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Abstract: The recent wildfires in California, U.S., have caused not only significant losses to 

human life and property, but also serious environmental and health issues. Ambient air pollution 

from combustion during the fires could increase indoor exposure risks to toxic gases and particles, 

further exacerbating respiratory conditions. This work aims at addressing existing knowledge gaps 

in understanding how indoor air quality is affected by outdoor air pollutants during wildfires—by 

taking into account occupant behaviors (e.g., movement, operation of windows and air-

conditioning) which strongly influence building performance and occupant comfort. A novel 

modeling framework was developed to simulate the indoor exposure risks considering the impact 

of occupant behaviours by integrating building energy and occupant behaviour modeling with 

computational fluid dynamics simulation. Occupant behaviors were found to exert significant 
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impacts on indoor air flow patterns and pollutant concentrations, based on which, certain behaviors 

are recommended during wildfires. Further, the actual respiratory injury level under such outdoor 

conditions was predicted. The modeling framework and the findings enable a deeper understanding 

of the actual health impacts of wildfires, as well as informing strategies for mitigating occupant 

health risk during wildfires. 

 

Key words: human exposure risk, indoor air quality, occupant behavior, respiratory injury, NAPA 

wildfire, computational fluid dynamics simulation 
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Introduction 1 

Climate change is influencing large wildfire frequency and globally widespread disturbance that 2 

affect both human and natural systems (Hurteau et al. 2014). The 2013 Rim Fire in California has 3 

caused an average PM2.5 concentration of 20 μg/m3 and ranged from 0 to 450 μg/m3, which was 4 

proved to exert significant adverse health effects to a large population (Navarro et al. 2016). As 5 

another one of the worst wildfires recently, several massive wildfires swept Napa and Sonoma 6 

counties in the North Bay areas of San Francisco on the western coast of the United States on the 7 

night of October 8, 2017 (HST). The fires resulted in the worst air quality that has ever been 8 

recorded in the San Francisco Bay Area1.  The outdoor air quality index2,3, measured in particulate 9 

matter (e.g., PM2.5) exceeded 250 ug/m3, and a measure of other criteria pollutants4 (e.g., sulfur 10 

dioxide – SO2) exceeded 200 ppb, indicating that the high level of air pollution could cause serious 11 

health effects in most people who breathed in the contaminated air outdoors.  12 

A sudden increase in the number of hospitalizations during the days following the fires could be 13 

related to the negative health effects of high gaseous and particulate pollutant levels in the area, 14 

which included increased risk for asthma, and deterioration of pre-existing respiratory diseases 15 

(Lewis et al. 2013). A number of recent researches reported effects of the different airborne particle 16 

metrics on respiratory diseases, cardiovascular effects, lung cancer, asthma, and lung cancer via 17 

human inhalation exposure (You et al. 2017; Haikerwal et al. 2015; Haddrell et al. 2015). In other 18 

words, during the past decades, wildfires have exerted a large negative global impact on human 19 

                                                      
1 Xinhua. Massive wildfires engulf north San Francisco counties. http://news.xinhuanet.com/english/2017-
10/10/c_136667925.htm Accessed 2017-10-10 
2 EPA USA. Air Data: Air Quality Data Collected at Outdoor Monitors Across the US. 
https://www.epa.gov/outdoor-air-quality-data Accessed 2018-06-15 
3 Air Quality Data Query Tool. https://www.arb.ca.gov/aqmis2/aqdselect.php Accessed 2018-06-15 
4 The criteria pollutants (also known as “criteria air contaminants – CAC”) are a set of air pollutants (normally six 
common pollutants, which are ozone, particulate matter, carbon monoxide, lead, sulfur dioxide, and nitrogen 
dioxide) that cause smog, acid rain and other health hazards. 
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health, ecosystems, societies, economies and climate(Jolly et al. 2015; Jaffe et al. 2013). Even 20 

worse, according to the California’s Fourth Climate Change Assessment Report (Bedsworth et al. 21 

2018), there is no sign of abating in the expansion of wildfires due to the climate variations. There 22 

is an urgent need to mitigate the impacts of the adverse air quality on the human health caused by 23 

the increasing wildfires (Anderson et al. 2018; West et al. 2013). 24 

Since individuals spend an average of 87% of their time indoors (Klepeis et al. 2001), indoor 25 

air quality (IAQ) is probably more indicative of the pollution exposure levels affecting residents’ 26 

health than the outdoor measures. According to the report by the Institute of Medicine (2011), IAQ 27 

is affected by three main factors: occupant behavior (OB), building characteristics, and pollutant 28 

properties. Among them, as the most significant factor, OB affects IAQ through occupants’ 29 

interactions with the outdoor physical environment. Behaviours such as window opening and 30 

closing (Stabile et al. 2017), HVAC operation, and walking into or out of a room (Montgomery et 31 

al. 2015) will change the boundary conditions of the indoor environment, thus influence the flow 32 

pattern of indoor air, which, ultimately cause the increase or decrease of the indoor pollution levels.  33 

Many previous experimental studies focused on the separate impacts of occupant behaviors and 34 

building performances on the indoor airflow patterns and pollutant diffusion process, such as 35 

human movements, air-conditioning system-related parameters and window operation-related 36 

natural ventilation (Luo et al. 2016; Luongo et al. 2016). Several Computational Fluid Dynamics 37 

(CFD) models have also been improved by validating with quantitative measurements (Luo et al. 38 

