50, 73, 115-120], as well as discrete [21, 80] and semi-hidden [38, 121-
123] Markov Chain models. State transition analysis is also used to develop real-time agent- and action-
based models [124-130]. 

3.2.3 Data mining to support modeling studies 

In the past 10 years several systematic data-mining methodologies (Cluster Analysis, Association 
Rules Mining, Decision Trees, and Rule Induction) [42, 131-136] have been tested to identify and 
improve occupant behavior modeling in buildings.  
Due to the stochastic nature of human behavior evolving randomly with time, in many applications it 
is difficult to extrapolate useful building occupant information from monitored buildings by means of 
statistical analysis. Due to data scattering at this level, statistical analysis techniques may fail to 
obtain reliable mathematical models by over fitting or under fitting the data. Instead, patterns of data 
discovered through data mining techniques may highlight commonsense knowledge, applicable to fit 
both direct and indirect models. In this context, data mining techniques have been shown to 
automatically extrapolate valid, novel, potentially useful and understandable building occupant 
patterns from big data streams [134, 150]. Data mining techniques are not intended to substitute or 
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contrast the direct stochastic models or indirect agent-based models already developed for the 
integration of occupant behaviors into building energy simulations. More likely, data mining 
techniques aim to overcome the shortcomings of more traditional techniques, specifically when 
dealing with big data streams, by providing reliable models of energy-related behavior with fast 
legibility and high replication potential. 

3.3 Simulations 

Mathematical models of human behavior translated into computer simulation draw the connection 
between the theoretical world and the observed world. Researchers have incorporated behavioral models 
into building energy simulation tools with the aim of predicting and leveraging the impacts of occupant 
behavior on 1) building energy performance, 2) comfort levels and 3) indoor air quality (IAQ). The most 
widespread building simulation tools include EnergyPlus [137], IDA Ice [138], ESP-r [139], TRNSYS 
[140], DeST [141], and DOE-2 [142]. In some cases, ad-hoc software tools, simulation engines, interfaces 
or wizards have been used to simulate specific aspects of human behavior (i.e. DAYSIM [143] and Light-
switch Wizard in Visual Studio [144]). Simulation engines allow researchers to assess the implications of 
different stochastic occupant behaviors within the context of building components and characteristics 
(Table 2) as well as geographical contextual factors.  
 
Table 2. Typical building components and characteristics included in published simulation models of 
occupant behavior 
 
Different models suitable for exploring the diversity of occupant behavior over several timescales using 
computer simulation are proposed in the literature (for which excellent comprehensive reviews are 
provided by the Annex 53 Final Report [7] and Gunay et al. [20]). For each of the principal building-
system interactions under investigation, Table 3 illustrates the most common metrics and simulation 
outputs, according to published simulation studies. 
 
Table 3. Typical metrics and simulation outputs used in published simulation models of occupant 
behavior 

4. The DNAs Occupant Behavior Framework 

An initial concept of the DNAs framework was proposed by Turner & Hong [145], as a brief introduction 
to the DNAs ‘Drivers - Needs - Actions - Systems’ ontology developed in this study (Figure 5). The 
impact of the behavior of the occupant (or groups of occupants) on building energy use, can be described 
using four main components, namely drivers, needs, actions and systems. The four components inhabit 
the ‘outside world’ (i.e. the building environment) and the ‘inside word’ (i.e. the cognitive processes of 
the human being). Drivers represent the environmental factors from the outside world that stimulate 
occupants in their inside world to fulfill a physical, physiological or psychological need. Needs represent 
the physical and non-physical requirements of the occupant’s inside world that must be met in order to 
ensure the satisfaction of the occupant with their environment. Actions are the interactions with systems 
or activities that an occupant can conduct to achieve environmental comfort. Actions connect occupants’ 
inside-world needs with the environmental outside word. Systems refer to the equipment or mechanisms 
within the building outside world with which an occupant may interact to restore or maintain 
environmental comfort. 

Figure 5: Four key components of the DNAs occupant behavior framework: Drivers, Needs, Actions and 
Systems  
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As an example of the DNAs concept, consider the following simple scenario: An occupant is working 
inside a naturally-ventilated office with operable windows during the summer. The indoor room 
temperature increases throughout the morning until the occupant becomes thermally uncomfortable. The 
occupant then opens the window to allow cooler outside air into the building. As a result the room 
temperature decreases and the occupant becomes satisfied with the indoor thermal environment. In the 
above example the driver is the indoor air temperature. The need is the requirement for thermal comfort 
of the occupant. The action is the opening of the window by the occupant. The system is the window. The 
nature of each component of the DNAs ontology will be discussed in Sections 4.1 to 4.4. 

