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Abstract 

Physics-based simulation of energy use in buildings is widely used in building design and performance rating, 
controls design and operations. However, various challenges exist in the modeling process. Model parameters such 
as people count and air infiltration rate are usually highly uncertain, yet they have significant impacts on the 
simulation accuracy. With the increasing availability and affordability of sensors and meters in buildings, a large 
amount of measured data has been collected including indoor environmental parameters, such as room air dry-
bulb temperature, humidity ratio, and CO2 concentration levels. Fusing these sensor data with traditional energy 
modeling poses new opportunities to improve simulation accuracy. This study develops a set of physics-based 
inverse algorithms which can solve the highly uncertain and hard-to-measure building parameters such as zone-
level people count and air infiltration rate. A simulation-based case study is conducted to verify the inverse 
algorithms implemented in EnergyPlus covering various sensor measurement scenarios and different modeling use 
cases. The developed inverse models can solve the zone people count and air infiltration at sub-hourly resolution 
using the measured zone air temperature, humidity and/or CO2 concentration given other easy-to-measure model 
parameters are known.  
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1. Introduction 

1.1 Building energy modeling 

Building energy modeling plays a critical role in researches and applications such as model predictive controls 
(MPC) [1] and operations [2], [3] and building energy retrofit analyses [4]. Common building energy modeling 
approaches include physics-based approaches, aka white-box approaches, and data-driven approaches, aka the 
black-box approaches.  

Physics-based or forward modeling approaches explicitly model the interactions among weather conditions, 
building geometry, envelope, service systems, occupants, control strategies, and energy performance. The physics-
based models can be further classified into reduced order models [5], [6] and dynamic models [7], [8] based on 
complexity. A reduced order model is usually a set of resistor–capacitor (RC) networks and is more 
computationally efficient than the detailed dynamic models. Therefore it is often used in situations when a short 
simulation time is critical, such as MPC [9]. On the other hand, detailed dynamic models describe the energy flows 
among building energy systems with physics laws and are solved with differential equations to provide more 
accurate results. The dynamic models are often more time consuming to build and solve [2]. With decades of 
research and development in the building energy modeling field, powerful tools, such as EnergyPlus, TRNSYS [10], 
ESP-r [11] have been developed and improved to model detailed buildings and systems with complex occupant 
behaviors and control settings. The increasing computational power also makes building energy modeling more 
and more widely adopted. However, detailed physics-based building energy models can be very sensitive to model 
assumptions. In reality, the discrepancies between design and actual building characteristics, the simplification of 
the building geometry, occupancy and system operation schedules, and the errors in computation can all 
negatively impact the model’s accuracy of reflecting the real situations. Therefore, researchers have focused on 
calibrating the building energy models to match the measurements, so that the model can be used for predictive 
controls or evaluation of optimization strategies [12], [13]. 

Data-driven approaches gained lots of attentions in recent years. They often require a large amount of  
measurement data to train a reliable model that can reasonably represent the building’s energy performance or 
other characteristics under different operation conditions. A list of literature reviewed the data-driven building 
energy prediction approaches [2], [14]–[16].  The main steps of data-driven approaches include data collection, 
data pre-processing, model training, and model testing [14]. A bunch of factors can affect the accuracy and 
scalability of the model built purely on data. First of all, the data collection process can be challenging. Some 
important sensor and meter data needed by the data-driven approaches may not be available in every building. 
Data quality is another issue; data from different building systems usually have different measurement periods and 
temporal resolutions. Missing data is always a main barrier to train and test models. Moreover, the measurements 
may not cover all the operation schemes, leading to a lack of full coverage of real operations by the trained models. 

 

1.2 Measurements of uncertain model inputs 

Among the building energy model inputs, air infiltration and people count are two variables that are highly 
uncertain and hard to measure directly at the zone level. Studies have shown that they have significant impacts on 
the energy simulation results [13], [17]–[19]. In most cases, air infiltration and people count are set as fixed 
schedules, which do not reflect the dynamic reality. Various methods have been developed to directly measure or 
indirectly calculate the zone air infiltration rates and people counts. 