2018b; Gosselin and Chen 2008). These investigations revealed detailed information about indoor 39 

air flow patterns and pollutant concentration levels under different specific conditions. However, 40 

in a real office environment, occupant behaviors are always complex and dynamic due to transient 41 

indoor conditions such as temperature, humidity, and occupant counts, which are mostly associated 42 
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with the outdoor environment (Lin et al. 2017). Also, when assessing the impacts of the indoor 43 

environment on human health, exposure to air pollution is not only largely determined by pollutant 44 

concentrations in the spaces where people spend their time, but also by the amount of time they 45 

spend in those spaces. Therefore, the static status of the indoor environment is no longer suitable 46 

and appropriate for evaluating the indoor human exposure risks during daily working hours; a set 47 

of OB-related dynamic schedules should be first generated to guide the indoor CFD modeling and 48 

risk evaluation. Furthermore, for a given indoor environment, the respiratory injury level is also 49 

crucial for assessing adverse health impacts of wildfires, which requires the pollutant concentration 50 

near the oro-nasal as the boundary condition for assessment. PM2.5 and ultrafine particles are both 51 

considered as the representative pollutants when indicating the indoor air quality level to the public 52 

(Ibald-Mulli et al. 2002; Zhao et al. 2009). Several studies recognized that PM2.5 are better related 53 

to resuspension phenomena and combustion processes, while quite a high amount of our overall 54 

daily dose of ultrafine particles is due to the indoor sources. Considering the access to the measured 55 

data for further validation, we selected PM2.5 as the main particle metrics in this work. 56 

Here we used both EnergyPlus and Fluent to co-simulate indoor occupant behaviors as well as 57 

the corresponding IAQ and particle deposition inside respiratory systems, respectively. Indoor 58 

pollutant concentrations were simulated and used to calculate the IAQ index, which indicated 59 

potential adverse health effects. Results of the properties affected by particle concentrations near 60 

the mouth and nose of occupants, could be potentially used as the initial and boundary conditions 61 

for the assessment of the respiratory injury. Outcomes from the study formulated a framework for 62 

modeling (as shown in Figure 1) exposure to indoor pollutants as well as the potential assessment 63 

of human health hazards in an office environment—considering occupant movement and behavior, 64 

which can inform strategies to mitigate occupant health issues during times of serious outdoor air 65 
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pollution such as wildfires. For broader application, this co-simulation framework among Building 66 

Energy Modeling (BEM), occupant behavior modeling and CFD builds a bridge in the outdoor-67 

to-indoor penetration process especially considering the indoor occupant behaviors, which thus 68 

could be broadly applied in the assessment of indoor quality under many other extreme weather 69 

events or use cases such as haze pollution in China, as well as the vehicle exhaust etc. 70 

 71 

Figure 1 Overview of the modeling framework. The Building Energy Modeling tool (EnergyPlus) 72 
was co-simulated with the Occupant Behavior Modeling tool (obFMU – a functional mockup unit of 73 
occupant behavior model) to calculate the occupant-related schedules, primarily based on the outdoor 74 
environment and the building performance. These modeled activities and building performances were then 75 
integrated into the Fluent modeling process as the boundary conditions through a C++ user-defined function 76 
(UDF), to further calculate the indoor airflow and contaminant concentration. Eventually, the corresponding 77 
indoor exposure risk could be evaluated, as well as the respiratory injury level as one of the potential 78 
assessments in the future work. 79 
 80 

Materials and Methods 81 
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Occupant behavior modeling. Whole building performance simulation, using EnergyPlus 82 

coupled with obFMU, has been used to simulate occupant behavior and generate occupant-related 83 

schedules in the last decade (Hong et al. 2017). EnergyPlus is an open-source program that models 84 

heating, ventilation, cooling, lighting, water use, renewable energy generation, and other building 85 

energy flows (Crawley et al. 2001). It is the flagship building simulation engine supported by the 86 

United States Department of Energy (DOE). The occupant behavior function mockup unit 87 

(obFMU) is an occupant behavior-modeling tool developed by Lawrence Berkeley National 88 

Laboratory (T. Hong et al. 2016). It was developed for co-simulation with EnergyPlus, requiring 89 

an XML file generated based on the obXML (occupant behavior eXtensible Markup Language) 90 

schema (Hong, D’Oca, Taylor-Lange, et al. 2015) and a configuration file. The obXML schema 91 

describes the occupant behavior by implementing a DNAS (drivers-needs-actions-systems) 92 

framework (Hong, D’Oca, Turner, et al. 2015). The obFMU is the engine for occupant behavior 93 

simulation and co-simulates via the functional mockup interface (FMI) with building performance 94 

simulation programs, e.g., EnergyPlus and ESP-r. 95 

Occupant behavior activities. In this work, the simulated scenario is designed in an office room 96 

with two occupants working as different types. One occupant keeps working on the computer, 97 

while the other works as a secretary, who might often walk out of the room to get printed materials 98 

or coordinate with other people. The simulation period is from 9:00am to 6:00pm, which are the 99 

working hours for the office workers. According to the weather data on October 13, 2017, the 100 

building performance, including the four occupant-related schedules and the operation 101 

characteristics of the indoor facilities, were modeled in EnergyPlus. Four categories of occupant 102 

behavior models were used in this study: occupant movement, lighting, windows, and HVAC 103 

operation. They were used to describe the characteristics of related occupant behaviors, based on 104 
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which the probability of occupants taking an action is estimated. More specifically, Chen’s agent-105 

based stochastic occupant movement model (Chen et al. 2018), Haldi’s lighting control models 106 