4.1 Drivers 

Drivers represent the stimulating factors that provoke energy-related occupant behavior. A driver prompts 
a building occupant to perform either an action or in-action with a building system, impacting the energy 
use of a building (Figure 6). The drivers can include environmental factors, such as indoor air temperature 
and solar radiation, as well as non-physical factors such the time of day or the season.  Within the 
topology of drivers, five main categories were identified, (i) building, (ii) occupant, (iii) environment, (iv) 
system and (v) time.  
 
Figure 6: Drivers behind energy-related occupant behavior 
 
(i) Building – The building category encompasses the physical properties of the building itself that can act 
as drivers [146]. This includes the building’s orientation (façade exposure to solar radiation), construction 
material, floor layout etc. The location of the building in relation to other buildings, busy roads, fields can 
also affect the behavior of the occupants [16].  
(ii) Occupant – The attributes of an occupant relate to the occupant’s age and gender [147], as well as 
physical mobility [148] etc. which can dictate how an occupant behaves and their response to 
environmental drivers and hence, how they interact with building systems. Specifically, the ‘energy 
attitude’ of the occupant is important [149-152]. The DNAs framework provides a platform to allow a 
range of occupant energy attitudes from ‘energy frugal’ to ‘energy profligate’ via ‘energy indifferent’. 
The energy attitude of the occupant will govern how the occupant interacts with energy-related building 
systems. The location of the occupant determines their exposure to environmental drivers. The state of the 
occupant describes their metabolic rate and whether they are arriving at a space, remaining in a space, or 
departing from a space. The metabolic rate is a widely-accepted input for thermal comfort models [153, 
154] and has a profound impact on occupant behavior. Window opening, blind use and lighting use have 
been found to be more frequent when occupants first arrive or leave, compared with when they remain in 
a space [9, 26, 36, 101-105, 113, 134, 150]. 
(iii) Environment – Environmental factors such as climate, weather and indoor and outdoor conditions 
(e.g. air temperature, humidity, solar radiation, IAQ) are all fundamental drivers behind the response of 
occupants to their environment [155]. In the field of behavior modeling there lacks agreement as to which 
environmental drivers are optimal when modeling certain actions. In the example given in Section 4, the 
driver behind the window-opening action was given as the indoor air temperature. However, it has been 
argued that the indoor air temperature is actually driven by the outdoor air temperature, and so the 
outdoor air temperature is the real driver behind the window-opening action. To address this conflict 
researchers introduced the concept of direct and indirect drivers. The direct drivers immediately impinge 
on the comfort of the occupant, whereas the indirect drivers impinge upon the direct drivers. In the 
example of window opening, the direct driver would be the indoor air temperature and the indirect driver 
would be the outdoor air temperature.  
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(iv) System – Studies have shown that the existing state of a building system acts as a statistically 
significant predictor of the probability of an occupant interacting with the system. An example of this 
effect would be the state of a window. For example, studies have shown that once a window has been 
opened or closed by an occupant in the morning, the window is more likely to remain in that state, 
independent of other driving forces [22, 27, 134]. 
(v) Time – The time of day and the day of the week are fundamental to the presence and location of 
occupants in a building. Some personal habits are time-driven, for example opening windows when first 
arriving at work or closing windows before leaving the office, or turning on lights when first arriving and 
turning off lights before leaving. The day of the week is important because it impacts occupancy presence 
in office buildings or equipment usage in homes during working and non-working days. The change in 
season (month of the year) also affects the interactions between occupants and building systems, resulting 
in different conditions inside a building [24,147].  

