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Abstract

More than 30% of the total primary energy in the world is consumed in buildings. It is crucial to reduce

building energy consumption in order to preserve energy resources and mitigate global climate change.

Building performance simulations have been widely used for the estimation and optimization of building

performance,  providing reference  values  for  the  assessment  of  building energy consumption  and the

effects  of  energy-saving  technologies.  Among  the  various  factors  influencing  building  energy

consumption, occupant behavior has drawn increasing attention. Occupant behavior includes occupant

presence, movement, and interaction with building energy devices and systems. However, there are gaps

in occupant behavior modeling as different  energy modelers have employed varied data and tools to

simulate occupant behavior, therefore producing different and incomparable results. Aiming to address

these  gaps,  the  International  Energy  Agency  (IEA)  Energy  in  Buildings  and  Community  (EBC)

Programme  Annex  66  has  established  a  scientific  methodological  framework  for  occupant  behavior

research, including data collection, behavior model representation, modeling and evaluation approaches,

and the integration of behavior modeling tools with building performance simulation programs. Annex 66

also  includes  case  studies  and  application  guidelines  to  assist  in  building  design,  operation,  and

policymaking, using interdisciplinary approaches to reduce energy use in buildings and improve occupant

comfort and productivity. This paper highlights the key research issues, methods, and outcomes pertaining

to Annex 66, and offers perspectives on future research needs to integrate occupant behavior with the

building life cycle. 
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1 Introduction

Occupant behavior (OB) has significant impacts on building energy consumption. Masoso and Grobler

[1] studied the electricity consumption in an office building, claiming that 56% was consumed during

non-working hours (exceeding the energy consumption during working hours), mainly due to occupants

leaving on lights or other devices when they left the office. Al-Mumin [2] drew similar conclusions from

a case study of a residential building, in which a high proportion of occupants left lights on even when the

room was not occupied. Bahaj and James  [3] found that buildings with identical geometrical location,

building envelope, and shape could have differences in  actual building energy use as large as 300%,

mainly driven by differing home appliance use patterns. Other researchers have identified notable energy

reductions  through  OB interventions.  Wood and Newborough  [4] studied  the  effects  on  real  energy

consumption as a result of providing feedback on energy use and energy-saving suggestions to occupants.

The results showed that nearly half of the buildings had achieved an energy reduction of 10% to 20%. A

similar study conducted by Ouyang and Hokao [5] on appliance use also claimed an energy reduction of

about  10% by influencing  OB.  However,  energy  savings  from such behavioral  changes  may not  be

sustainable due to the rebound effect and other factors.

OB  is  also  a  key  factor  in  the  evaluation  of  energy-saving  technology.  Whether  an  energy-saving

technique  performs  as  expected  relies  heavily  on  how  occupants  understand  and  interact  with  the

technology while the building is in use. Zhou et al. [6] simulated the energy performance of centralized

and decentralized air-conditioning systems based on a quantitative description of occupant use patterns.

The simulation results showed that the system type with the lowest energy consumption (between two

options) was dependent on the occupant use patterns. Guo et al.  [7] studied improvements on building

envelope  insulation  and  their  effects  on  heating  energy  consumption  in  Shanghai,  China.  Similarly,

different use patterns were set and the simulation results suggested that the energy-saving potential was

related to the use patterns. In the case where the room temperature was at a low setting and occupants

only activated the heating when the spaces were occupied, the energy-saving potential with improved

insulation was rather small. Wei et al.  [8] conducted simulation research on energy-saving potential by

improving the envelope insulation in an office building. They also concluded that OB influenced the

extent of energy savings.

The quantitative description and simulation of OB, as revealed from the aforementioned cases, plays a

fundamental role in accurately evaluating building energy performance and energy-saving technologies.



The challenge in OB modeling and simulation lies in its distinctive features: stochastics, diversity, and

complexity. Stochastics refer to the fact that occupants do not strictly repeat their behavior from day to

day, as their behavior is influenced by numerous factors. Peng et al. [9] produced an air-conditioning use

profile in a household where the times of air-conditioning operation varied every day. A data-collection

case  study in  office  buildings  from Mahdavi  et  al.  [10] drew a  similar  conclusion  from occupancy

observations. Diversity refers to differing behaviors among occupants even when the stimuli are the same,

due to different tolerances and comfort preferences. Surveys on occupant adjustment to thermal comfort

issues  conducted by IFMA  [11] collected thousands of responses  on the manner in  which occupants

restored  comfort  and  found  a  large  variety  in  occupant  responses.  Another  survey  in  China  [12]

investigated the driving factors of occupant operation of air-conditioning, claiming that occupants varied

in their behavior patterns. Complexity implies that OB has complicated underlying mechanisms and is

influenced by multiple disciplinary factors. Fabi et al.  [13] grouped factors affecting occupant window

operation  into  different  categories,  namely,  the  physical  environment  and  contextual,  psychological,

physiological, and social factors. Foster and Oreszczyn [14] suggested that occupants residing in rooms

facing other buildings would lower their blinds out of consideration for privacy.

Inspired by and building upon the main outcomes and unanswered research questions of Annex 53, which

studied six influencing factors of real energy use in buildings, Annex 66 was established in November

2013 and is  due to  be completed by December  2017.  The main  goals  of  Annex 66:  Definition and

simulation of  occupant  behavior  in  buildings are  to  establish a  standardized  OB definition  platform,

establish a quantitative simulation methodology to model OB in buildings, and understand the influence

of OB on building energy use and the indoor environment. The ultimate target of the research in this

Annex is to reduce the gap between the simulated and measured energy use in buildings by modeling OB

quantitatively, integrating the models with building performance simulation programs, and demonstrating

the methodology through case studies. 

2 Overview of the research from Annex 66

The purpose of Annex 66 is  to establish a scientific  methodological framework of OB simulation in

buildings,  from  data  collection,  modeling  and  evaluation,  and  software  integration  to  applications

supporting building design, operation, policymaking, and other potential areas. The key research issues

with regard to OB simulation are identified in Figure 1, and their corresponding outcomes from this

Annex are highlighted.



Figure 1. Research activities, key issues, and main outcomes of the research pertaining to Annex 66

Annex 66 generated outcomes to improve the modeling and application of OB simulation. This paper

highlights the research and outcomes from five research activities within Annex 66; details and other

research  activities  are  available  in  the  final  report.  A monitoring  guidebook was published  to  guide

researchers  with  a  comprehensive  review  and  instruction  on  OB  data  collection  (Section  2.1).  A

comprehensive  study  was  performed  for  modeling  approaches  and  evaluation  methods,  including  a

review  of  existing  OB modeling  approaches  and  exploration  of  rigorous  model  evaluation  practice

(Section 2.2). OB simulation modules were integrated into a standardized framework to represent diverse

and flexible occupant behavior in building performance simulation (BPS) programs (Section 2.3). A case

study sourcebook was written to bring together examples of building OB modeling and applications from

around the world (Section 2.4). Finally, an international OB survey was developed in an interdisciplinary

effort to investigate building-user interactions in workspaces by combining OB modeling with studies

from the psychological and sociological fields (Section 2.5). 



2.1 Data collection

2.1.1 Research issues

Collecting data from building  occupants is one of the critical elements during OB research. Over the

previous decades, there have been numerous occupant field and in-situ studies with different methods of

data collection to meet specific research goals, including modeling occupant presence [15–20], window

open/closed state and related environmental parameters for window opening/closing behavior [13,21–27],

curtain/blinds adjustment behavior  [14,28–38], light switching behavior  [34,39–41], and air-conditioner

adjustment behavior  [17,42–44].  Furthermore,  there  have been a  number of laboratory studies  where

human subjects are put into a controlled environment with a specific scientific aim, such as identifying

thermal  [45] or  visual  comfort  [34,46],  or  social  impacts  on  OB  [47].  Surveying,  a  self-reporting

mechanism, is another way to collect data regarding perception and social aspects of OB [48–50].

Given the various  methods available  for occupant  data  collection,  some general  questions  to  answer

before performing any OB research are which data is needed and which data collection method is most

suitable  for  the  specific  research  purpose.  To  answer  these  general  questions,  a  series  of  research

questions were posed: (1) What is the type of occupancy and OB to be monitored; (2) What are the

current state-of-the-art occupant sensing (e.g., passive infrared sensors) and data acquisition technologies;

(3) What are the available occupant measurement methods (e.g., laboratory-based or survey); (4) What is

the best way to get ground truth data and validate them, and (5) to properly manage data; and (6) What are

some potential ethics issues with the data collection process? The activities of Annex 66 were carried out

with these questions in mind to provide useful outcomes for the OB research field.

2.1.2  Outcomes from Annex 66 activities

A comprehensive literature review on existing data collection methods was conducted with regards to (1)

OB data category, (2) occupant sensing method, (3) OB measurement method, (4) ground truth validation,

and (5) ethics issues. The purpose was to provide guidelines for future OB research activities. A summary

of this work is provided in the following paragraphs.

Occupant behavior data categories: Occupants can interact with various building systems and the built

environment  through their  presence  and  actions.  Their  behavior  can  be  influenced by  four  types  of

factors:  physiological,  individual,  environmental,  and  spatial  adjustments [47].  Moreover,  potential

triggers and contextual factors influencing OB include internal (biological, psychological, and social) and

external  (building  and  building-equipment  properties,  physical  environment,  and  temporal)  factors

[48,51,52].



Occupant sensing and data acquisition methods: Current state-of-the-art occupant sensing approaches

can be grouped into six major categories: image-based, threshold and mechanical, motion sensing, radio-

based environmental, human-in-the-loop, and consumption sensing. In addition, nine performance metrics

have been developed to evaluate occupant sensing technologies: cost, deployment area, collection style,

power type, sensing range, accuracy, data storage, data collected by sensors, and deployment level. A

mixed sensing approach is often adopted in which various types of sensors are used together [17,53]. With

these technologies,  occupant  data can be transmitted through a building automation system (BAS),  a

wireless sensor network, or the internet [54–57]. An ontology able to represent and incorporate multiple

layers of OB data in pertinent computational applications, such as building performance simulation tools

and building automation systems, has been developed and demonstrated [58].