(switch on light at arrival or when it is dark, switch off at departure) (Haldi 2013), and Newsham’s 107 

window control model (open at arrival or when the outdoor environment is suitable, close at arrival, 108 

departure or when the outdoor environment is not suitable) (Newsham 1994) were adopted. HVAC 109 

operation is a combination of availability schedule and actual window operation. In other words, 110 

when the window is open, the HVAC system will be off; when the window is closed, the HVAC 111 

system will be on if occupants feel hot. The occupant behavior models were compiled in an 112 

obXML file, which worked as the input to obFMU and was used to co-simulate with EnergyPlus. 113 

Occupant-related schedules, including the occupancy schedule, lighting schedule, natural 114 

ventilation schedule (namely window schedule), as well as the HVAC schedule were generated in 115 

the simulation process, seen in Figure 2. As for the detailed characteristics, the operation 116 

parameters of the windows and HVAC refer to the velocity, temperature, and pollutant 117 

concentration of the inlet airflow. The electric power of the lighting and computers was associated 118 

with the indoor environment in the modeling process. The changes of occupant count represented 119 

the moments when the occupant was entering or leaving the room.  120 
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 121 

Figure 2. Four occupant-related schedules from the co-simulation of EnergyPlus and 122 
obFMU. 123 
Indoor air flow field modeling. The CFD software ANSYS Fluent (Version 18.0.0) was 124 

employed to simulate the transient indoor flow field affected by the occupant behaviors. Gambit 125 

(Version 2.4.6) was used to build the geometric model of the office room (Figure 3) and generate 126 

the grids for simulation. The total number of grids is 6.7 million. The minimum mesh volume was 127 

2.64 × 10-9m3, located close to the skin of the moving occupant. The method of mesh generation 128 

was used in our previous study (Luo et al. 2018a, 2018b). The transient solver was employed 129 

during the calculation. As for representing the turbulence airflow caused by the ventilation and 130 

occupant movements, the RNG k-ε model adopted in this work was validated by previous work 131 

(Zhang et al. 2009; Han et al. 2014; Fracastoro et al. 2002), with the overall consideration of 132 

accuracy, computing efficiency, and affordability for modeling the indoor flow field. The 133 

differential viscosity model and the swirl dominated flow in the RNG options were selected. 134 

During the iterative process, the pressure-implicit with splitting of operators (PISO) algorithm was 135 

employed to solve the pressure-velocity coupling equations. The second-order upwind scheme was 136 

also used to consider the diffusion-convection in the governing equation. The Discrete Element 137 
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Model (DEM) Collison term and the Brownian Motion term were both applied to include the 138 

particle-particle interactions (voidage and collision), which captured the particle resuspension 139 

phenomenon of PM2.5. According to the aforementioned schedules and the related parameters, a 140 

UDF in the Fluent software has been created to automate the transient changes of the window 141 

boundary conditions, HVAC boundary conditions, light conditions, and the human movement 142 

status. The gaseous composition and the corresponding concentrations of the inlet airflow were 143 

based on the measured outdoor air quality data, seen in Table 1. The time steps during the occupant 144 

moving and static process were set to 0.01 s and 1 s, respectively. The calculation is computed in 145 

a four-node Linux cluster. Each node of the cluster has 12 processors (2.4 GHz Intel 64). The 146 

overall simulation period in this case is nine hours (32400 seconds), which requires 120 hours of 147 

the computing time.  148 

Table 1. The daily maximum outdoor air quality of some criteria pollutants (SO2, CO, and 149 
O3) and the particulate matter (PM2.5) within the following week after the wildfire event in 150 
Northern California (October 8 – 14, 2017). The gaseous composition and the corresponding 151 
concentrations of the inlet airflow was based on the measured outdoor air quality data. 152 

 Oct. 8 Oct. 9 Oct. 10 Oct. 11 Oct. 12 Oct. 13 Oct. 14 
SO2 (ppb) 65.90 89.49 / / 248.93 439.05 345.92 
CO (ppm) 0.80 1.19 / 1.29 1.83 2.84 2.29 
O3 (ppb) 12.72 25.49 31.40 33.54 76.57 92.08 50.48 

PM2.5 (ug/m3) 86.30 115.30 214.70 / 91.97 212.49 179.40 
 153 
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 154 
Figure 3. The geometrical features of the office room. There are two desks (1.0 m × 0.5m × 0.7 155 
m in length × width x height) at one side of the room (5 m × 4 m × 3 m in length × width × height). 156 
One occupant remains sitting in front of the desk, the other one (1.75 m-height) walks through the 157 
door (2 m × 1 m in height × width), which is on the other side of the room. There are two windows 158 
(1.55 m × 1.45 m in width × height) on the side wall, which is adjacent to the seated occupant. The 159 
diffuser outlet of the HVAC (0.3 m × 0.2 m in width × height) is at the top of the wall towards the 160 
door. The lighting fixture is at the center of the celling. 161 
 162 
UDF setting. The UDF (user-defined function) setting is a very important link in the overall 163 

framework, serving as a “bridge” connecting the outdoor and indoor concentration conditions, as 164 

well as taking the occupant behavior into consideration. The aforementioned generated occupant-165 

related schedules determined both the natural and mechanical ventilation strategies (such as 166 
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opening and closing time, as well as the air flow rate and its temperature etc.), these strategies 167 

were implemented in the CFD simulation as “time-series data” through coding the user-defined 168 

function. The natural ventilation strategy in Newsham’s research (Newsham 1994) is adopted in 169 

this work (open at arrival or when the outdoor environment is suitable, close at arrival, departure 170 

or when the outdoor environment is not suitable). Thus, when the windows were opened, the 171 

gaseous and particulate pollutants were blown into the room through the windows and the doors, 172 

where the velocity and temperature of the inlet airflow were set as the EnergyPlus modeling results. 173 