4.2 Needs 

Needs represent the requirements of the occupant that must be met in order to ensure satisfaction with 
their surrounding environment (Figure 7). As stated by Milliken [156]: “there are certain physical needs 
that people must meet in order to survive. There are others that make people more comfortable. In the 
specific ways they strive to meet these needs, people are different”. An occupant will have certain criteria 
or expectations of their environment which relates to their overall comfort. When this criteria is met, the 
occupant can be described as comfortable. If the criteria is not met, the occupant can be described as 
uncomfortable. When the state of physical discomfort exceeds the tolerance of the user, it causes a 
psychological response which prompts the user to perform actions to adjust their environment (e.g. 
opening a window) or adjust themselves to the environment (e.g. adjusting clothing level). However, 
comfort levels are individual and may vary largely from user to user. Moreover, they are not triggered at 
regular thresholds, but depend upon environmental and contextual factors which fluctuate over time. 
Therefore, the occupant behavior for satisfying comfort needs must be taken into account. Needs can be 
physical or non-physical. The two categories have been chosen for the DNAs framework so that all needs 
could be encompassed and easily classified, while still leaving flexibility in scope.   
 
Figure 7: Needs of building occupants that may result in an action that changes the building energy use 
 
Physical needs include: (i) thermal comfort or satisfaction with the thermal environment, which is a 
combination of indoor air temperature and humidity, surrounding surface temperatures, indoor air 
velocity, activity level, incident radiation and clothing level of the occupant [88, 107, 153, 154]; (ii) 
visual comfort such as not being subjected to glare, excessive contrast or unacceptable levels of 
brightness; (iii) acoustic comfort, with the level of background noise within an acceptable range; (iv) 
indoor environmental health, meaning good IAQ or humidity. Non-physical needs include factors such as 
the need for privacy or the need to maintain outside views. Both of these contribute to the overall 
satisfaction of the occupant, but can also impact building energy performance by influencing the manner 
in which an occupant may interact with building systems. 

4.3 Actions 

Actions are interactions with systems or activities that an occupant can conduct in order to satisfy their 
needs. The violation of one or more of an occupant’s needs leads to discomfort. Therefore, this 
uncomfortable state for the occupant will provoke an action (Figure 8). The action may be an interaction 
with a system in which the occupant conjectures that their action will restore comfort. An example of an 
action would be to adjust the level of clothing, open a window, or turn down the thermostat temperature 
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etc. Actions can also include other measures such as reporting discomfort to a building manager, moving 
to a different location, or leaving the building entirely. 
 
Figure 8: Actions undertaken by building occupants when their needs are not met 
 
There is also the possibility for inaction, when the occupant decides to do nothing but to suffer the 
discomfort. This could be caused by the occupant deeming the effort required to mediate the discomfort 
too high, or the occupant is without access to suitable systems. Energy attitudes and social pressure may 
also cause inaction, whereby an occupant modifies their willingness to perform a discomfort-alleviating 
action due to the presence of other occupants who would be affected by the action.  

4.4 Systems 

Systems are the equipment, mechanisms or measures with which an occupant may interact to restore 
comfort or satisfaction with their environment. The resulting interaction may impact the energy 
performance of the building (Figure 9).  
 
Figure 9: Building systems with which an occupant may interact causing a change in building energy use 
 
For a system to affect the occupant-related energy performance of a building, it needs to be acted upon or 
controlled by an occupant. Common systems that are subject to occupant control and actions include 
windows, window blinds/shades, lights, thermostats, space occupancy, and electrical equipment. The 
control method of the systems becomes important when considering the energy performance of the 
building. Manual systems, such as non-programmable thermostats (or programmable thermostats which 
simply have not been programmed) and operable windows, can be directly controlled by occupants. 
Automated systems, such as programmable thermostats and automatic blind systems, can be acted upon 
by occupants using an override function. The clothing worn by an occupant, or the interactions which 
prompt feedback energy from visualization systems, can also be considered a system in the framework. 

5. Discussion 

This section discusses the possible applications of the described ontology developed to standardize the 
representation of energy-related occupant behavior in the buildings sector, at the international level 
(Figure 10).  
 
Figure 10: A graphical representation of the DNAs framework applications  

5.1 What types of behavior are accounted for in the DNAs framework?  

Interactions between occupants and building systems can have a dramatic impact on global building 
performance in terms of comfort (thermal, visual, acoustical, IAQ), energy loads (heating, cooling, 
ventilation, lighting, plug-loads, electricity peak loads), technology efficiency, operational costs and 
occupant productivity. In the DNAs framework, energy-related behavior refers both to individuals and 
groups of occupants and their interactions with building energy services systems, appliances and facilities 
to control the indoor environment (such as windows, blinds and shades, heating and cooling thermostats, 
lighting and electric appliances). The movement and presence of occupants in indoor spaces is also 
included in the framework.  
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5.2 Why a framework to standardize the representation of energy-related behavior in buildings? 