For the air infiltration rate, the most commonly used methods are tracer gas method and blower door method. 
Tracer gas method has been widely used to measure the infiltration rates in buildings since the 1980s. There are 
three categories of the method – dilution, constant injection, and constant concentration [20]. The fundamental of 
this method is the mass conservation of the tracer gas. The air infiltration rates can be calculated by monitoring 



the relationship of tracer gas injection and the concentration change [21], [22]. The blower door method is another 
widely used method to measure the air airtightness of buildings. This method is also known as the fan 
pressurization method, which employs a large door-mounted fan to blow air into the building to quantify the air 
infiltration rate at a certain indoor-outdoor pressure difference [23]. Both tracer gas and blower door methods 
have been validated and used in enormous research and industrial application conditions. However, those 
methods have limitations such as the requirements of special devices, the disruptions to occupants, and 
potentially high time and labor costs. Some novel methods have been proposed in recent years to avoid those 
drawbacks while measuring the air infiltration rates. Examples are CFD-based approaches which use infrared 
images along with indoor and outdoor air parameter measurements and fluid mechanics analysis to quantify the 
air infiltration rate and pin-point the location of the air leakage [24]. However, the CFD-based methods usually 
need expertise in the geometry modeling, meshing, and simulation assumptions, which is hard to scale up. 

Occupant behavior is a critical input in building performance modeling. The high uncertainty of occupants’ 
presence and behavior have significant impacts on building energy modeling [25]. There is a wide spectrum of 
studies in detecting occupancy in buildings. The common methods of direct occupancy detection include (1) 
motion sensors, (2) vision-based technologies, and (3) radio-frequency localization technologies [26]. Some of the 
limitations of those technologies include the high cost and maintenance effort of the sensors, low accuracy in 
shared spaces, and privacy concerns. In recent years, some methods have been proposed to infer the occupancy 
and people count with advanced analytical and machine learning approaches. Wang et al. [27] developed a 
method to predict occupancy with fused environmental sensing and Wi-Fi sensing data using machine learning 
techniques. Candanedo et al. [28] developed a statistical learning model with light, temperature, humidity and CO2 
measurements to detect occupancy. Those methods showed good agreements with the ground truth. But one 
limitation is they require dedicated data processing and feature engineering to train reliable models. 

1.3 Solving hard-to-measure parameters with inverse models 

Decades of effort have been put into the development and refinement of physics-based building energy simulation 
tools. The integrated simulation engine EnergyPlus [29] has been through numerous tests and validations. It is now 
widely used in both research and commercial applications. At the same time, the cost of environmental sensing in 
buildings has declined. Many modern buildings are equipped with monitoring and control systems that can easily 
measure the HVAC system supply air and zone level air temperature, humidity, and CO2 concentration. 
Traditionally, building energy simulation is used to predict the building’s energy consumption and environmental 
parameters. However, backed by the well-tested physical principles, the building models can theoretically solve 
unknown parameters with reasonable model assumptions and accurate environmental measurements. Lee and 
Hong [30] proposed an inverse modeling approach, which uses the measured zone air temperature as the model 
inputs and solves the zone thermal mass or air infiltration rate. The thermal mass and air infiltration rate solved by 
the proposed method is implemented in EnergyPlus and validated with field measurements [30] under the free-
floating condition.  

In this study, a set of new inverse modeling algorithms are developed. The algorithms are based on the air sensible 
heat, humidity, or CO2 conservation equations. Section 2 describes the theoretical fundamentals of the inverse 
balance equations. Section 3 presents a simulation-based case study, which shows the application of the inverse 
modeling algorithms with different availability of environmental measurements and model assumptions. The 
interpretation of the results is also discussed. Section 4 summarizes the case study results and discusses the pros 
and cons of the proposed inverse modeling algorithms. Section 5 gives the conclusions. 