As for the mechanical ventilation strategy, it is a combination of availability schedule and actual 174 

window operation (when the window is open, the HVAC system will be off; when the window is 175 

closed, the HVAC system will be on if occupants feel hot). While the HVAC system was on, the 176 

windows and the door, as well as the outdoor air system of the HVAC system, were all considered 177 

to be closed. The air purification system was assumed to be active in this work, with a removal 178 

rate of 50%. Thus, the gaseous composition and the corresponding concentrations of the next 179 

timestep’s inlet airflow were calculated and input in the UDF code, according to the 50% 180 

concentration of reduced pollutants of the last timestep around the HVAC outlet. The air 181 

temperature and velocity of the inlet airflow were also set using the EnergyPlus modeling results. 182 

As for the movement behavior, the walking speed of the occupant was set to 1 m/s, and it took 5 s 183 

walking from the door to his seat (same in the opposite direction).  184 

Calculation of IAQ index. The IAQ index is an index developed by the United States 185 

Environmental Protection Agency (EPA) that is used to indicate the indoor air quality in terms of 186 

its adverse health effects. On one side, the pollutant concentrations can be converted into the index 187 

value based on an empirical piecewise linear function. The breakpoints of specific pollutants are 188 

guided in the reports released by WHO in 2005 and 2010 (World Health Organization 2005; 2010). 189 
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On the other side, the calculated index values are corresponding to different levels of adverse 190 

health symptoms based on many previous epidemiological studies and surveys. The IAQ index for 191 

each pollutant can be calculated from the modeled pollutant concentration results, as shown in Eq. 192 

1.  193 

( )Hi Lo
P P Lo Lo

Hi Lo

I II C BP I
BP BP

−
= − +

−
       (1) 194 

where PI  is the index for pollutant P , PC  is the rounded concentration of pollutant P , HiBP  is 195 

the breakpoint that is greater than or equal to PC , LoBP  is the breakpoint that is less than or equal 196 

to PC , HiI  is the AQI value corresponding to HiBP , and LoI  is the AQI value corresponding to 197 

LoBP . According to the aforementioned concentration distribution, the average potential inhaled 198 

concentration was calculated within the vertical plane in front of the static human. The 199 

corresponding air quality level was then calculated based on Eq. 1. While the final AQI is the 200 

highest value calculated for each pollutant (Shi et al. 2015). 201 

 202 

Results 203 

Verification of the consistency of the two simulations. It was assumed that the occupant-related 204 

schedules remained the same in the two simulated environments of EnergyPlus and Fluent, making 205 

the process consistent. Due to the model that we employed in the obFMU, decision making 206 

regarding the operations of windows and HVAC was largely dependent on the indoor environment, 207 

especially room air temperature. Thus, to verify the consistency of the two simulated 208 

environments, indoor average temperature was chosen as the parameter for comparison. Figure 4 209 

shows the indoor temperature modeled in EnergyPlus and Fluent, respectively. The occupant-210 
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related schedules generated in EnergyPlus were proved to be reasonable for the indoor 211 

environment simulated in Fluent. 212 

 213 

Figure 4. The indoor temperature simulated in EnergyPlus and Fluent. For EnergyPlus and 214 
Fluent simulations, indoor temperature both rose slowly till around 29.2 oC before 11:30 am, 215 
when the windows were opened. Then, the temperature remained at around 26.0 oC until 2:30 pm 216 
within the duration when the HVAC was turned on. The same phenomenon appeared for such 217 
behaviours afterward. Thus, the occupant-related schedules generated in EnergyPlus were 218 
reasonable for the indoor environment simulated in Fluent. 219 
 220 
IAQ from measured data and simulated results. The indoor and outdoor air qualities before and 221 

after this wildfire event were provided by the Indoor Environment Group at Lawrence Berkeley 222 

National Laboratory (LBNL). Some office rooms inside the Building 51F in Lawrence Berkeley 223 

National Laboratory (LBNL) are serving as a living laboratory to continually monitor the indoor 224 

and outdoor carbon dioxide and pollutant concentrations (e.g., ozone, particular matters). Figures 225 

5-6 show the comparisons of IAQ level (namely ozone and PM2.5) between the measured and 226 

simulated results. Since more detailed IAQ measurement was not available, we chose the average 227 

and maximum concentration levels as the comparison indexes of the measured and simulated 228 

results. From Oct. 8 to Oct. 15, 2017, IAQ worsened after the breakout of the wildfire, and 229 

continued for the next whole week (Figure 5 (a)). During this week, the average concentration 230 

level of the indoor ozone was 18.11 ppb. The maximum levels of the ozone reached 47.97 ppb on 231 
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October 12, 2017, when the outdoor quality data was 76 ppb. The simulated average and maximum 232 

levels of ozone in Figure 5 (b) were overall consistent with the measured results, except for two 233 

details. First, ozone is a highly reactive component that reacts quickly with surfaces when 234 

penetrating indoors, which is why the measured ozone levels are generally lower than those 235 

modeled levels. Second, the measured indoor ozone level stayed at 10 ppb during the night when 236 

all unintentional openings of the building were closed, during which time, the simulated result was 237 

almost zero. These differences between the measured and modeled results were supposed to be 238 

associated with air infiltration in the building and are further discussed in the discussion section. 239 