Occupant behavior measurement method: The method of occupant measurement can be divided into

three categories: in-situ, laboratory, and survey. The in-situ method collects and monitors OB in their

natural environment, using existing or additional occupant sensors. In-situ studies can be performed over

a long period (up to years). Privacy, ethics, participant recruitment, and ensuring informed consent are

some of the challenges in using this approach  [59]. A laboratory study is often performed in a well-

controlled indoor environment such as an environmental chamber [60–62] or a dedicated laboratory space

[45,47,63,64].  Laboratory  studies  have  many  more  controls  than  in-situ  studies,  and  often  involve

experiments  using  different  environmental  conditions  to  understand  occupant  perceptions.  However,

laboratory studies  are  often expensive compared to  in-situ  studies  and only last  for  a short  time.  In

addition, OB may be impacted by the Hawthorne effect (where individuals alter their behavior under

observation). Surveys are a self-reporting mechanism for personal behavior. Most of the time, surveys

provide a large sample size in a cost-effective way. In the context of this Annex, researchers reviewed

projects  from the  energy-related  OB research  literature  that  employed cross-country  surveys  [65] or

interview methods for data collection (such as transverse  [66] and longitudinal surveys [67]), including

quantitative and qualitative methods. Research praxis highlighted the cross-country questionnaire survey

as one of the most useful methods to gain insights on behavioral patterns, drivers, causes, and perceived

effects of behavior and to find connections between human, social, and local comfort parameters  [65].

Emerging methods include mixed-design methods [68] and virtual reality-based immersive environments

[69].  Sample  size  and  survey  data  storage  and  management  are  all  critical  aspects  to  consider  in

questionnaire design to avoid bias in results. Response rates can be kept high by providing respondents

with some incentives that motivate them to fill in the questionnaire, such as monetary awards [70] and gift

certificates [71]. Ethics protocols, privacy issues, and informed consent must always be approved before

handling human subject research [72].



Ground truth validation: The concept of ground truth has been adopted in other fields, such as computer

vision and biometrics, to refer to the underlying absolute state of information or to express the notion of

data that is understood to be correct  [9]. Ground truth data in OB research often comes from sensors,

particularly cameras, and survey data [73]. There are no existing guidelines on how to validate occupant

measurements.  However,  a  calculation  of  measurement  uncertainty  is  often  adopted  to  quantify  data

quality. The measurement uncertainty is defined as the dispersion of the quantity values being attributed

to a measurand, which can be calculated by summing the contributions of each component of variation in

the measurement procedure.

Ethics: To conduct OB research studies, it is necessary to involve human subjects. Ethical conduct is

achieved by ensuring scientific validity and minimum potential harm to participants during the study.

Various countries have ethical committees and procedures such as the Institutional Review Board (IRB)

and  the  European  Network  of  Research  Ethics  Committees  (EUREC),  while  the  World  Health

Organization (WHO) has a Research Ethics Review Committee. Ethics should be considered with regards

to participant recruitment and risks. Informed consent is often used to address privacy and confidentiality

issues. 

2.1.3 Key findings

Occupant data collection is not a trivial process and often leads to new research paradigms. Due to costs,

privacy concerns, and other socioeconomic factors, small-scale data collection is often conducted for a

specific OB study. Key findings from Annex 66 are described below.

 Previous studies indicate that OB is influenced by various complex factors, including physical,

social,  and psychological factors.  Additionally,  all  previous studies focus only on one or two

factors correlating with a specific OB. No comprehensive study including all possible factors and

their interdependencies has yet been explored.
 The  application  of  current  sensing  technologies  to  OB research  includes  occupant  presence,

people  counting,  human-building  interactions  (such as  turning  lights  on  or  off  and  adjusting

thermostats  and  window  blinds),  energy  consumption  impacts  of  miscellaneous  loads,  and

movement  tracking.  Occupant  sensing  is  costly  and requires  heavy maintenance  efforts.  The

future  occupant  sensor  should  be  peel  and  stick,  require  minimal  maintenance,  and  use  an

extremely low power supply. Innovation should focus on new sensing elements, intelligent power

consumption management, smart processing, and minimum communication demands.
 In-situ data collection is  often used for long-term OB monitoring,  with limited controls  over

participant  numbers,  sample  size,  system,  and  space  configurations.  Laboratory  studies  have



flexible controls over the indoor environment and sensing equipment; however, they often only

focus on one or two environmental factors. The survey approach is used to explore a specific OB

(such  as  turning  air-conditioning  on  or  off),  includes  various  physiological,  social,  and

psychological factors, and allows for a large sample size; however, it has suffered from issues

with uncertainty and data quality.
 When collecting data through a questionnaire survey, although generally a low-cost option for

obtaining large-scale OB data in a short period of time, the data quality as well as inconsistencies

between what people indicate on the survey and what they actually do remains a challenge. 

2.2 Modeling approaches and model evaluation

2.2.1 Research issues

Some factors responsible for the paucity of general procedures and guidelines for the evaluation of OB

models have been identified. Firstly, the development of an occupant-related behavioral model represents

a relatively recent domain of inquiry, and even though there is a considerably longer tradition of thermal-

comfort research, it still faces similar challenges [47]. Secondly, a critical problem for model evaluation

lies  in  the  limited availability  of  observational  data.  As data  are  hard  to  come by,  models  are  often

developed and deployed with insufficient  empirical  justification,  underlining the importance of broad

building  monitoring  efforts.  Thirdly,  behavioral  models  require  the  consideration  of  multiple

physiological, psychological, and sociocultural parameters. Many potential influencing factors have not

yet been identified, due to the weak signals of factors suspected to lead to behavioral manifestations.

2.2.2 Outcomes from Annex 66

A critical  evaluation  of  the  existing  occupant  modeling  approaches  has  been  performed  based  on  a

literature review. The reviewed cases mainly focused on office buildings. Based on the literature review

and previous related studies  [74],  occupant  models were grouped into three types:  adaptive behavior

models, non-adaptive behavior models, and occupancy models. Four different forms of behavior models

were found: (1) schedules, (2) Bernoulli models, (3) discrete-time Markov models, and (4) discrete-event

Markov models. In the reviewed literature, adaptive behavior models were typically developed as weekly

schedules,  Bernoulli  models,  and  discrete-time  or  discrete-event  Markov  models.  Bernoulli  models

predict the likelihood of a building component with which occupants frequently interact at a given state

(e.g., the percentage of lights switched on at a given outdoor illuminance). Markov models predict the

likelihood of an adaptive action as a function of explanatory variables (e.g., the probability of a light

switching on in the next time step in a discrete-time Markov model, or at the next arrival in a discrete-

event  Markov model).  Non-adaptive  behavior  models  include  weekly  schedules,  survival  models,  or



occupancy schedules from a similar building. Survival models for non-adaptive behaviors predict the

lifetime of an occupant action or the state of a building component with which occupants interact (e.g.,

the lifetime of blind positions before they are changed). Occupancy models can take the form of weekly

schedules, discrete-time Markov models predicting the timing and frequency of arrivals and departures,

and survival models predicting the duration of an uninterrupted occupancy/vacancy period.

To improve the quality of model validation practices in behavioral modeling, some key conceptual issues

and implications were clarified [58].

 Performance simulation (dynamic computational representation of building behavior) should not

be confused with prediction. The main utility of building performance simulation lies in complex

systems analysis,  rather than in  accurate long-term predictions.  The mismatch often observed

between simulation-based predictions and respective observations (the performance gap) can be

the result of multiple sources of uncertainty, pertaining not only to internal (occupancy-related)

processes, but also to external (weather) conditions, building fabric, and building systems.
 The term deterministic, which has substantial philosophical baggage, is often used in a potentially

misleading  manner  to  characterize  fixed  diversity  profiles  (e.g.,  assumed  fixed  schedules  of

occupant presence) and rule-based behavioral models. Although the use of probabilistic methods

can  improve  the  accuracy  of  simulation  results,  compared  with  homogeneous  deterministic

diversity profiles and rule-based models (see for example D’Oca et al.  [75]),  it  has not been

conclusively demonstrated that specific modeling methods automatically result in more accurate

simulation  results.  Section  2.4  Applications  further  illustrates  what  types  of  OB models  are

appropriate for various application types (i.e., problems to solve).

2.2.3 Key findings

The strengths and weaknesses of the various model forms were identified. As a general conclusion, it was

found that  switching  on  lights,  closing  blinds,  and  opening/closing  windows by occupants  are  most

accurately modeled with discrete-time or discrete-event  Markov models.  On the other hand,  survival

models  adequately  characterize  occupant  plug-in  equipment  use,  blind  opening,  and  light  switch-off

behaviors.

With regard to the model evaluation challenge, Annex 66 found the following insights:

 Data-driven probabilistic methods of occupant control actions can be very useful. This, however,

does  not  remove  the  need  for  fundamental  studies  of  the  motivational  field  shaped  by

physiological, psychological, and social factors. Despite not yet being a common practice,  the

inclusion  of  contextual  and  behavioral  variables  in  building  energy  models  can  increase  the

accuracy  of  predictive  models  for  the  human–building  interaction  in  office  spaces,  thus



supporting optimized building design and operation and human-centered energy policies, as well

as enhancing occupant comfort and the usability of building technologies.
 The  validity  of  specific  behavioral  models  can  only  be  assessed  via  careful  and  transparent

documentation of the model development and evaluation processes. In this manner, independent

instances could require reappraisal of such procedures. Furthermore, behavioral models cannot be

deemed to be validated based on a limited set of observational data. Specifically, datasets for

model  development and model  evaluation should not  be conflated.  Likewise,  one should not

extrapolate from a single behavioral study to all kinds of populations, building types, locations,

and climates. 
 As in other scientific research areas, the model evaluation process must be guarded against bias.