2. Methodology 

The methodology of this study consist of three parts – (1) derivation of the inverse models, (2) implementations in 
EnergyPlus, and (3) verification case study. Figure 1 shows the overall methodology map. 

 



 

Figure 1. Overall Methodology 



2.1 The zone air balance equations 

The physics-based zone air heat, moisture, and contaminant equations [29] serve as the basis of the inverse 
modeling algorithms. The forward balance equations take into account the effect of internal heat gains (e.g., 
lighting system, electrical equipment, people, etc.), heat/mass exchanges with surfaces, connected zone air, 
outdoor air infiltration, as well as HVAC system supply air. The relationship between zone air sensible heat change 
and heat transfers from various sources can be expressed as the following: 

𝐶𝐶𝑧𝑧
𝑜𝑜𝑇𝑇𝑧𝑧
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(1) 

Where 𝐶𝐶𝑧𝑧 is the zone air total sensible heat capacity multiplier, ∑ �̇�𝑄𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1  is the sum of convective internal heat gains, 

∑ ℎ𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1 𝐴𝐴𝑖𝑖(𝑇𝑇𝑠𝑠𝑖𝑖 − 𝑇𝑇𝑧𝑧) is sum of convective heat gains from interior surfaces, �̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖𝐶𝐶𝑝𝑝(𝑇𝑇∞ − 𝑇𝑇𝑧𝑧) is the convective heat 

gain from outdoor air infiltration, and �̇�𝑄𝑠𝑠𝑠𝑠𝑠𝑠 is the convective heat transfer from the HVAC systems.  

Similarly, the zone air moisture balance equation can be expressed as: 
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𝑜𝑜𝑊𝑊𝑧𝑧

𝑜𝑜𝑐𝑐
= �𝑚𝑚𝑤𝑤_𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1

+ � 𝐴𝐴𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝜌𝜌𝑤𝑤𝑖𝑖𝑤𝑤
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𝑖𝑖=1

(𝑊𝑊𝑠𝑠𝑖𝑖 −𝑊𝑊𝑧𝑧) + � �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠

𝑖𝑖=1

(𝑊𝑊𝑧𝑧𝑖𝑖 −𝑊𝑊𝑧𝑧) + �̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖(𝑊𝑊∞ −𝑊𝑊𝑧𝑧) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝑊𝑊𝑠𝑠𝑠𝑠𝑝𝑝 −𝑊𝑊𝑧𝑧� 

(2) 

Where 𝐶𝐶𝑤𝑤  is the zone air moisture capacity multiplier, ∑ 𝑚𝑚𝑤𝑤_𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1  is the sum of internal moisture gains, 

∑ 𝐴𝐴𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝜌𝜌𝑤𝑤𝑖𝑖𝑤𝑤
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1 (𝑊𝑊𝑠𝑠𝑖𝑖 −𝑊𝑊𝑧𝑧) is the sum of moisture gains from the interior surfaces, ∑ �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠
𝑖𝑖=1 (𝑊𝑊𝑧𝑧𝑖𝑖 −𝑊𝑊𝑧𝑧) is the sum 

of moisture gains from the connected zones, �̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖(𝑊𝑊∞ −𝑊𝑊𝑧𝑧) is the moisture gain from outdoor air infiltration, and 
�̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝑊𝑊𝑠𝑠𝑠𝑠𝑝𝑝 −𝑊𝑊𝑧𝑧� is the moisture gain from the HVAC systems. 