 240 

 241 

Figure 5 Comparison of the measured and simulated O3 levels. (a) Concentration of Ozone 242 
measured indoors and outdoors, before, during and after the wildfire.  (b) The simulated concentration of 243 
the indoor Ozone on Oct. 13. 244 
 245 

Measured data of particle levels from October 12 to 14 indicate that the maximum and average 246 

levels of PM2.5 were 91.97 ug/m3 and 51.44 ug/m3, respectively (Figure 6 (a)), while those of the 247 

simulated results were 131.49 ug/m3 and 53.02 ug/m3, respectively (Figure 6 (b)). The simulated 248 

results were a little higher than the measured data, which might be due to less consideration of the 249 
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particle interaction. Comparing to the outdoor concentration, the indoor PM was about 65% of the 250 

outdoor level on average, under an air exchange rate of 0.7 air changes per hour in this work. 251 

 252 

 253 

Figure 6 Comparison of the measured and simulated PM2.5 levels. (a) Concentration of PM2.5 254 
measured indoors and outdoors during the wildfire. (b) The simulated concentration of the indoor PM2.5 255 
on Oct. 13. 256 
 257 

The fluctuant simulated results indicated that occupant behaviors exerted a large influence on 258 

the indoor pollutant concentration during the working hours. Through the comparison, the 259 

fluctuant indoor concentration level was proved to be consistent with the measured data in the 260 

actual office environment if the occupant behaviors were considered during the simulation.  261 

 262 

Flow pattern and concentration distribution. The plane in front of the oronasal (x=1.25m, see 263 

Figure 3) region was chosen as the potential inhalation region. The evolution of the flow structure 264 

and the concentrations of different gaseous pollutants in this region may largely influence human 265 

inhalation doses, which is significant in assessing exposure risk levels. According to the 266 

aforementioned outdoor air quality on that day, the outdoor concentration of sulfur dioxide (SO2) 267 

was much higher than an average day, and its hazard level was higher than that of carbon monoxide 268 
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and ozone. Thus, sulfur dioxide was chosen as the representative pollutant to investigate its 269 

diffusion characteristics. 270 

 271 

 272 

Figure 7 The velocity and concentration fields of SO2 indoors after the windows were opened. 273 
(a) At inhalation plane, 40s after the window was opened. (b) After 120s. (c) After 180s. (d) After 500s. 274 
(e) After 1000s. (f) After 1800s. 275 
 276 

Operation of windows exerted a significant impact on flow pattern and concentration 277 

distribution (Figure 7). Outdoor sulfur dioxide was diffused quickly through the windows. Owing 278 

to the short distance between the seated occupant and the windows, the concentration of the sulfur 279 

dioxide near the oro-nasal region reached a relatively high level just after 120s (Figure 7 (b)). The 280 

inlet airflow was affected by transient outdoor weather data, such as wind velocity and direction 281 

outdoors. Meanwhile, the diffusion of the inlet airflow was also influenced by the existent indoor 282 

airflow circulation. Eventually, the concentration of sulfur dioxide remained at a steady state after 283 
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30 min, which was around 995 ug/m3 (348.25 ppb). Due to the same pattern of the velocity field, 284 

concentration evolutions for carbon monoxide and ozone were similar to that of the sulfur dioxide. 285 

Eventually, after 30 min of opening the windows, concentrations of indoor carbon monoxide and 286 

ozone on the inhalation region (x=1.25 m) reached around 1.40 mg/m3 (1.12 ppm) and 107.08 287 

ug/m3 (49.97 ppb), respectively. 288 

Flow pattern and concentration distribution caused by other occupant behaviors such as air-289 

conditioning and movement can be found in Figure 8-9. The velocity and concentration fields on 290 

the plane near the HVAC outlet 300 s after the HVAC was turned on, indicated the effects of the 291 

HVAC operation on the IAQ (Figure 8 (a)). The cold air coming from the HVAC outlet moved 292 

downwards during the diffusion (Figure 8 (b-f)). 1300 s after the HVAC operation, the 293 

concentration of indoor sulfur dioxide dropped to 500 ug/m3. And 6000 s after the HVAC operation, 294 

the concentration of sulfur dioxide remained at a relatively steady state, which was around 100 295 

ug/m3. Combined with the aforementioned analysis, occupants are advised to keep the windows 296 

closed and run the HVAC systems with the outdoor air dampers shutting off during wildfire to 297 

mitigate the indoor exposure risk. 298 
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 299 
Figure 8 The velocity and concentration fields of SO2 indoors after the HVAC was turned 300 
on. (a) At the plane near the HVAC outlet, 300 s after the HVAC was operated. (b) At inhalation 301 
plane, 300 s after the HVAC was operated. (c) After 700 s. (d) After 1300 s. (e) After 1700 s. (f) 302 
After 6000 s. 303 
 304 

The effects of the occupant movements, i.e. walking out of and into the room, can be found in 305 

Figure 9 (a-c) and (d-f), respectively. A strong downward airflow was observed behind its upper 306 

body, carrying the gaseous pollutant downwards; while the gap between the lower limbs exerted a 307 

horizontal flow between the legs, which enhanced the diffusion speed of the pollutants. The 308 

detailed information of the velocity fields evaluated in this study has been verified in a previous 309 