Internal  evaluation  by  model  developers  is  insufficient  to  establish  the  validity  of  a  model.

External evaluation procedures, double-blind studies (e.g., Schweiker et al. [76]), and round-robin

tests can provide more convincing evidence for the reliability of a model. 
 To demonstrate the general validity of developed behavioral models, further study is required to

test  the  hypothesis  that  the  intention  to  behave  in  a  certain  way  is  factually  influenced  by

individual motivational drivers, together with socio-physical factors such as attitudes, subjective

norms, and perceived behavioral control of the building technologies.

Given  these  observations,  it  is  essential  to  exercise  substantial  care  when  integrating  insufficiently

documented and tested behavioral models in broadly used simulation applications, lest  tool users are

misled into assuming such models necessarily capture the reality of occupant presence and behavior in

buildings.

2.3  Occupant  behavior  modeling  tools  and  their  integration  with  Building  Performance
Simulation programs

2.3.1 Research issues

Building performance simulation (BPS) programs have been widely applied to evaluate the performance

of  building  energy  systems  and  technologies  [68,  77].  However,  OB—a  key  driver  of  building

performance—is usually represented in BPS models with oversimplified and predefined static schedules

or fixed settings and rules, leading to deterministic and homogeneous simulation results that ignore the

stochastic nature, dynamics, and diversity of OB [78]. For example, shading devices are turned off if a

space has  too much solar  heat  gain  (causing thermal  discomfort)  or  too much glare  (causing visual

discomfort), windows are opened if the indoor temperature is high and outdoor temperature is lower than

the indoor temperature, and the electrical lighting is dimmed or completely turned off if a space has

adequate daylight to meet the occupant visual comfort needs. However, occupants may interact with a

control system (e.g.,  open windows) for a variety of reasons, including: (1) feeling hot,  as a thermal



comfort response, (2) feeling stuffy, as an indoor air quality consequence, or (3) arriving in a space, as an

event-driven situational driver [79].

Field measurement data and large-scale surveys have confirmed that stochastic occupant presence and

adaptive  behaviors  could  be  represented  as  probabilistic  models  of  behavior  [30],  with  independent

variables  of  indoor  and  outdoor  environmental  conditions  (e.g.,  air  temperature,  relative  humidity,

illuminance, and CO2 concentration), occupant presence and movement, and the operational conditions of

the building system (e.g., windows, lighting, plug loads, thermostat,  heating/ventilation/air conditioning

(HVAC), shades,  and blinds).  Through the  machine learning process,  correlations  can  be established

between  some  observed–physical  or  situational–environmental  conditions  and  the  observed  human-

building interaction [80]. 

Quantifying OB influence on building performance requires the integration of energy-related OB models

with  BPS  programs  [81].  Popular  BPS  programs,  including  EnergyPlus,  IDA ICE,  ESP-r,  DeST,

TRNSYS, and DOE-2, use various approaches at various levels of fidelity to represent occupant-related

input  and  to  implement  OB  models  for  simulation.  Typically,  OB models  are  developed  based  on

independent variables and metrics. The selection of different drivers for similar OB models makes it

difficult to compare the models and incorporate them into BPS programs. OB models also tend to be

located in multiple locations of BPS program code, making any changes difficult to implement. A recent

review  of  modeling  and  simulation  approaches  for  OB in  buildings  [82] discussed  the  problem  of

transferring occupant models that have been developed based on selected observation studies to different

building models. Additionally, one of the key takeaways drawn from previous studies  [83-85] has been

the  lack  of  a  standardized  method  to  represent  and  implement  energy-related  OB  models  in  BPS

programs.

The non-trivial environment of common simulation engines, which typically have unfriendly interfaces

and  require  programming  knowledge  and  specific  code  validation  procedures  to  incorporate  custom

behavioral models, exacerbates the limited diffusion of OB models in current BPS programs. 

2.3.2 Outcomes from Annex 66

Annex 66 developed quantitative representations of OB models and integrated them with BPS programs

to improve the analysis and evaluation of the impacts of OB on building performance. A comprehensive

review was conducted to identify and compare approaches to representing and implementing OB models

in eight of the most widespread BPS programs in the engineering and simulation community [85,86]. BPS

programs use  varying  and  non-standardized  input  syntaxes  to  represent  OB models.  For  OB model

implementation in BPS programs, four approaches were used: (1) direct user input or control using BPS

input syntax (all eight BPS programs), (2) user functions or custom code (EnergyPlus, DOE-2, and IDA-



ICE), (3) built-in OB models (DeST and ESP-r), and (4) co-simulation with dedicated OB software tools

such as obFMU (EnergyPlus and ESP-r).

A suite of new OB modeling tools has been developed by Annex 66 to capture the diversity, stochastic

nature,  and  complexity  of  OB  in  buildings.  They  thus  improve  the  simulation  and  evaluation  of

behavioral  measures,  as  well  as  of  the  impact  of  OB on technology performance and energy use in

buildings.

The  obXML is  an  XML schema  to  standardize  the  representation  and  exchange  of  OB models  for

building  performance  simulation  [84].  The  obXML  builds  upon  the  drivers-needs-actions-systems

(DNAS) ontology [87]. Drivers are the environmental factors that stimulate occupants to fulfill a physical,

physiological,  or  psychological  need.  Needs  are  the  physical  and  non-physical  requirements  of  the

occupant that must be met to ensure their satisfaction with their environment. Actions are the interactions

with systems or activities that occupants can perform to achieve environmental comfort. Systems are the

equipment or mechanisms within the building with which occupants may interact to restore or maintain

their environmental comfort. A library of obXML files [88], representing 52 typical energy-related OB in

buildings, has been developed based on the literature. These obXML files can be exchanged between

different BPS programs, applications, and users. Figure 2 shows the four key elements and sub-elements

of the obXML schema.



Figure 2. Overview of the obXML schema

The obFMU [83] is a modular software component represented in the form of a functional mockup unit,

enabling its use via co-simulation with BPS programs through the standard functional mockup interface.

The obFMU reads OB models represented in obXML, functioning as a solver. A variety of OB models are

supported by obFMU, including (1) lighting control based on occupant visual comfort need and daylight

availability,  (2)  comfort  temperature  set-points,  (3)  HVAC system control based on occupant  thermal

comfort needs, (4) plug-load control based on occupancy, and (5) window opening and closing based on

indoor and outdoor environmental parameters. The obFMU has been used with EnergyPlus and ESP-r via

co-simulation to improve OB modeling. Figure 3 shows the key components and workflow of an obFMU

co-simulation with EnergyPlus.



Figure 3. Key components and workflow of obFMU

It should be noted that other OB co-simulation platforms are also available, for example, the BCVTB

[89], and the Matlab-based MLE+ [90].

The Occupancy Simulator [91] is a web-based application that can run on multiple platforms and devices

to simulate occupant presence and movement in buildings, generating sub-hourly occupant schedules for

each space and individual occupant as CSV files and EnergyPlus IDF files. The Occupancy Simulator

uses  a  homogeneous  Markov  Chain  model  [18] and  performs  an  agent-based  simulation  for  each

occupant. A hierarchical input structure is adopted, building on the input blocks of building type, space

type, and occupant type, to simplify the input process while allowing flexibility for detailed information

that captures the diversity of space use and individual OB. Users can select an individual space or the

entire building to receive the simulated occupancy results. 

Applications of these modeling tools are demonstrated by three case studies to (1) simulate and quantify

the energy-saving potential of OB measures in office buildings [92], (2) simulate and quantify the impacts

of OB on energy savings from building technologies [93], and (3) demonstrate an integrated approach and

workflow to simulate and visualize OB in office buildings [94]. The Occupancy Simulator was verified

by Luo et al. [95].

2.3.3 Key findings

Current BPS programs use diverse approaches to represent and implement OB models, which hinder the

exchange, reuse, and comparative analysis of OB models. There is a significant need for:



 a common ontology (data dictionary) and data model to standardize the representation of OB

models and enable their flexibility and exchange; and
 a modular software implementation of OB models adopting the common data model and enabling

a robust and an interoperable integration with multiple BPS programs.

To address these needs, three new OB modeling and simulation tools were developed.

 The obXML provides a standardized method to represent OB models; enables their exchange and

use  between  BPS  programs,  applications,  and  users;  and  improves  the  consistency  and

comparability of simulation results.
 The obFMU enables the reuse of an OB model solver for all BPS programs through the FMI co-

simulation interface.
 The Occupancy Simulator generates realistic occupant schedules for BPS, capturing the diversity

and stochastic nature of occupancy in buildings.

These tools help standardize the input structures for OB models, enable the collaborative development of

a shared library of OB models, and allow for a rapid and widespread integration of OB models in various

BPS programs. This ultimately improves the simulation of OB and the quantification of its impact on

building performance.

2.4 Applications

2.4.1 Research issues

The main issue regarding the application of OB models in BPS is the choice of the appropriate models for

a specific case [96]. Even when assuming that OB modeling standardization, evaluation, validation, and

implementation in BPS has been solved, there is still a lack of decision-support guidelines for selecting

which available model to use for a particular application [97]. Such guidance is an essential step towards

the practical implementation of OB models and is a significant need for practitioners [53].