And the zone air CO2 mass balance equation can be expressed as: 

𝐶𝐶𝐶𝐶𝐶𝐶2
𝑜𝑜𝐶𝐶𝑧𝑧
𝑜𝑜𝑐𝑐

= �𝑚𝑚𝐶𝐶𝐶𝐶2_𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1

+ � �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠

𝑖𝑖=1

(𝐶𝐶𝑧𝑧𝑖𝑖 − 𝐶𝐶𝑧𝑧) + �̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖(𝐶𝐶∞ − 𝐶𝐶𝑧𝑧) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝐶𝐶𝑠𝑠𝑠𝑠𝑝𝑝 − 𝐶𝐶𝑧𝑧� 

(3) 

Where 𝐶𝐶𝐶𝐶𝐶𝐶2 is the zone air CO2 capacity multiplier, ∑ 𝑚𝑚𝐶𝐶𝐶𝐶2_𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1  is the sum of internal CO2 gains, ∑ �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠
𝑖𝑖=1 (𝐶𝐶𝑧𝑧𝑖𝑖 − 𝐶𝐶𝑧𝑧) is 

the CO2 gains from connected zones, �̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖(𝐶𝐶∞ − 𝐶𝐶𝑧𝑧) is the CO2 gains from outdoor air infiltration, and �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝐶𝐶𝑠𝑠𝑠𝑠𝑝𝑝 − 𝐶𝐶𝑧𝑧� is 
the CO2 gains from the HVAC systems. 

2.2 The inverse modeling algorithms 

The inverse modeling algorithms are developed to solve the zone air balance equations in their ordinary 
differential format. In this study, EnergyPlus is used as the simulation engine which implements these inverse 
models. But the methodology is generic and can be applied to other physics-based simulation engines. Depending 
on the model assumptions and available measured zone parameters, the inverse modeling algorithms can be used 
to solve different unknown parameters such as people count, air infiltration rate, zone internal thermal mass, and 
HVAC supply airflow rate. Zone level people count and air infiltration are two influential model parameters yet 
hard to measure. Thus, this study implemented the inverse algorithms in EnergyPlus to solve people count and air 
infiltration rate using easily measurable zone parameters such as air temperature, humidity and/or CO2 
concentration. Figure 2 shows the solution of those two unknown parameters with three indoor environmental 
parameter measurements under various scenarios. The system supply terms can be ignored when the HVAC is off 
since there is no sensible heat/moisture/CO2 transfer between the HVAC system supply air and zone air. But they 
must be provided when the HVAC is on during the measurements. 



 

Figure 2. Relationship between measured parameters and inversely solvable unknown parameters 

The ordinary differential equations (1), (2), and (3) can be solved with the finite difference approach which 
requires time-series measurements of zone air temperature, humidity ratio, or CO2 concentration. With the smart 
sensor network, the measurements are easily accessible in modern buildings. EnergyPlus uses third-order 
backward approximation [8] to solve dry-bulb temperature, humidity ratio, or CO2 concertation with the balance 
equations (1), (2), and (3) in its zone predictor-corrector [8] solution. It was proved to provide sufficient accuracy. 
Therefore, the proposed inverse algorithms also adopt the third-order backward approximation approach. With 
the third-order backward approximation, equations (1), (2), and (3) and be inversely re-written as (4), (5), and (6), 
respectively: 
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(4) 

𝐶𝐶𝑤𝑤𝑧𝑧

11
6 𝑊𝑊𝑧𝑧

𝑤𝑤 − 3𝑊𝑊𝑧𝑧
𝑤𝑤−𝛿𝛿𝑤𝑤 + 3

2𝑊𝑊𝑧𝑧
𝑤𝑤−2𝛿𝛿𝑤𝑤 − 1

3𝑊𝑊𝑧𝑧
𝑤𝑤−3𝛿𝛿𝑤𝑤

𝛿𝛿𝑐𝑐

= �𝑚𝑚𝐶𝐶𝐶𝐶2_𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1

+ � 𝐴𝐴𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝜌𝜌𝑤𝑤𝑖𝑖𝑤𝑤

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

(𝑊𝑊𝑠𝑠𝑖𝑖
𝑤𝑤 −𝑊𝑊𝑧𝑧

𝑤𝑤) + � �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠

𝑖𝑖=1

(𝑊𝑊𝑧𝑧𝑖𝑖
𝑤𝑤 −𝑊𝑊𝑧𝑧

𝑤𝑤) + �̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖(𝑊𝑊∞
𝑤𝑤 −𝑊𝑊𝑧𝑧

𝑤𝑤) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝑊𝑊𝑠𝑠𝑠𝑠𝑝𝑝
𝑤𝑤 −𝑊𝑊𝑧𝑧

𝑤𝑤� 

(5) 