While building performance drivers such as climate, building envelope, and building equipment are well 
recognized and studied, the representation of energy-related occupant behavior is often oversimplified 
partly due to the stochastic nature of human behavior. The goal of the DNAs framework is to provide an 
ontology of energy-related occupant behavior in buildings to solve discrepancy issues mostly rooted in: 
(a) oversimplifying or ignoring human behavior in the building design and operation process, (b) a broken 
interface between human behavior and building system controls and, (c) lack of reliable technology and 
system controls performance. The effectiveness of the DNAs framework will be measured by its 
capability to bridge some of the ‘credibility gaps’ [10] between: 

• predicted vs. real energy consumption in buildings 
• modeled vs. actual occupant behavior in buildings 
• deterministic vs. stochastic nature of human behavior in energy modeling 
• perceived vs. realistic performance of technologies 
• assumed vs. monitored occupant behavior impact on building performance. 

5.3 Which building types can be addressed when adopting the proposed ontology?  

Occupant behavior has been shown to have a profound impact on the energy performance of both 
residential and commercial buildings, even within a narrowly-defined cohort of similar building types of a 
particular age, size, and principal use. The DNAs framework will provide researchers, designers, energy 
modelers, building operators, managers and policy makers with an ontology to standardize the 
representation of energy-related occupant behavior in buildings and quantify its impact. Specifically, the 
impact on building operation scenarios, technology and system performance, as well as design and retrofit 
strategies. The conceived structure of the framework is generic enough to allow the description of 
solutions for different climate zones and geographical locations. 
 
5.4 Who can use the DNAs framework, for what purposes and to what extent?  

The DNAs framework will be used to address issues held by building energy modelers, building 
designers, building engineers, building operators and managers, building utilities, and policy makers. 
Building energy modelers can use the framework to simulate occupant behavior in buildings consistently. 
Simulation results can be shared with other modelers in a structured and consistent way. In the long term, 
the DNAs framework will allow occupant behavior modeling to become a standard component in 
building information modeling (BIM). Building designers will be able to use the DNAs framework for 
stochastic spatial mapping of occupants. Typical occupational working profiles developed using the 
DNAs framework will support strategic choices made during the early design and retrofit stages of 
buildings. Building engineers will receive strategic knowledge on the performance of their technology, 
equipment or systems, by simulating the impact of the energy-related behavior reviewed in the DNAs 
framework as part of overall building energy performance. Building operators and managers will profit 
from the knowledge collected using the DNAs framework, which will provide actionable information that 
allows optimal tuning of space heating/cooling set points, comfort levels, and operational schedules of 
HVAC and lighting systems. Building utilities will receive strategic support from the application of the 
DNAs framework when adjusting their priorities to user-oriented energy-efficiency requirements and 
behavioral programs, and also modifying their technology and equipment production. Policy makers will 
apply the DNAs framework to guide behavioral program design, implementation and evaluation. Also, 
the DNAs framework can be envisioned as the fundamental setting-body structure of a new generation of 
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ISO (International Organization for Standardization) standards to represent and describe energy-related 
occupant behavior in the buildings sector at the international level. 

5.5 When can the DNAs framework be used? 

The DNAs framework can benefit building energy performance during the whole building life cycle, 
including the design, operation, management and retrofit phases. During the design phase, the DNAs 
framework allows for more accurate prediction of actual building energy use. Occupant behavior models 
utilizing the DNAs framework and implemented in energy modeling programs, such as EnergyPlus, will 
support decision making in the early design stage. During operation and maintenance the predictive 
models and algorithms of occupant behavior covered by the DNAs framework will advise users through 
smart human-machine integrated communication (i.e. embedded in personal mobile devices and control 
technologies), as well as allow for building energy flows, control systems, appliance usage, and comfort 
level mapping. During a building retrofit, the DNAs framework could aid in the evaluation and impact 
assessment of different building technology solutions influenced by occupant behavior.  