PIV experimental study (Luo et al. 2018a). Overall, the movement behavior accelerated the 310 

diffusion and mixture of the existed contaminants at different heights, which enhanced the risk of 311 

respiratory exposure. Therefore, occupants are recommended to limit walking activities during the 312 

extreme wildfires.  313 
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 314 
Figure 10 The velocity and concentration fields of SO2 along the moving. (a-c) The occupant 315 
was walking out of the office. (d-f) The occupant was walking into the room. 316 
 317 

Assessment of the daily exposure risk level. Epidemiological studies have linked exposure to 318 

indoor air pollution with a wide range of adverse health outcomes. The health effects and the 319 

breakpoints of some specific pollutants considered in this study are listed in Table 2 (documented 320 

from (WHO 2010; Mintz 2013; World Health Organization 2005)).  321 

Table 2. Pollutant-specific sub-indices and health effects statements for guidance on the AQI. 322 
The IAQ index for each pollutant can be calculated from the modeled pollutant concentration 323 
results, seen in Methods.  324 

AQI 
Categories: 

Index 
Values 

Ozone (ppb) Sulfur Dioxide (ppb) Carbon Monoxide 
(ppm) 

[8-hour] 

Particulate Matter 
(ug/m3) 

[24-hour] [1-hour] [8-hour] [1-hour] [24-hour] 

Good 
(Up to 50) - 0-59 

None 
0-35 0-30 0-4.4 

None 
0-12.0 
None None 

Moderate 
(51-100) - 

60-75 
Unusually 
sensitive 

individuals 
may 

experience 
respiratory 
symptoms 

36-75 >30-140 

4.4-9.4 
None 

12.1-35.4 
Respiratory symptoms 
possible in unusually 
sensitive individuals; 

possible aggravation of 
heart or lung disease in 

people with 
cardiopulmonary disease 

and older adults 

None 
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Unhealthy 
for Sensitive 

Groups 
(101-150) 

125-164 76-95 76-185 140-220 9.5-12.4 
Increasing likelihood 
of reduced exercise 

tolerance due to 
increased 

cardiovascular 
symptoms, such as 

chest pain, in people 
with heart disease 

35.5-55.4 
Increasing likelihood or 
respiratory symptoms in 

sensitive individuals; 
aggravation of heart or lung 

disease and premature 
mortality in people with 

cardiopulmonary disease, 
older adults, and people of 

lower SES 

Increasing likelihood of 
respiratory symptoms and 

breathing discomfort in people 
with lung disease, such as 

asthma, children, older adults, 
and outdoor workers 

Increasing likelihood of 
respiratory symptoms, such 

as chest tightness and 
breathing discomfort in 

people with asthma 

Unhealthy 
(151-200) 

165-204 96-115 186-304 220-300 
12.5-15.4 

Reduced exercise 
tolerance due to 

increased 
cardiovascular 

symptoms, such as 
chest pain, in people 

with heart disease 

55.5-150.4 
Increased aggravation of 
heart or lung disease and 
premature mortality in 

people with 
cardiopulmonary disease, 
older adults, and people of 

lower SES; increased 
respiratory effects in general 

population 

Greater likelihood of 
respiratory symptoms and 

breathing difficulty in people 
with lung disease, such as 

asthma, children, older adults, 
and outdoor workers; possible 
respiratory effects in general 

population 

Increased respiratory 
symptoms, such as chest 

tightness and wheezing in 
people with asthma; possible 

aggravation of other lung 
disease 

Very 
Unhealthy 
(201-300) 

205-404 116-374 305-604 300-600 
15.5-30.4 
Significant 

aggravation of 
cardiovascular 

symptoms, such as 
chest pain, in people 

with heart disease 

150.5-250.4 
Significant aggravation of 
heart or lung disease and 
premature mortality in 

people with 
cardiopulmonary disease, 
older adults, and people of 

lower SES; significant 
increased respiratory effects 

in general population 

Increasing severe symptoms 
and impaired breathing likely 
in people with lung disease, 

such as asthma, children, older 
adults, and outdoor workers; 

increasing likelihood of 
respiratory effects in general 

population 

Significant increase in 
respiratory symptoms, such 
as wheezing and shortness 
of breath, in people with 

asthma; aggravation of other 
lung diseases 

Hazardous 
(301-500) 405-604 - 605-1004 600-1000 

30.5-50.4 
Serious aggravation of 

cardiovascular 
symptoms, such as 

chest pain, in people 
with heart disease; 

impairment of 
strenuous activities in 

general population 

250.5-500.4 
Serious aggravation of heart 

or lung disease and 
premature mortality in 

people with 
cardiopulmonary disease, 
older adults, and people of 
lower SES; serious risk of 

respiratory effects in general 
population 

 325 

According to the modeled concentration results, where the 1-hour SO2 value was 348.25 ppb, 326 

CO value was 1.12 ppm, the O3 value was 47.97 ppb, and the PM2.5 value was 131.49 ug/m3, the 327 

calculated maximum IAQ index was 215, with SO2 as the responsible pollutant. Qualitative 328 

evaluation indicated that this environment would cause an increasing likelihood of respiratory 329 

symptoms, such as wheezing, chest tightness and breathing discomfort in people with asthma, as 330 

well as an increasing aggravation of other lung diseases. However, to achieve the quantitative 331 

evaluation of the injury level, further analyses should be conducted considering an entering path 332 

of the particle and gaseous contaminants into the body through breathing. The modeled dynamic 333 

indoor contaminant concentration can be served as a boundary condition.  334 
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As for the impact of occupant behaviors on the daily exposure risk level, due to the distribution 335 

of different indoor occupant behaviors, the indoor pollutant concentration fluctuated obviously 336 

during the working hours. Activities such as opening the windows as well as walking into and out 337 

of the rooms led to the increase of the pollutant concentration and thus the exposure risk of the 338 

human body and respiratory. While turning on the air-conditioning without the function of 339 

supplying fresh air decreased the indoor contaminant concentration in a slow but effective way. 340 