The  existing  OB  models  can  be  grouped  according  to  their  complexity  [97,98],  from  time-based

schedules,  to rule-based schedules,  to data-driven non-probabilistic models,  to stochastic/probabilistic

models,  to  agent-based  models.  Agent-based  models  are  the  most  complex,  as  they  employ  the

probabilistic methods depicted in Section 2.2.2 but add granularity in respect to occupant diversity. As a

general rule, a fit-for-purpose model is the simplest available model that meets the required accuracy in

performance predictions. In other words, a fit-for-purpose model enables efficient and reliable decision

making. Indeed, complex models should not be used if a simpler model would be adequate for a specific

application. Aside from fit-for-purpose modeling in terms of complexity,  it  is  essential to deploy OB

models  within  their  validity  range,  which  should  be  made  explicit  [99].  Different  buildings  and

performance indicators are affected by various aspects of OB in different ways [100,101]. The adoption of



different model types for each OB aspect should depend on its influence on the results and on its ease of

prediction (Figure 4). Other issues concerning the application of OB models relate to the appropriate use

of  higher  complexity  models  [102] and the  presentation  and utilization  of  stochastic  results  [59].  A

framework to investigate OB influence on building performance is necessary from the initial stages of

building design [103], when the information about actual OB is still limited.

Figure 4. OB model selection according to the influence and predictability of OB aspects

2.4.2 Outcomes from Annex 66

Most research efforts of the Applications Subtask of Annex 66 concern three topics: (1) a framework for

considering the influence and relevance of OB, (2) decision support in different building phases, and (3)

decision support through modeling and simulation.

In determining an appropriate framework, a literature review regarding the influence of OB on building

performance was conducted. Then, the factors determining the influence of various OB aspects on chosen

performance indicators were identified [96,97] with the aim of achieving a rigorous framework to identify

the importance of OB for BPS. Various case studies have provided examples of when OB proved to be

influential or trivial for building performance (e.g., [92,93]).



To  develop  decision  support,  building  project  phases  were  reviewed  according  to  the  standards  of

different countries and were harmonized with a focus on design and operation. The required OB inputs

were identified for each design phase. A list of simple indices was proposed as a first guideline for the

potential influence of various OB aspects. In this case, the collected case studies provided examples of

decision-making processes in different phases (along with the desired model inputs),  with a focus on

behavior change during operation. A strategy for selecting the appropriate model complexity for BPS, i.e.,

the fit-for-purpose OB modeling (FFP-OBm) strategy [104], is currently under development.

The  available  OB  models  were  initially  classified  with  regards  to  their  complexity  and  other  key

characteristics  (type  of  behavior,  building  typology,  and  location,  among others).  Then,  comparative

studies, which identified best performing models across the complexity categories for a range of purposes

and buildings, were reviewed. The results confirmed the initial hypothesis that there is no one-size-fits-all

model type that proves superior in all cases, but rather that the various model types differ in efficiency

and predictive ability according to their application case  [97,103]. Ultimately,  the FFP-OBm strategy

itself was developed. The strategy is based on two concepts: (1) the trade-off between abstraction error

(the error due to modeling abstractions, i.e., using an incomplete model of a physical system [105]) and

input uncertainty when increasing modeling complexity, and (2) the varying influence of different OB

aspects on a given performance indicator  [106]. Moreover,  the specific  purpose dictates whether OB

diversity and stochasticity must be taken into account (e.g., fixed schedules cannot be applied in a control

optimization study). Case studies were used to demonstrate how different aspects of OB have a dissimilar

influence  on  various  performance  indicators  and  how  there  is  no  benefit  to  increasing  modeling

complexity  for  non-influential  OB  aspects.  In  particular,  standard  schedules  provided  an  adequate

representation  of  non-influential  aspects.  The  FFP-OBm  strategy  led  to  meaningful  results  for  the

investigated  case  studies  and  is  currently  being  implemented  in  other  applications,  such  as  in

policymaking; research and development of various technologies; and building design, operation, and

maintenance. Studies have been carried out to discuss the appropriate presentation and deployment of

stochastic results [59,94].

2.4.3 Key findings

Annex 66 has made significant steps towards the standardization of OB models, their evaluation, and their

integration into BPS programs. However, the issue remains of how to apply these models in practice, that

is, which model to use for a particular case. To provide a solution to this problem, a framework was

introduced that can evaluate OB based on its influence on building performance. A list of simple indices is

currently  under  development  to  provide  a  first  estimate  of  the  sensitivity  of  various  performance

indicators  to  different  aspects  of  OB as  a  necessary  step  towards  appropriate  and  efficient  decision



support starting at the initial phases of a building design project. The FFP-OBm strategy was developed to

guide OB model selection in BPS. This strategy has been tested on a variety of case studies, which have

demonstrated its validity. Further work will  cover the application of the FFP-OBm strategy to policy

making in the building life cycle.

2.5 Interdisciplinary approach

2.5.1 Research issues

The issue of  OB and its  impact  on  building energy use is  a  highly  complex problem,  which is  not

connected  solely  to  technology-driven  measures  [78].  The  human  dimension  of  building  energy  use

cannot be studied through a single disciplinary lens when, typically, a technological-social dichotomy

pertains to the human-building interaction effects on building energy use. Research in the energy and

social science fields, having a cross-disciplinary nature, is crucial for understanding OB and achieving

low energy buildings. Sovacool [107] reviewed the state of the art of the energy studies field and reflected

on the need for more meaningful cooperation between the technical and behavioral dimensions of energy

usage, a thought that has been echoed by esteemed researchers in the physical and social sciences [108].

Traditional  energy  modeling  and  simulation  approaches  still  provide  a  weak  representation  of  the

compound contextual  processes  leading occupants  to  exercise  their  interaction  with their  working or

living built environments  [46,47]. In contrast, behavioral scientists have developed and made extensive

use  of  human  behavior  models  that  consider  contextual  features  of  the  surrounding  experimental

environment, as early as the beginning of the century [70,71,109–112,]. Recent advances in engineering

and architectural research have demonstrated that theories from social science in tandem with data-driven

knowledge from analytics and building science could unlock a deeper understanding of the human factor

in building energy use.

Responding to this emergent trend in energy and social science research, Annex 66 activities have focused

on unlocking an interdisciplinary understanding of the human factor in energy use. Annex 66 proposed a

research  agenda  to  integrate  OB  in  an  interdisciplinary  approach  that  combines  insights  from  the

technical, analytical, and social dimensions of building energy use. One of the key aspects of this research

vision involves focusing on the understanding of occupant behaviors, preferences, and needs in order to

exploit  the  full  energy-saving  potential  of  innovative  human-building  interaction  technologies.  The

inclusion of contextual and behavioral variables in building energy models can increase the accuracy of

predictive models of the human–building interaction in office spaces, thus supporting optimized building

design and operation and human-centered energy policies, as well as enhancing occupant comfort and the

usability  of  building  technologies.  The  research  aim was  to  combine  data-driven  analysis  modeling,



simulation,  and  building  physics  expertise  with  social  science  insights  to  produce  interdisciplinary

solutions on human-centered energy efficiency in buildings.

2.5.2 Outcomes from Annex 66

The Annex 66 interdisciplinary activities have provided data and insights in the fields of energy research

and social sciences. These outcomes are useful for the advancement of behavior-based energy-saving

programs,  the  improvement  of  building  energy  codes  and  standards,  and  development  of  the  next

generation of control systems designed to achieve human-centered, low-capital investment, low-energy,

and high-performance buildings worldwide. As an example,  during the  interdisciplinary cross-country

survey,  many questions  pertaining  to  the  energy and social  science  fields  were  answered,  providing

insights  on  advances  in  sensing,  modeling,  simulation,  and  regulation  for  enhancing  future  human-

building interactions [65].

Scholars  [111-113] have  stressed  that  additional  interdisciplinary  knowledge  on  individual  adaptive

behavioral patterns and motivational drivers is especially necessary for the office environment, where

interactions  with  building  control  devices  to  establish  comfort  conditions  are  negotiated  in  social

networks,  and  because  the  monetary  incentives  for  engaging  in  pro-environmental  behaviors  are

negligible compared to those in residential spaces. There is also a need for cross-country studies  [114]

that  can  help  isolate  climatic,  cultural,  and  socio-demographic  behavioral  factors,  thus  ensuring  the

validity, robustness, and efficiency of future studies. One of the key objectives for cross-country studies is

to  transform the  knowledge  discovered  through large-scale  survey data  into  behavioral-based energy

efficiency solutions  and insights,  taking into consideration  not  only  the  energy metrics  and physical

properties from building physics, but also the contextual/habitual aspects of energy-related behaviors in

workspaces located in different geographic and climatic areas [65]. To embrace these needs, Annex 66 has

provided interdisciplinary and updated building OB data coverage by investigating the differences among

countries and climates through a variety of settings (e.g., university and commercial buildings). For this

specific issue, one of the Annex 66 research activities has focused on the development and deployment of

an  international  OB framework  and  survey  questionnaire  [65] (Figure  5).  This  study  introduced  an

interdisciplinary framework based on theories and insights from energy and social sciences as a way to

investigate building-user interactions in diverse office settings and cultural contexts. The framework is

grounded on the integration of social cognitive theory (SCT)  [115], the drivers–needs–actions–systems

(DNAS) ontology [84], and the theory of planned behavior (TPB) [116]. 



Figure 5. Interdisciplinary framework for the questionnaire survey on OB in office buildings

The research framework addresses energy-related behaviors that have an impact on comfort provisions

and operational costs in buildings, such as adjusting windows, blinds, shades, thermostats, and artificial

lights. The work attempts to expand the state-of-the-art understanding of (1) the environmental, personal,

and behavioral drivers motivating the occupants to interact with the control systems in diverse office

settings and cultural contexts, (2) how the intention to share controls and the choice of adaptive actions is

influenced by group negotiation dynamics, (3) the perceived ease of usage and knowledge on how to

interact  with  building  technologies,  and  (4)  the  correlation  between  perceived  behavioral  control,

satisfaction,  and  productivity  during  different  seasons.  Based  on  this  research  framework,  an  online

survey of 37 questions was designed to collect responses from office occupants in 14 universities and

research  centers  in  the  US,  Europe,  China,  and  Australia.  Data  from  the  survey  is  currently  being

collected.