𝐶𝐶𝐶𝐶𝐶𝐶2

11
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(𝐶𝐶𝑧𝑧𝑖𝑖𝑤𝑤 − 𝐶𝐶𝑧𝑧𝑤𝑤) + �̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖(𝐶𝐶∞𝑤𝑤 − 𝐶𝐶𝑧𝑧𝑤𝑤) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝐶𝐶𝑠𝑠𝑠𝑠𝑝𝑝𝑤𝑤 − 𝐶𝐶𝑧𝑧𝑤𝑤� 

(6) 

The superscript notations of 𝑇𝑇𝑧𝑧, 𝑊𝑊𝑧𝑧, and 𝐶𝐶𝑧𝑧 represent the timestamp of the measurements. For example, 𝑇𝑇𝑧𝑧𝑤𝑤 is the 
measured zone air dry-bulb temperature at the current timestamp, while 𝑇𝑇𝑧𝑧𝑤𝑤−𝛿𝛿𝑤𝑤  is the measured air dry-bulb 
temperature at one time step earlier than the current timestamp. 

From Equation (4), (5), and (6), it can be inferred that it is critical to model other terms accurately to use the 
inverse algorithms, because the inversely solved air infiltration and people count will be overfitted if other terms in 
the balance equations are highly uncertain. The inverse modeling algorithms work under the following conditions 
(the exact conditions vary depending on which parameter is used as input): 



1) The zone air sensible thermal mass, total humidity capacity, or total CO2 concentration capacity is 
known and fixed. 

2) If the system supply air temperature, humidity ratio, or CO2 concentration is not measured, the 
inverse algorithms are only valid under the free-floating (HVAC system is off) mode. 

3) The zone internal sensible heat gains, moisture gains, or CO2 gains are modeled at a reasonable 
accuracy.  

4) The inter-zone air exchange is modeled at a reasonable accuracy. 
5) The convective heat, moisture, or CO2 transfer between zone surfaces and zone air are modeled at a 

reasonable accuracy. 
6) The sensible heat generation rate, moisture and CO2 dissipation rate of a single person are known. 

2.2.1 Inverse modeling algorithms to solve zone air infiltration 

With the measured zone air parameters, the air infiltration mass flow rate �̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖 can be solved with Equation (7), (8), 
or (9) as shown below. For example, Equation (7) calculates the sensible heat gain (or loss) rate from air infiltration 
with the zone air sensible heat balance equation, and then solves the infiltration mass flow rate with the 
infiltration heat capacity and outdoor-indoor air temperature difference. If the HVAC is on during the 
measurements, the system supply air mass flow rate and supply air temperature also need to be measured. 

�̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖 =
𝐶𝐶𝑧𝑧

11
6 𝑇𝑇𝑧𝑧𝑤𝑤 − 3𝑇𝑇𝑧𝑧𝑤𝑤−𝛿𝛿𝑤𝑤 + 3

2𝑇𝑇𝑧𝑧
𝑤𝑤−2𝛿𝛿𝑤𝑤 − 1

3𝑇𝑇𝑧𝑧
𝑤𝑤−3𝛿𝛿𝑤𝑤

𝛿𝛿𝑐𝑐 − [∑ �̇�𝑄𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1 + ∑ ℎ𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1 𝐴𝐴𝑖𝑖(𝑇𝑇𝑠𝑠𝑖𝑖𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑤𝑤) +∑ �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠
𝑖𝑖=1 𝐶𝐶𝑝𝑝(𝑇𝑇𝑧𝑧𝑖𝑖𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑤𝑤) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑝𝑝�𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑤𝑤�]