5.6 How can energy-related behavior be represented using the DNAs framework? 

The different applications of the described ontology aim to overcome some unbridged gaps in methods, 
models, and simulation tools, to represent the impact of energy-related occupant behavior on whole-
building energy performance. Monitoring methods, modeling methods and simulation engines are three 
specific areas which will be highly influenced by the adoption of the DNAs framework. Currently, no 
common agreement exists among the scientific community on which data to collect, which parameters to 
monitor and with which sensor and accuracy, which length time step, and what duration of monitoring 
period. The monitoring methods of different types of behaviors and actions can be guided by the DNAs 
framework, eliminating ambiguity. Moreover, the DNAs framework addresses current challenges with 
modeling methods. The research community is in strong need of enhanced behavioral models to meet 
experts’ requirements. Firstly, qualitative behavioral actions are not adequately supported by a common 
language when translated into quantitative models and simulations. Starting from the monitoring phase, 
gathering data over a significant time range, covering diverse building types, organizational culture, 
populations and geographical areas would assure statistical relevance to the model development. 
Nonetheless, this is rarely achieved, due to lack of resources, tools and time. The DNAs framework 
provides a cohesive ontology that can advance modeling methods specific to energy-related occupant 
behavior in buildings. Lastly, there is no common consensus as to the most effective tool to use to 
develop reliable behavioral simulations. Several independent codes have been written and implemented 
into existing simulation tools. Nonetheless, the applicability and interoperability of these models are still 
affected by local disparities, coding languages and design issues. Different technical advances in the 
implementation of behavioral models have been realized in different simulation environments. However, 
very often such advanced controls come without appropriate graphical user interfaces, making them 
difficult and time-consuming to learn. The proposed DNAs framework is intended to be integrated into 
current building energy modeling programs like EnergyPlus and other domains (ESP-r, TRNSYS, IDA 
ICE, DeST, DOE-2, etc.) or Functional Mock-up Interfaces (FMI) to support both model exchange and 
co-simulation of dynamic models using a combination of xml-files and compiled codes, within the 
structure of the XML Schema.  

6. Conclusion 

The DNAs framework described in this study presents an ontology providing a common technical 
language for the building simulation community to observe, model, and simulate energy-related occupant 
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behavior in buildings. The proposed framework captures the vast majority of occupant behavior which 
directly or indirectly impacts building energy use. The ontology comprises of four main components: the 
drivers behind the occupant behavior that influence the energy performance of buildings; the needs of the 
occupants which must be met in order for the occupants to be comfortable and satisfied with their 
environment; the actions which occupants can take in order to satisfy their needs; and the building 
systems with which occupants can interact to perform the actions which affect building energy 
performance. Describing, predicting or influencing energy-related occupant behavior are challenging 
tasks, due to the stochastic nature of humans. Currently, the field of building occupant behavior modeling 
suffers from a lack of standardization in methods, models and simulations. To this extent, the DNAs 
framework presented in this paper, facilitates the quantification of the impact of occupant behavior on 
building energy efficiency. The aim is to provide more robust descriptions of the motivations driving 
occupants to interact with the building envelope and building systems, in order to bring about desired 
comfort conditions. The DNAs framework is envisioned as a common information-exchange language 
supporting stakeholders (architects, engineers, operators, owners, occupants) and policy makers, toward 
the standardization of the representation of energy-related occupant behavior. The final aim of the 
framework is to allow the incorporation of more accurate behavioral models into building simulation tools 
to provide comparable metrics and results on: 1) the behavioral factors that impact building energy 
performance, 2) the potential energy savings from improved occupant behavior in buildings, and 3) the 
design of robust building operation scenarios, technologies, systems and retrofit strategies. Applications 
of the DNAs framework include building energy modeling and simulation, building design, energy 
benchmarking and performance rating, development of codes and standards, and policy decisions. In the 
long term, the DNAs framework can evolve into occupant information modeling (OIM), as a new and 
critical addition to building information modeling (BIM). An XML schema called obXML will further 
implement this framework to promote comparison and validation of occupant behavior models, while also 
facilitating their integration with building simulation tools. The deployment of the DNAs framework and 
the obXML schema into current modeling practices must then face some of the intrinsic constraints of 
human behavior simulation in buildings, such as the level of modeling detail for individual and group 
behavior, the interaction between external and internal drivers and action scenarios, as well as the 
implication of multiple behaviors and choices in buildings [20, 22], just to mention some.  
More detailed analysis of the constraints on the application of the DNAs framework and insights into the 
obXML schema are provided in Part II of this paper. 
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Figures and tables with captions 

 

Figure 1: Distribution of delivered energy intensities for commercial buildings in Baltimore, USA [4]. 