2.5.3 Key findings

The proposed interdisciplinary framework developed by Annex 66 aims to account for the psychological

implications  of  behaviors,  together  with  individual  motivational  drivers,  societal  norms,  and  group

interactions,  mediated  by  the  multi-disciplinary  knowledge  borrowed  from  social  sciences  (i.e.,  for

behavioral  change)  and  data  science  (i.e.,  for  human-in-the-loop  technologies).  By  unlocking  this



innovative knowledge, research activities aim to provide insights into more relaxed centralized comfort

requirements, allowing for reduced energy consumption and increased satisfaction and productivity, all of

which result in reduced operational costs for building owners.

Undertaking interdisciplinary research remains a challenging task. Key challenges come from a lack of

technical  knowledge  of  the  psychological  and  cultural—rather  than  purely  physical—phenomena

regulating occupant  physiological  adaptation  in  indoor environments,  from energy and social  science

research respectively. A second related challenge is the lack of consistency in terminology between the

social science and engineering disciplines when referring to motivation, habits, and behaviors in general.

The design of robust  models  and effective control logics to achieve behavioral-based energy savings

while ensuring occupant satisfaction in buildings remains an open problem. Another challenge is that

simulation frameworks and schema representing OB (e.g., obXML and obFMU) are developed based on

quantifiable physical parameters driving the behavioral adaptation phenomena to the indoor environment

(thermal,  visual,  and  comfort).  It  is  challenging  to  quantify  and integrate  social  variables  into these

frameworks, and more importantly, to convince conventional engineering practices to incorporate them

into their energy simulation scenarios.

Some of the foreseen effects of further research applications include:

 Enabling a higher level of perceived personal control and comfort,  allowing users to solve a

personal  comfort-driven task or action  at  the  zone level,  and increasing satisfaction with the

indoor environmental quality without influencing the overall comfort level (centrally designed

neutral/static  homeostasis)  and  energy  efficiency  (avoiding  over-running  the  system)  at  the

building scale.
 Enabling the next generation of building technologies to negotiate comfort conditions between

occupants sharing spaces and HVAC controls. 
 Developing machine-learned comfort preferences and building occupancy data and implementing

them  in  model  predictive  controls  to  provide  high-level  intelligence  in  conjunction  with

technologies able to deliver hierarchical zone-to-campus optimization control logics.

3 Discussion and Conclusive Remarks

The major product of Annex 66 consists of a methodological framework to guide OB simulation research

on data collection, modeling and evaluation, modeling tools integration, application, and interdisciplinary

issues. In brief, Annex 66 proposed scientific approaches to reduce the gap between the simulated and

measured values for building energy performance by representing OB in a standardized quantitative way,

and went further by integrating them with current  building performance simulation  programs,  which

could have important impacts on the industry from various perspectives.



During the cooperative research activities and frequent discussions, the Annex 66 community reached a

consensus  regarding  OB  research  and  identified  some  important  issues  that  are  worth  thorough

deliberation and further discussion. The following topics have been discussed and explored within the

Annex 66 community, while their significance labels them as research topics needing further study in

future work.

 Data  collection  is  fundamental  for  the  modeling  of  OB.  The  methods  of  collecting  data  are

evolving with the rapid development of sensors and information and communication technologies

(ICT). Most data collection campaigns are conducted in a typical working environment rather

than in a laboratory. With precise control of the indoor environment and good reproducibility,

laboratories are becoming an alternative for collecting reliable OB data. However, the Hawthorne

Effect  [117], which implies that the subjects may alter their behavior when they are aware they

are being observed, may be an unfavorable factor during laboratory research involving occupants.

New sensors for detecting occupancy and occupant actions are being developed. For example, the

occupancy in a space could be measured in various ways. The indirect approach refers to the

change rate of CO2 concentration to estimate the occupancy. Infrared or ultrasonic occupancy

sensors  try  to  detect  the  movement  of  occupants  around  a  room.  Wearable  sensors  and

smartphones can locate occupants with high resolution. Video cameras are also being used to

recognize occupancy patterns, the data from which could be analyzed with image recognition

algorithms at high computational capacity. New devices, such as Kinect, are being introduced to

automatically detect occupancy [118]. The evolution of technology requires researchers to have a

good  understanding  of  the  available  data  collection  methods  and  apply  them  to  the  most

appropriate  situation.  However,  there  are  still  uncertainties  regarding  the  accuracy  of  image

analysis and positioning using Wi-Fi signals, as well as correlated ethical considerations to be

taken into account [119]. The development of a data collection technique further generates large-

scale datasets. For instance, applications on phones can identify occupants and their movements,

the data from which can reveal nationwide patterns of individual habits. Data mining methods are

being introduced to efficiently analyze and extract valuable knowledge from this type of dataset.
 The  modeling  of  OB  often  encompasses  stochasticity.  Nevertheless,  related  studies  have

suggested that stochastic models do not necessarily perform better than simplified deterministic

models. The appropriate model should be determined based on the selected application scenario.

Current OB models focus on the estimation of building energy consumption for a relatively long

period, typically a year. The purpose of this type of model is to have the estimation as accurate as

possible. In another situation, such as in model predictive control,  however, the purpose of a

model is to predict the specific parameters for the short-term future. Models that aim at energy



consumption simulation are not good candidates in this context,  as they have little  predictive

ability based on available historical data. Another aspect of current OB models is that they are

data driven, implying that the models were built using regressions based on data collected from

the  environment  and  occupancy  or  occupant  actions,  rather  than  from  studying  the  OB

mechanism  from  a  physiological  or  psychological  perspective.  The  development  of  thermal

comfort research and the combination with sociological studies can potentially shed some light on

the description and modeling of OB on a mechanism-modeling basis. The combination of these

studies allows for a new path for OB modeling. Evaluation of OB models, as revealed earlier,

should  have  explicit  metrics  that  come  from  the  application  scenarios  to  quantify  their

performance.  Specifically,  the  evaluation  of  stochastic  models  has  roots  in  the  statistical

comparison between stochastic  simulation  results  and deterministic  measurement  results  (i.e.,

using bootstrap validation, cross-validation, or random sample validation methods  [120]). New

approaches adopting statistics are under development for the evaluation of model accuracy [76].
 The  integration  of  OB  models  with  building  performance  simulation  tools  links  academic

research with industrial applications. The DNAS framework and the co-simulation architecture

proposed in this Annex have made progress towards integrating multiple OB models and building

performance simulation  tools  in  a  flexible  and robust  manner.  Nevertheless,  significant  work

remains to be done to offer easy-to-use interfaces in OB simulation for industrial applications. An

important issue to address is the representation of OB diversity. Behavior patterns differ among

individuals, and this diversity is perplexing for researchers and engineers tasked with identifying

the behavior patterns and corresponding parameters to be set in a simulation involving occupants.

As a compromise between the diversity of actual OB and simplicity in building simulation, some

typical occupant traits have been proposed, i.e., reconciling clusters of behavioral patterns with

data-driven inputs and predictive models  [121]. Efforts have been made within the Annex 66

community to address OB diversity with different approaches, such as case measurements and

questionnaire surveys. The issue remains an open question that is of great significance in the

application of occupant simulation and requires significant further investigation.
 During OB model application, the technical details of modeling are veiled and the engineer is

provided with a friendly interface. A guidebook detailing the appropriate situations for applying

each model would provide significant help to simulation users, to avoid the use of a model in

scenarios dissimilar to those under which it was developed. Policy makers could benefit from the

OB modeling by observing the simulated energy reduction with altered behavior patterns. This

procedure facilitates the development of efficient policies for reducing energy consumption in

buildings. The remaining unresolved issue is the modeling of OB evolution when incentives are

provided to motivate energy-saving behavior. A similar question arises in  the situation where



occupants  are transferred to a  new environment and their  behavior changes in  response.  The

sociological and psychological aspects of occupants should be studied under these circumstances

to  gain  clear  explanations  of  the  alternation  of  OB according  to  different  incentives.  Going

forward,  efforts  to  strengthen  and update  interdisciplinary  and international  relationships  and

networks have to be continuously nurtured, both within the IEA research arena as well as within

industrial  communities  such  as  the  American  Society  of  Heating,  Refrigerating,  and  Air-

Conditioning  Engineers  Multidisciplinary  Task  Group  on  Occupant  Behavior  in  Buildings

(ASHRAE MTG.OBB).  The ultimate  objective of such research is  to derive better  empirical

findings for the development of market actions and international codes and standards in the field

of OB modeling and simulation research for the building sector. The Annex 66 community at

large envisions future follow-up papers that will further present and discuss the ongoing activities

of this Annex.

Acknowledgments

This paper summarizes and highlights the main research issues, outcomes, and findings from Annex 66,

drawing content from the final report on Annex 66 and other publications. The authors appreciate the

strong leadership and technical contribution of the subtask leaders, as well as the contributions from all of

the Annex 66 participants. The IEA (International Energy Agency) Energy in Buildings and Community

(EBC) Programme (iea-ebc.org) carries out research and development activities toward near-zero energy

and carbon emissions in the built environment. These joint research projects are directed at energy-saving

technologies and activities that support technology application in practice. The results are also used in the

formulation  of  international  and  national  energy  conservation  policies  and  standards.  Da  Yan  and

Tianzhen Hong, the operating agents of Annex 66, appreciate the strong support received from the IEA

EBC Chair, Secretary, and Executive Committee.

This  study was supported by the China Ministry of Housing and Urban-Rural  Development and the

Ministry of Science & Technology, under the U.S.-China Clean Energy Research Center for Building

Energy Efficiency (grant  no. 2016YFE0102300-04),  and Innovative Research Groups of the National

Natural Science Foundation of China (grant number 51521005).

Participation of Lawrence Berkeley National Laboratory in Annex 66 was supported by the Assistant

Secretary for Energy Efficiency and Renewable Energy of the United States Department of Energy under

Contract No. DE-AC02-05CH11231.