Therefore, to mitigate indoor exposure risk, occupants are advised to keep windows closed and 341 

limit walking activities during the extreme wildfires. Meanwhile, outdoor air dampers should be 342 

shutting off when operating the HVAC system to avoid more purification loads. From another 343 

aspect, a proper and accurate set of occupant behavior schedules and the corresponding building 344 

boundary conditions are also crucial for enhancing the evaluation and prediction of the indoor risk 345 

exposure.  346 

Discussions 347 

This study formulated a framework for the indoor pollutants exposure modeling and the potential 348 

human health hazard assessment in an office environment particularly taking into account the 349 

actual occupant behaviours. The simulated results under this framework were compared with the 350 

actual measured indoor and outdoor data (O3 and PM2.5), showing great consistency in both the 351 

maximum and average levels. The indoor airflow pattern and IAQ fluctuated obviously within 352 

working hours, which were largely dependent on specific occupant behaviors. Therefore, 353 

comparing to the traditional IAQ and occupant exposure assessments when occupants remained 354 

static or the indoor equipment (e.g., HVAC and windows) remained constant running, the 355 

framework in this study is proved to provide a more realistic and reliable result aligned with the 356 

actual requirement of assessing the health hazard level of the indoor occupants. Furthermore, based 357 



23 
 

on this result as a boundary condition, the deposit fraction and equation can be fitted to predict a 358 

more accurate and dynamic respiratory exposure dosage under such outdoor wildfire conditions, 359 

which not only indicates the key injury level, but also provides reference for the further 360 

physiological stage. 361 

Assessment of the respiratory injury 362 

As aforementioned, the indoor pollutant concentration near the oro-nasal could be considered as 363 

the boundary condition for assessing the respiratory deposition. Take nasal inhalation as an 364 

example, respiratory injury was mainly caused by the micron particle deposition fraction in nasal 365 

cavity, pharynx, larynx and trachea regions for nasal breathing. The detailed modelling method 366 

and flow pattern inside the respiratory system were included in another published journal article 367 

(Xu et al. 2018).  368 

The simulated particle size range was slightly expanded to allow a wider coverage of the 369 

developed deposition equations. For micron-sized particles, deposition fractions were related to 370 

the inertial parameter I , which considered particles mass to the square power, and the averaged 371 

fluid momentum. The inertial parameter is defined as: 372 

2= pI d Q            (2) 373 

where Q  is the volume flow rate (cm3/s) and pd  (μm) is the particle aerodynamic diameter. 374 

Figure 11(a) and (c) show the deposition fraction in human respiratory airways for particles 375 

ranging from 0.8 μm to 20 μm against the inertial parameter for oral and nasal inhalation, 376 

respectively.  377 

The Stokes number was used to correlate the deposition to length scale, particle density, size 378 

and flow rate. It is defined as: 379 
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2

18
p p cd uC

St
L

ρ
µ

=      (3)  380 

where L is the characteristic length of oral and u is the local airflow velocity. The deposition 381 

through oral breathing in human airway was related to St and Re. 382 

For the deposition equation in human airway, improved fittings were obtained with St3.271Re and 383 

St.1.77Re0.145 for particle sizes from 0.8 to 20 μm, breathing rate of 10 and 30 L/min for oral and 384 

nasal breathing (Figure 11(b) and (d)), with a coefficient of determination R2=0.99. The empirical 385 

equations are given as 386 

3.271

0.956[1 ] 100%
22.701 Re 1oralDF

St
= − ×

+         (4) 387 

1.77 0.145[1 0.95exp( 7.35 Re )] 100%nasalDF St= − − ⋅ ×      (4) 388 

 389 
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Figure 11 Comparison of micron particles (0.8 – 20 μm). (a) deposition fraction for oral 390 
inhalation. (b) fitted deposition equation for oral inhalation. (c) deposition fraction for nasal 391 
inhalation. (d) fitted deposition equation for nasal inhalation.  392 
 393 

The dosimetry (in number, mass, surface area) in human upper airway under various breathing 394 

flow rates and breathing pattern was calculated by using the above simulated PM2.5 concentration 395 

value, presented in Table 3. The time period of occupants staying indoors was assumed as 8 hours 396 

a day (as the working hours from 9am to 5pm).  A monotonous growth was obtained in human 397 

upper airway dosimetry with the flow rate, which lead to a larger air exchange and particle 398 

exposure risk, as well as a higher probability of chronic respiratory diseases. 399 

Table 3 Human upper airway dosages of indoor PM2.5 during a day. 400 

Q 
(L/min) 

Oral inhalation Nasal inhalation 
Number 
(106#) 

Mass(μg) Surface area (10-5m2) Number 
(106#) 

Mass(μg) Surface area (10-5m2) 