 

Figure 2: Energy consumption of 35 apartments of the same block of building in Copenhagen, EU [5]. 

 

Figure 3: Residential building summer air-conditioning electricity consumption, Beijing, China. [6]. 
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Figure 4: Graphical representation of the methodological approach on occupant behavior modeling 

 

Figure 5: Four key components of the human-building environment interaction framework 
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Figure 6: Drivers behind energy-related occupant behavior

 

Figure 7: Needs of building occupants that may result in an action that changes the building energy use 
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Figure 8: Actions undertaken by building occupants when their needs are not met 

 

Figure 9: Building systems with which an occupant may interact causing a change in building energy use 

 

 

Figure 10: A graphical representation of the DNAs framework applications 
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Table 1. Theoretical framework of human behavior 

Acronym Name Author Date 

PCT Perceptual Control Theory Powers [11] 1953 

HOS Human Operator Simulator Wherry [12] 1976 

CCT Cognitive Complex Theory Card et al. [13] 1983 

EPIC Executive Process Interactive Control Kieras and Meyer [14] 1995 

SOAR State, Operator and Result Lehman et al. [15] 1996 

ACT Adaptive Control of Thought Anderson and Liebere 1998 

COGNET Cognition as a Network of Task Zachary et al. [17] 1998 

APEX Architecture for Procedure Execution Freed [18] 1998 

BRAHMS Business Redesign Agent-Based Holistic Modelling System Sierhuis et al. [19] 2007 

 

Table 2. Typical building components and characteristics included in published simulation models of occupant behavior 

building type (office, residential) 

spaces layout, geometry, location     

building envelope thermo-physical characteristics 

façade orientation and height 

window geometry and height 

type of window device (manual/motorized/automated)  

type of dwelling (detached house, house, flat) 

type of office (open space, cubicle, private vs. shared office)     

type of ventilation system (natural, mechanical, mixed-mode, night ventilation) 

type of HVAC/AC system   

type of lighting control (manual/automatic) 

type of shade device (manual/motorized/automated) 

internal loads, occupancy schedules 

type of indoor temperature control 

 

 



Table 3. Typical metrics and simulation outputs included in published simulation models of occupant behavior 

techniques windows shade/blinds lighting system thermostat space occupancy plug loads 

metrics air change rate 

(n/h)                 

ventilation losses 

(kwh/m2), 

thermal comfort,             

indoor air quality 

mean shade 

occlusion (MSO) 

shade movement 

rate (SMR)                                  

visual/thermal 

comfort,                  

glare discomfort 

index 

daylight 

illuminance level 

(lux) 

light switch 

frequency,                

visual comfort 

primary energy 

consumption for 

space heating 

(kwh/m2)                    

internal gains              

thermal comfort 

occupancy rates,                 

nominal 

occupancy 

profiles,            

vacancy activity,                

transition 

probability, 

presence/absence 

probability and 

distribution,                  

frequent pattern 

detection 

occupancy 

patterns, 

operational 

schedules 

 



Appendix A 

Techniques WINDOWS SHADE/BLINDS LIGHTING SYSTEM THERMOSTAT SET 
POINTS 

SPACE OCCUPANCY EQUIPMENT 

O
B

JE
C

T
IV

E
 F

IE
L

D
 M

O
N

IT
O

R
IN

G
 

SENSORING the 
CONTROL SYSTEM 
directly 

Magnetic switches                
[5, 2-25, 105, 134]  

Electromechanical sensors                              
[29, 30, 93] 

Electromechanical 
sensors [31, 119, 122] 

TRV / cooler 
temperature set point 
[33-36, 120] 

Presence detectors         
[42, 43, 94-98, 109, 112, 
115, 123, 124, 126, 136, 
149, 150]  

Smart plugs, electrical 
current measurement, 
wireless electric outlet 
meters [45-52] 

SENSORING the 
CONTROL SYSTEM  
indirectly  

CO2 concentration level                                  
Vaisala GMW22 sensor 
[26], WMA-3 monitor [53]. 
Tracer gas techniques                                      
[55-58] 