References



[1] O.T. Masoso, L.J. Grobler, The dark side of occupants’ behaviour on building energy use, Energy 

Build. 42 (2010) 173–177. doi:10.1016/j.enbuild.2009.08.009.

[2] A. Al-Mumin, O. Khattab, G. Sridhar, Occupants’ behavior and activity patterns influencing the 

energy consumption in the Kuwaiti residences, Energy Build. 35 (2003) 549–559. 

doi:10.1016/S0378-7788(02)00167-6.

[3] A.S. Bahaj, P.A.B. James, Urban energy generation: The added value of photovoltaics in social 

housing, Renew. Sustain. Energy Rev. 11 (2007) 2121–2136. doi:10.1016/j.rser.2006.03.007.

[4] G. Wood, M. Newborough, Dynamic energy-consumption indicators for domestic appliances: 

environment, behaviour and design, Energy Build. 35 (2003) 821–841. doi:10.1016/S0378-

7788(02)00241-4.

[5] J. Ouyang, K. Hokao, Energy-saving potential by improving occupants’ behavior in urban 

residential sector in Hangzhou City, China, Energy Build. 41 (2009) 711–720. 

doi:10.1016/j.enbuild.2009.02.003.

[6] X. Zhou, D. Yan, G. Deng, Influence of Occupant Behavior on the Efficiency of a District Cooling

System, 13th Conf. Int. Build. Perfornance Simul. Assoc. (2013) 1739–1745. 

http://www.ibpsa.org/proceedings/BS2013/p_2563.pdf.

[7] X. Guo, D. Tiller, G. Henze, C. Waters, The performance of occupancy-based lighting control 

systems: A review, Light. Res. Technol. 42 (2010) 415–431. doi:10.1177/1477153510376225.

[8] S. Wei, R. Buswell, D. Loveday, Probabilistic modelling of human adaptive behaviour in non-air-

conditioned buildings, Adapt. to Chang. New Think. Comf. 55 (2010) 9–11. 

http://nceub.commoncense.info/uploads/07-01-07-Wei.pdf.

[9] C. Peng, D. Yan, R. Wu, C. Wang, X. Zhou, Y. Jiang, Quantitative description and simulation of 

human behavior in residential buildings, Build. Simul. 5 (2012) 85–94. doi:10.1007/s12273-011-

0049-0.

[10] A. Mahdavi, A. Mohammadi, E. Kabir, L. Lambeva, Occupants’ operation of lighting and shading 

systems in office buildings, J. Build. Perform. Simul. 1 (2008) 57–65. 

doi:10.1080/19401490801906502.

[11] International Facility Management Association (IFMA), Temperature Wars: Savings vs. Comfort, 

2009.

[12] X. Feng, D. Yan, C. Wang, H. Sun, A preliminary research on the derivation of typical occupant 

behavior based on large-scale questionnaire surveys, Energy Build. (2015). 

doi:10.1016/j.enbuild.2015.09.055.

[13] V. Fabi, R.V. Andersen, S.P. Corgnati, F. Venezia, Influence of User Behaviour on Indoor 

Environmental Quality and Heating Energy Consumptions in Danish Dwellings, in: Cobee2012, 



2012.

[14] M. Foster, T. Oreszczyn, Occupant control of passive systems: the use of Venetian blinds, Build. 

Environ. 36 (2001) 149–155. doi:10.1016/S0360-1323(99)00074-8.

[15] B. Dong, B. Andrews, Sensor-based Occupancy Behavioral Pattern Recognition For Energy And 

Comfort Management In Intelligent Buildings, Elev. Int. IBPSA Conf. (2009) 1444–1451. 

doi:10.1016/j.buildenv.2006.10.024.

[16] B. Dong, Y. Duan, R. Liu, T. Nishimoto, The Impact of Occupancy Behavior Patterns On the 

Energy Consumption in Low-income, in: CATEE Clean Air Through Energy Effic. Conf., San 

Antionio, Texas, 2013.

[17] B. Dong, K.P. Lam, A real-time model predictive control for building heating and cooling systems 

based on the occupancy behavior pattern detection and local weather forecasting, Build. Simul. 7 

(2014) 89–106. doi:10.1007/s12273-013-0142-7.

[18] C. Wang, D. Yan, Y. Jiang, A novel approach for building occupancy simulation, Build. Simul. 4 

(2011) 149–167. doi:10.1007/s12273-011-0044-5.

[19] W.K. Chang, T. Hong, Statistical Analysis and Modeling of Occupancy Patterns in Open-Plan 

Offices using Measured Lighting- Switch Data, 2014.

[20] T. Labeodan, K. Aduda, G. Boxem, W. Zeiler, On the application of multi-agent systems in 

buildings for improved building operations, performance and smart grid interaction – A survey, 

Renew. Sustain. Energy Rev. 50 (2015) 1405–1414. doi:10.1016/j.rser.2015.05.081.

[21] H.B. Rijal, P. Tuohy, M. Humphreys, J.F. Nicol,  a. Samuel, J. Clarke, Using results from field 

surveys to predict the effect of open windows on thermal comfort and energy use in buildings, 

Energy Build. 39 (2007) 823–836. doi:10.1016/j.enbuild.2007.02.003.

[22] H.B. Rijal, P. Tuohy, F. Nicol, M. a. Humphreys,  a. Samuel, J. Clarke, Development of an 

adaptive window-opening algorithm to predict the thermal comfort, energy use and overheating in 

buildings, J. Build. Perform. Simul. 1 (2008) 17–30. doi:10.1080/19401490701868448.

[23] F. Nicol, H. Rijal, M. Humphreys, P. Tuohy, Characterising the use of windows in thermal 

simulation, 2nd PALENC Conf. 2 (2007) 712–717.

[24] G.Y. Yun, K. Steemers, Time-dependent occupant behaviour models of window control in summer,

Build. Environ. 43 (2008) 1471–1482. doi:10.1016/j.buildenv.2007.08.001.

[25] F. Haldi, D. Robinson, On the behaviour and adaptation of office occupants, Build. Environ. 43 

(2008) 2163–2177. doi:10.1016/j.buildenv.2008.01.003.

[26] F. Haldi, D. Robinson, Interactions with window openings by office occupants, Build. Environ. 44 

(2009) 2378–2395. doi:10.1016/j.buildenv.2009.03.025.

[27] R. Andersen, V. Fabi, J. Toftum, S.P. Corgnati, B.W. Olesen, Window opening behaviour modelled



from measurements in Danish dwellings, Build. Environ. 69 (2013) 101–113. 

doi:10.1016/j.buildenv.2013.07.005.

[28] F. Haldi, D. Robinson, Adaptive actions on shading devices in response to local visual stimuli, J. 

Build. Perform. Simul. 3 (2010) 135–153. doi:10.1080/19401490903580759.

[29] P. Correia da Silva, V. Leal, M. Andersen, Occupants interaction with electric lighting and shading 

systems in real single-occupied offices: Results from a monitoring campaign, Build. Environ. 64 

(2013). doi:10.1016/j.buildenv.2013.03.015.

[30] C. Wang, D. Yan, H. Sun, Y. Jiang, A generalized probabilistic formula relating occupant behavior 

to environmental conditions, Build. Environ. 95 (2016) 53–62. 

doi:10.1016/j.buildenv.2015.09.004.

[31] V. Inkarojrit, Developing Predictive Venetian Blinds Control Models using Visual Comfort 

Predictors, in: 23rd Conf. Passiv. Low Energy Archit., 2006: pp. 6–8.

[32] V. Inkarojrit, Monitoring and modelling of manually-controlled Venetian blinds in private offices: 

a pilot study, J. Build. Perform. Simul. 1 (2008) 75–89. doi:10.1080/19401490802021012.

[33] L. Sanati, M. Utzinger, The effect of window shading design on occupant use of blinds and electric

lighting, Build. Environ. 64 (2013) 67–76. doi:10.1016/j.buildenv.2013.02.013.

[34] C. Reinhart, K. Voss, Monitoring manual control of electric lighting and blinds, Light. Res. 

Technol. 35 (2003) 243–260. doi:10.1191/1365782803li064oa.

[35] V. Inkarojrit, Balancing Comfort: Occupants’ Control of Window Blinds in Private Offices, 2005.

[36] M. Konstantoglou, A. Tsangrassoulis, Dynamic operation of daylighting and shading systems: A 

literature review, Renew. Sustain. Energy Rev. 60 (2016) 268–283. doi:10.1016/j.rser.2015.12.246.

[37] I. Bennet, W. O’Brien, H.B. Gunay, Effect of Window Blind Use in Residential Buildings: 

Observation and Simulation Study, eSim. (2014). 

http://www.ibpsa.org/proceedings/eSimPapers/2014/3A.3.pdf.

[38] H.B. Gunay, W. O’Brien, I. Beausoleil-Morrison, S. Gilani, Development and implementation of 

an adaptive lighting and blinds control algorithm, Build. Environ. (2016). 

doi:http://dx.doi.org/10.1016/j.buildenv.2016.08.027.

[39] T. Moore, D.J. Carter, A. Slater, Long-term patterns of use of occupant controlled office lighting, 

Light. Res. Technol. 35 (2003) 43–59. doi:10.1191/1477153503li061oa.

[40] S. Pigg, M. Eilers, J. Reed, Behavioral Aspects of Lighting and Occupancy Sensors in Privates 

Offices: A case study of a University Office Building, ACEEE 1996 Summer Study Energy Effic. 

Build. (1996) 161–170.

[41] A. Mahdavi, A. Mohammadi, E. Kabir, L. Lambeva, Occupants’ operation of lighting and shading 

systems in office buildings, J. Build. Perform. Simul. 1 (2008) 57–65. 



doi:10.1080/19401490801906502.

[42] J. Tanimoto, A. Hagishima, H. Sagara, A methodology for peak energy requirement considering 

actual variation of occupants’ behavior schedules, Build. Environ. 43 (2008) 610–619. 

doi:10.1016/j.buildenv.2006.06.034.