10 2.93 23.96 5.75 6.41 52.16 12.60 
30 36.25 296.6 71.18 31.11 255.3 61.15 

 401 

Limitations 402 

One limitation of this work is that air infiltration via building permeability (e.g., windows, 403 

envelope cracks) was not considered during the CFD simulation. Several previous studies (Shi et 404 

al. 2015; G. Hong and Kim 2016; C. Chen and Zhao 2011) have proved the effects of air infiltration 405 

on IAQ and verified the infiltration factor as the useful parameter for qualifying the number of 406 

indoor particles infiltrating from the outdoor environment. To evaluate the potential effect of 407 

building permeability on the current results, we estimate the average infiltration rate as 0.2 air 408 

changes per hour (ACH) in summer based on some previous research (Chen and Zhao 2011; G. 409 

Hong and Kim 2016). According to the volume of the room and the outdoor pollutant concentration, 410 

the air infiltration process might cause the indoor ozone level to raise to 8 ppb during the night. As 411 
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can be seen in Figure 5, the measured indoor ozone concentration stayed around 10 ppm during 412 

the night when the windows were closed, which was supposed to be associated with the air 413 

infiltration. Therefore, the actual indoor pollutant concentration considering the air infiltration 414 

would be 5% higher than the simulated results in this work, which results in a higher IAQ index 415 

and thus higher exposure risk than evaluated. 416 

As for the concept of the exposure injury, in the current work, we focus more on the indoor air 417 

quality and the corresponding respiratory dosage and deposition through breathing. As concluded 418 

in Table 2, a qualitative evaluation indicates the significant potential of wheezing and shortness of 419 

breath in people with asthma, as well as the increasing of lung disease, under the calculated IAQ 420 

index. However, quantitative analysis of the contaminant penetrating into the blood through layers 421 

of skin, stratum corneum, viable epidermis and dermal capillaries is also necessary to carry out 422 

together with the physiological researches in the next step, to determine the exact injury level. 423 

Recently, a model of transdermal uptake of hazardous chemicals has been raised by Morrison et 424 

al. in 2017. The final mass of the gaseous chemicals (e.g., SO2, CO) entered the blood can be 425 

calculated based on the dynamic indoor chemical concentration as a boundary condition. But the 426 

key point is to validate the aforementioned model with a set of proper parameters for specific 427 

gaseous contaminants. 428 

As for the selection of airborne particle metrics, ultrafine particles also play a non-negligible 429 

role in affecting the occupant health, especially to the respiratory system due to its smaller particle 430 

size (Ibald-Mulli et al. 2002; Zhao et al. 2009; Nikolova et al. 2011). Plus that the physical 431 

diffusion process (origin, dynamic and penetration) between PM2.5 and ultrafine particles are 432 

actually different. Therefore, the approach proposed in this work is a simplified approach for not 433 

considering the ultrafine particles in the overall framework. To address this problem, accurate 434 
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measured ultrafine particles data should be collected via carefully designed experiments, to further 435 

validate the physical models of their diffusion process. 436 

The methodology in this paper is more targeting at the commercial building types (namely, 437 

office buildings) where many indoor pollutant sources such as cooking and incense could be 438 

negligible. When it comes to residential building types for a broader application, the simulation of 439 

indoor combustion sources should be added to the current methodology, especially the CFD 440 

simulation of the origin, dynamics and penetration of such particle metrics (Yang and Ye 2014; 441 

Ezzati and Kammen 2001). 442 

 443 

Conclusion 444 

This work employed both whole-building simulation (EnergyPlus coupled with obFMU) and 445 

computational fluid dynamics (Fluent) to analyze the impacts of occupant behaviors (namely 446 

window operation, HVAC operation, and human movements) on indoor airflow patterns and IAQ. 447 

The IAQ, especially considering daily occupant behavior schedules, was assessed during the 448 

period of a wildfire event in the Northern California, U.S.  449 

The simulated results were compared with the actual measured indoor and outdoor data (O3 and 450 

PM2.5). The measured and simulated IAQ were consistent based on the maximum and average 451 

levels. The occupant behaviors were proved to exert significant impacts on the indoor air flow 452 

pattern and thus the pollutants’ concentrations. The indoor airflow pattern and IAQ transformed 453 

obviously within working hours, which were largely dependent on occupant behaviors. Thus, to 454 

mitigate indoor exposure risk, occupants are advised to keep windows closed and operate HVAC 455 

systems without outdoor air. Besides, occupants’ movements accelerate the diffusion and mixture 456 

of existing contaminants at different heights, which could enhance the risk of respiratory exposure. 457 
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The daily maximum IAQ index was 215, with SO2 as the responsible pollutant, which might result 458 

in significant respiratory symptoms and adverse health effects, such as wheezing and shortness of 459 

breath, in children, older adults, and people with asthma. Based on indoor air conditions and 460 

considering occupant behaviors, deposit fraction and equation were fitted to predict the respiratory 461 

injury level under such outdoor wildfire conditions. 462 

This study formulated a framework for the indoor pollutants exposure modeling and the potential 463 

human health hazard assessment in an office environment while taking into account actual 464 

occupant behaviors. This co-simulation was conducted by combining the building energy 465 

modeling, occupant behavior modeling, CFD modeling, and pollutant modeling, which can be 466 

further applied in each IAQ issue where the outdoor-to-indoor pollutant penetration aspect is 467 

important (such as wildfire events as demonstrated in this work, haze pollution in China, as well 468 

as the vehicle exhaust etc). Results can be used to evaluate and inform strategies to mitigate 469 

occupant health conditions during outdoor events of extreme pollution. 470 

 471 
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