 Electrical recording of 
the illuminance level                       
luxometer [60], 
photometer  [32] 

Gas energy use         
heated floor area [61], 
heat flux meters, air and 
water flow meters, power 
meters [42] 

CO2 concentration [54], 
light switch sensors [59], 
computer switch [62, 63], 
computer IP address [64], 
sensor network [152] 

 

 

SENSORING physical 
and non-physical 
variables 

Indoor and outdoor 
parameters                         
[21, 25, 26, 28, 53, 55, 99, 
100, 105-107] 

Indoor and outdoor 
parameters                    
[30, 32, 65-67, 72, 73, 78, 
93, 101, 110] 

Indoor and outdoor 
parameters                    
[41, 101, 104, 108, 110, 
111, 113, 114, 143] 

Indoor and outdoor 
parameters                    
[35, 83-87, 102, 151]  

Indoor and outdoor 
parameters                                     
[123]  

PHOTOGRAPHIC 
ANALYSIS 

TIME LAPSE 
PHOTOGRAPHY of the 
exterior of the building 
façade [23, 28, 73, 93] 

TIME LAPSE 
PHOTOGRAPHY of the 
exterior of the building 
façade [29, 32, 65-70].                                           

TIME LAPSE 
PHOTOGRAPHY of 
the interior of the 
building façade [71, 72]  

 Camera-based methods                                    
[74, 75] 

 

INTERNAL VISUAL 
SURVEY (personal 
observation and 
record ) 

Building walkthroughs [76] Building walkthroughs                           
[93] 

Building walkthroughs                                                        
[31] 

   Techniques WINDOWS SHADE/BLINDS LIGHTING SYSTEM THERMOSTAT SET 
POINTS 

SPACE OCCUPANCY EQUIPMENT 

SU
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E 
FI
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L

D
 

 

SELF REPORTING  Questionnaires                                             
[24, 26] 

 

 

Questionnaires            
[102, 151]  

  INTERVIEW 
TECHNIQUES 

Questionnaires [23, 55, 73, 
77, 78, 80, 88]                           
Mail survey [99]               
Web based survey [88, 107] 

Questionnaires                  
[29, 30, 50, 65, 73, 78] 

Questionnaires              
[31, 81]  

Questionnaires          
[82-85, 89]  

 

Questionnaires                                             
[52, 86, 87] 

 



Appendix B 

Techniques WINDOWS SHADE/BLINDS LIGHTING SYSTEM THERMOSTAT SET POINTS SPACE OCCUPANCY EQUIPMENT 

IMPLICIT 
MODELS 

Stochastic 
models            

Single variable linear [76] 
and logistic regression    
[23, 73]                            
Multi variable logistic 
regression                             
[5, 36, 53, 100,  103, 105-
107, 115]  

Lightswitch algorithm                                
[41, 101, 113, 143]                 
Single variable logistic 
regression [22, 28, 29] 
Multivariate logistic 
regression                     
[93, 95, 108, 109]               

Lightswitch algorithm                                
[41, 101, 104, 110, 113, 143]                   
Linear regression analysis [91]                                
Probability equation                                         
[49, 71, 72, 111]                   
SHOCC Sub Hoursly 
Occupancy based control model                      
[48]                                      
Bayesian estimations [114]  

Statical analysis [33, 35, 151] 
Linear regression analysis [37]                                            
Multivariate Logistic Regression  
[36, 102, 103] 

Statistical analysis                 
[40, 59, 112, 149]                         
Logistic regression models    
[94-98]                               
SHOCC Sub Hourly 
Occupancy based control 
model [118]  

Logistic regression models   
[46-48, 52 

EXPLICIT 
MODELS 

Monte 
Carlo 
Simulation 

Discrete Marcov Chain 
[21, 25, 50, 80, 100, 121]  

Markov Chain [22, 32, 
50]  

Markov Chain [115, 119] Markov Chain [50, 79, 117] Semi Markov model [122] 
Hidden Markov model [123] 
Agent based model [124-130]  

Markov chain, semi-Markov 
process [49-51]                                        

Data mining  Cluster Analysis, 
Association Rules Mining 
[134] 

   Cluster analysis, association 
rules [131-134]         
Hierarchical models [135] 
Decision trees  [136]                          

Cluster Analysis, Association 
Rules Mining [131-133, 135] 
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