[43] M. Schweiker, M. Shukuya, Comparison of theoretical and statistical models of air-conditioning-

unit usage behaviour in a residential setting under Japanese climatic conditions, Build. Environ. 44

(2009) 2137–2149. doi:10.1016/j.buildenv.2009.03.004.

[44] X. Ren, D. Yan, C. Wang, Air-conditioning usage conditional probability model for residential 

buildings, Build. Environ. 81 (2014) 172–182. doi:10.1016/j.buildenv.2014.06.022.

[45] Y. Zhang, P. Barrett, Factors influencing the occupants’ window opening behaviour in a naturally 

ventilated office building, Build. Environ. 50 (2012) 125–134. 

doi:10.1016/j.buildenv.2011.10.018.

[46] J. Jakubiec, C. Reinhart, The “adaptive zone” - A concept for assessing discomfort glare 

throughout daylit spaces, in: Build. Simul. 2011 12th Conf. Int. Build. Perform. Simul. Assoc. 

Sydney, 14-16 November, Sydney, 2011. doi:10.1177/1477153511420097.

[47] M. Schweiker, A. Wagner, The effect of occupancy on perceived control, neutral temperature, and 

behavioral patterns, Energy Build. (2015). doi:10.1016/j.enbuild.2015.10.051.

[48] W. O’Brien, H.B. Gunay, The contextual factors contributing to occupants’ adaptive comfort 

behaviors in offices--A review and proposed modeling framework, 2014.

[49] K. Zhou, S. Yang, Understanding household energy consumption behavior: The contribution of 

energy big data analytics, Renew. Sustain. Energy Rev. 56 (2016) 810–819. 

doi:10.1016/j.rser.2015.12.001.

[50] X. Yu, Y. Su, Daylight availability assessment and its potential energy saving estimation –A 

literature review, Renew. Sustain. Energy Rev. 52 (2015) 494–503. doi:10.1016/j.rser.2015.07.142.

[51] F. Stazi, F. Naspi, M. D’Orazio, A literature review on driving factors and contextual events 

influencing occupants’ behaviours in buildings, Build. Environ. 118 (2017) 40–66. 

doi:10.1016/j.buildenv.2017.03.021.

[52] V. Fabi, R.V. Andersen, S. Corgnati, B.W. Olesen, Occupants’ window opening behaviour: A 

literature review of factors influencing occupant behaviour and models, Build. Environ. 58 (2012) 

188–198. doi:10.1016/j.buildenv.2012.07.009.

[53] W.O. Brien, I. Gaetani, S. Gilani, S. Carlucci, International survey on current occupant modelling 

approaches in building performance simulation, Building Performance Simulation, (2016)  1-19.

[54] Q. Pu, S. Gupta, S. Gollakota, S. Patel, Whole-Home Gesture Recognition Using Wireless Signals,

in: Proc 19th Annu Int Conf Mob Comput Netw - - MobiCom ’13, 2013: p. 27. 



[55] R. Melfi, B. Rosenblum, B. Nordman, K. Christensen, Measuring building occupancy using 

existing network infrastructure, in: BT - 2011 Int. Green Comput. Conf. IGCC 2011, July 25, 2011

- July 28, 2011, 2011.

[56] R.H. Dodier, G.P. Henze, D.K. Tiller, X. Guo, Building occupancy detection through sensor belief 

networks, Energy Build. 38 (2006) 1033–1043. doi:10.1016/j.enbuild.2005.12.001.

[57] M.W. Ahmad, M. Mourshed, D. Mundow, M. Sisinni, Y. Rezgui, Building energy metering and 

environmental monitoring - A state-of-the-art review and directions for future research, Energy 

Build. 120 (2016). doi:10.1016/j.enbuild.2016.03.059.

[58] F. Tahmasebi, S. Mostofi, A. Mahdavi, Exploring the Implications of Different Occupancy 

Modelling Approaches for Building Performance Simulation Results, Energy Procedia. 78 (2015) 

567–572. doi:10.1016/j.egypro.2015.11.737.

[59] S. Gilani, W. O’Brien, H.B. Gunay, J.S. Carrizo, Use of dynamic occupant behavior models in the 

building design and code compliance processes, Energy Build. 117 (2016). 

doi:10.1016/j.enbuild.2015.10.044.

[60] P. Ole Fanger, Thermal comfort, Danish Tech. Press. (1970).

[61] P. Ole Fanger, J. Toftum, Extension of the PMV model to non-air-conditioned buildings in warm 

climates, Energy Build. 34 (2002) 533–536. doi:10.1016/S0378-7788(02)00003-8.

[62] S. Schiavon, K.H. Lee, Dynamic predictive clothing insulation models based on outdoor air and 

indoor operative temperatures, Build. Environ. 59 (2013) 250–260. 

doi:10.1016/j.buildenv.2012.08.024.

[63] G.S. Brager, G. Paliaga, R. De Dear, B. Olesen, J. Wen, F. Nicol, M. Humphreys, Operable 

windows, personal control, and occupant comfort, in: ASHRAE Trans., 2004: pp. 17–35.

[64] S. Schiavon, A.K. Melikov, Energy-saving strategies with personalized ventilation in cold 

climates, Energy Build. 41 (2009) 543–550. doi:10.1016/j.enbuild.2008.11.018.

[65] S. D’Oca, C. Chen, T. Hong, Z.D. Belafi, Synthesizing building physics with social psychology: 

An interdisciplinary framework for context and occupant behavior in office buildings, Energy Res.

Soc. Sci. (2017).

[66] D.A. Leeuw, E. D., Hox, J. J., & Dillman, International Handbook of Survey Methodology, 

Psychology Press, 2008.

[67] J. Langevin, P.L. Gurian, J. Wen, Tracking the human-building interaction: A longitudinal field 

study of occupant behavior in air-conditioned offices, J. Environ. Psychol. 42 (2015) 94–115. 

doi:10.1016/j.jenvp.2015.01.007.

[68] C.T. and A. Tashakkori., Foundations of Mixed Methods Research: Integrating Quantitative and 

Qualitative Approaches in the Social and Behavioral., SAGE, 2009.



[69] A. Heydarian, E. Pantazis, D. Gerber, B. Becerik-Gerber, Use of Immersive Virtual Environments 

to Understand Human-Building Interactions and Improve Building Design., in: Int. Conf. Human-

Computer Interact., 2015.

[70] M. Ajzen, I. Fishbein, Attitude–behavior relations: A theoretical analysis and review of empirical 

research, Psychol. Bull. 84 (1977) 888–918.

[71] R.H. Bandura, A. Walters, Social learning and personality development, Holt, Rinehart, & 

Winston., New York, 1963.

[72] B. Skinner, Science And Human Behavior, (1953) 461. http://books.google.com/books?

hl=en&lr=lang_en&id=Pjjknd1HREIC&pgis=1.

[73] J. Zhao, B. Lasternas, K.P. Lam, R. Yun, V. Loftness, Occupant behavior and schedule modeling 

for building energy simulation through office appliance power consumption data mining, Energy 

Build. 82 (2014). doi:10.1016/j.enbuild.2014.07.033.

[74] D. Yan, W. O’brien, T. Hong, X. Feng, H.B. Gunay, F. Tahmasebi, A. Mahdavi, Occupant behavior

modeling for building performance simulation: current state and future challenges, Energy Build. 

107 (2015) 264–278. doi:10.1016/j.enbuild.2015.08.032.

[75] S. D’Oca, V. Fabi, S.P. Corgnati, R.K. Andersen, Effect of thermostat and window opening 

occupant behavior models on energy use in homes, Build. Simul. 7 (2014) 683–694. 

doi:10.1007/s12273-014-0191-6.

[76] M. Schweiker, F. Haldi, M. Shukuya, D. Robinson, Verification of stochastic models of window 

opening behaviour for residential buildings, J. Build. Perform. Simul. 5 (2012) 55–74. 

doi:10.1080/19401493.2011.567422.

[77] T. Hong, S.K. Chou, T.Y. Bong. Building simulation: an overview of development and information

sources, Build. Environ. 35 (2000).

[78] T. Hong, D. Yan, S. D’Oca, C. Chen, Ten questions concerning occupant behavior in buildings: 

The big picture, Build. Environ. (2016) 1–13. doi:10.1016/j.buildenv.2016.12.006.

[79] T. Hong, S.C. Taylor-Lange, S. D’Oca, D. Yan, S.P. Corgnati, Advances in research and 

applications of energy-related occupant behavior in buildings, Energy Build. (2015). 

doi:10.1016/j.enbuild.2015.11.052.

[80] X. Liang, T. Hong, G.Q. Shen, Occupancy data analytics and prediction: A case study, Build. 

Environ. 102 (2016). doi:10.1016/j.buildenv.2016.03.027.

[81] W. Parys, D. Saelens, H. Hens, Coupling of dynamic building simulation with stochastic 

modelling of occupant behaviour in offices – a review-based integrated methodology, J. Build. 

Perform. Simul. 4 (2011) 339–358. doi:10.1080/19401493.2010.524711.

[82] H.B. Gunay, W. O’Brien, I. Beausoleil-Morrison, A critical review of observation studies, 



modeling, and simulation of adaptive occupant behaviors in offices, Build. Environ. 70 (2013) 31–

47. doi:10.1016/j.buildenv.2013.07.020.

[83] T. Hong, H. Sun, Y. Chen, S.C. Taylor-Lange, D. Yan, An occupant behavior modeling tool for co-

simulation, Energy Build. (2015). doi:10.1016/j.enbuild.2015.10.033.

[84] T. Hong, S. D’Oca, S.C. Taylor-Lange, W.J.N. Turner, Y. Chen, S.P. Corgnati, An ontology to 

represent energy-related occupant behavior in buildings. Part II: Implementation of the DNAS 

framework using an XML schema, Build. Environ. 94 (2015) 196–205. 

doi:10.1016/j.buildenv.2015.08.006.

[85] A. Cowie, T. Hong, X. Feng, Q. Darakdjian, Usefulness of the obFMU Module Examined through 

a Review of Occupant Modelling Functionality in Building Performance Simulation Programs., in:

IBPSA Build. Simul. Conf., San Francisco, 2017.

[86] T. Hong, Y. Chen, Z. Belafi, S. D’Oca, Occupant behavior models: A critical review of 

implementation and representation approaches in building performance simulation programs, 

Building Simulation, (2017) 1-14.

[87] T. Hong, S. D’Oca, W. Turner, S.C. Taylor-Lange, An ontology to represent energy-related 

occupant behavior in buildings. Part I: Introduction to the DNAs framework, Building and 

Environment 92 (2015) 764-777.

[88] Z. Belafi, T. Hong, A. Reith, A library of building occupant behavior models represented in a 

standardized schema, in: BEHAVE 2016 4th Eur. Conf. Behav. Energy Effic., Coimbra, 2016.

[89] M. Wetter. Co-simulation of building energy and control systems with the Building Controls 

Virtual Test Bed. Building Performance Simulation, 4: 185–203. 2011.

[90] W. Bernal, M. Behl, T.X. Nghiem, R. Mangharam. MLE+: A tool for integrated design and 

deployment of energy efficient building controls. In: Proceedings of the 4th ACM Workshop on 

Embedded Sensing Systems for Energy-Efficiency in Buildings, Toronto, Canada, pp. 123–130. 

2012.

[91] Y. Chen, T. Hong, X. Luo, An Agent-Based Occupancy Simulator for Building Performance 

Simulation, Building Simulation. (2017) 1-13.

[92] K. Sun, T. Hong, A simulation approach to estimate energy savings potential of occupant behavior 

measures, Energy Build. 136 (2017) 43–62. doi:10.1016/j.enbuild.2016.12.010.

[93] K. Sun, T. Hong. A Framework for Quantifying the Impact of Occupant Behavior on Energy 

Savings of Energy Conservation Measures. Energy and Buildings, 146 (2017) 383-396.

[94] Y. Chen, X. Liang, T. Hong, X. Luo, Simulation and visualization of energy-related occupant 

behavior in office buildings, Build. Simul. (2017) 1–14. doi:10.1007/s12273-017-0355-2.

[95] X. Luo, K.P. Lam, Y. Chen, T Hong, Performance Evaluation of an Agent-based Occupancy 



Simulation Model., Build. Environ. 115 (2017) 42–53.

[96] A. Mahdavi, F. Tahmasebi, The deployment-dependence of occupancy-related models in building 

performance simulation, Energy Build. 117 (2016) 313–320. doi:10.1016/j.enbuild.2015.09.065.

[97] I. Gaetani, P.J. Hoes, J.L.M. Hensen, Occupant behavior in building energy simulation: Towards a 

fit-for-purpose modeling strategy, Energy Build. (2015). doi:10.1016/j.enbuild.2016.03.038.

[98] C. Duarte, K. Van Den Wymelenberg, C. Rieger, Revealing occupancy patterns in an office 

building through the use of occupancy sensor data, Energy Build. 67 (2013) 587–595. 

doi:10.1016/j.enbuild.2013.08.062.

[99] A. Mahdavi, F. Tahmasebi, On the quality evaluation of behavioural models for building 

performance applications, J. Build. Perform. Simul. 0 (2016) 1–11. 

doi:10.1080/19401493.2016.1230148.

[100] G. Branco, B. Lachal, P. Gallinelli, W. Weber, Predicted versus observed heat consumption of a 

low energy multifamily complex in Switzerland based on long-term experimental data, Energy 

Build. 36 (2004) 543–555. doi:10.1016/j.enbuild.2004.01.028.

[101] O.G. Santin, Behavioural Patterns and User Profiles related to energy consumption for heating, 

Energy Build. 43 (2011) 2662–2672. doi:10.1016/j.enbuild.2011.06.024.

[102] X. Feng, D. Yan, C. Wang, On the simulation repetition and temporal discretization of stochastic 

occupant behaviour models in building performance simulation, J. Build. Perform. Simul. 0 (n.d.) 

1–13. doi:10.1080/19401493.2016.1236838.

[103] P. Hoes, J.L.M. Hensen, M.G.L.C. Loomans, B. de Vries, D. Bourgeois, User behavior in whole 

building simulation, Energy Build. 41 (2009) 295–302. doi:10.1016/j.enbuild.2008.09.008.

[104] I. Gaetani, P. Hoes, J.L.M. Hensen, Introducing and testing a strategy for fit-for-purpose occupant 

behavior modeling in a simulation-aided building design process Building Physics and Services , 

Eindhoven University of Technology , P . O . Box 513 , 5600 MB Eindhoven , The Netherlands 

Abst, in: IBPSA Build. Simul. 2017, San Francisco, 2017: pp. 761–768.

[105] M. Trčka, J.L.M. Hensen, Overview of HVAC system simulation, Autom. Constr. 19 (2010) 93–

99. doi:10.1016/j.autcon.2009.11.019.

[106] I. Gaetani, P.-J. Hoes, J.L.M. Hensen, On the sensitivity to different aspects of occupant behaviour

for selecting the appropriate modelling complexity in building performance predictions, J. Build. 

Perform. Simul. 0 (n.d.) 1–11. doi:10.1080/19401493.2016.1260159.

 [107] B.K. Sovacool, What are we doing here? Analyzing fifteen years of energy scholarship and 

proposing a social science research agenda, Energy Res. Soc. Sci. 1 (2014) 1–29. 

doi:10.1016/j.erss.2014.02.003.

[108] B.K. Sovacool, S.E. Ryan, P.C. Stern, K. Janda, G. Rochlin, D. Spreng, M.J. Pasqualetti, H. 



Wilhite, L. Lutzenhiser, Integrating social science in energy research, Energy Res. Soc. Sci. 6 

(2015) 95–99. doi:10.1016/j.erss.2014.12.005.

[109] P.C. Stern, What psychology knows about energy conservation, Am. Psychol. 47 (1992) 1224–

1232. doi:http://dx.doi.org/10.1037/0003-066X.47.10.1224.

[110] W. Abrahamse, L. Steg, Factors Related to Household Energy Use and Intention to Reduce It: The 

Role of Psychological and Socio-Demographic Variables, Hum. Ecol. Rev. 18 (2011) 30–40.

[111] C. Chen, K. Knight, Energy at work: Social psychological factors affecting energy conservation 

intentions within Chinese electric power companies, Energy Res. Soc. Sci. 4 (2014) 23–31. 

doi:10.1016/j.erss.2014.08.004.

[112] S. D’Oca, S. Corgnati, A.L. Pisello, T. Hong, Introduction to an occupant behavior motivation 

survey framework, in: Clima 2016, 2016.

[113] J.K. Day, D.E. Gunderson, Understanding high performance buildings: The link between occupant

knowledge of passive design systems, corresponding behaviors, occupant comfort and 

environmental satisfaction, Build. Environ. 84 (2015) 114–124. 

doi:10.1016/j.buildenv.2014.11.003.

[114] B. Mills, J. Schleich, Residential energy-efficient technology adoption, energy conservation, 

knowledge, and attitudes: An analysis of European countries, Energy Policy. 49 (2012) 616–628. 

doi:10.1016/j.enpol.2012.07.008.

[115] A. Bandura, Social foundations of thought and action: A social cognitive theory. Prentice-Hall 

series in social learning theory, Social fou, Prentice-Hall, Inc, Englewood Cliffs, NJ, US, 1986.

[116] I. Ajzen, The theory of planned behavior, Organ. Behav. Hum. Decis. Process. 50 (1991) 179–211.

doi:10.1016/0749-5978(91)90020-T.

[117] R. McCarney, J. Warner, S. Iliffe, R. van Haselen, M. Griffin, P. Fisher, The Hawthorne Effect: a 

randomised, controlled trial., BMC Med. Res. Methodol. 7 (2007) 30. doi:10.1186/1471-2288-7-

30.

[118] M.C. González, C.A. Hidalgo, A.-L. Barabási, Understanding individual human mobility patterns, 

Nature. 453 (2008) 779–782. doi:10.1038/nature07850.

[119] F. Adib, D. Katabi, See Through Walls with Wi-Fi !, ACM SIGCOMM Comput Commun Rev. 43 

(2013) 75–86. doi:doi: 10.1145/2534169.2486039.

[120] V. Fabi, R.K. Andersen, S. Corgnati, Verification of stochastic behavioural models of occupants’ 

interactions with windows in residential buildings, Build. Environ. 94 (2015) 371–383. 

doi:10.1016/j.buildenv.2015.08.016.

[121] S. D’Oca, T. Hong, A data-mining approach to discover patterns of window opening and closing 

behavior in offices, Build. Environ. 82 (2014) 726–739. doi:10.1016/j.buildenv.2014.10.021.



  


	1 Introduction
	2 Overview of the research from Annex 66
	2.1 Data collection
	2.1.1 Research issues
	2.1.2 Outcomes from Annex 66 activities
	2.1.3 Key findings
	2.2 Modeling approaches and model evaluation
	2.2.1 Research issues
	2.2.2 Outcomes from Annex 66
	2.2.3 Key findings
	2.3 Occupant behavior modeling tools and their integration with Building Performance Simulation programs
	2.3.1 Research issues
	2.3.2 Outcomes from Annex 66
	
	Figure 2. Overview of the obXML schema
	Figure 3. Key components and workflow of obFMU

	2.3.3 Key findings
	2.4 Applications
	2.4.1 Research issues
	2.4.2 Outcomes from Annex 66
	2.4.3 Key findings
	2.5 Interdisciplinary approach
	2.5.1 Research issues
	2.5.2 Outcomes from Annex 66
	2.5.3 Key findings
	3 Discussion and Conclusive Remarks
	Acknowledgments
	References