𝐶𝐶𝑝𝑝(𝑇𝑇∞𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑤𝑤)
 

(7) 

�̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖

=
𝐶𝐶𝑤𝑤𝑧𝑧

11
6 𝑊𝑊𝑧𝑧

𝑤𝑤 − 3𝑊𝑊𝑧𝑧
𝑤𝑤−𝛿𝛿𝑤𝑤 + 3

2𝑊𝑊𝑧𝑧
𝑤𝑤−2𝛿𝛿𝑤𝑤 − 1

3𝑊𝑊𝑧𝑧
𝑤𝑤−3𝛿𝛿𝑤𝑤

𝛿𝛿𝑐𝑐 − [∑ 𝑚𝑚𝑤𝑤_𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1 + ∑ 𝐴𝐴𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝜌𝜌𝑤𝑤𝑖𝑖𝑤𝑤

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1 (𝑊𝑊𝑠𝑠𝑖𝑖

𝑤𝑤 −𝑊𝑊𝑧𝑧
𝑤𝑤) +∑ �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠
𝑖𝑖=1 (𝑊𝑊𝑧𝑧𝑖𝑖

𝑤𝑤 −𝑊𝑊𝑧𝑧
𝑤𝑤) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝑊𝑊𝑠𝑠𝑠𝑠𝑝𝑝

𝑤𝑤 −𝑊𝑊𝑧𝑧
𝑤𝑤�]

𝑊𝑊∞
𝑤𝑤 −𝑊𝑊𝑧𝑧

𝑤𝑤  

(8) 

�̇�𝑚𝑖𝑖𝑧𝑧𝑖𝑖 =
𝐶𝐶𝐶𝐶𝐶𝐶2

11
6 𝐶𝐶𝑧𝑧𝑤𝑤 − 3𝐶𝐶𝑧𝑧𝑤𝑤−𝛿𝛿𝑤𝑤 + 3

2𝐶𝐶𝑧𝑧
𝑤𝑤−2𝛿𝛿𝑤𝑤 − 1

3𝐶𝐶𝑧𝑧
𝑤𝑤−3𝛿𝛿𝑤𝑤

𝛿𝛿𝑐𝑐 − [∑ 𝑚𝑚𝐶𝐶𝐶𝐶2_𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1 + ∑ �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠
𝑖𝑖=1 (𝐶𝐶𝑧𝑧𝑖𝑖𝑤𝑤 − 𝐶𝐶𝑧𝑧𝑤𝑤) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝐶𝐶𝑠𝑠𝑠𝑠𝑝𝑝𝑤𝑤 − 𝐶𝐶𝑧𝑧𝑤𝑤�]

𝐶𝐶∞𝑤𝑤 − 𝐶𝐶𝑧𝑧𝑤𝑤
 

(9) 

2.2.2 Inverse modeling algorithms to solve zone people count 

With the measured zone air parameters, the zone people count 𝑁𝑁𝑧𝑧𝑒𝑒𝑒𝑒  can be solved with the following pairs of 
equations. For instance, Equation (10) solves the zone total internal heat gain rate, ∑ �̇�𝑄𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1 . Then, Equation (11) 

solves the number of occupants in the zone by dividing the total sensible heat gain rate from people, ∑ �̇�𝑄𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1 −

∑ �̇�𝑄𝑧𝑧𝑒𝑒𝑒𝑒𝑧𝑧𝑝𝑝𝑤𝑤𝑝𝑝𝑠𝑠𝑧𝑧𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1  , to the sensible heat generation rate of a single person, �̇�𝑄𝑠𝑠𝑖𝑖𝑧𝑧𝑔𝑔𝑝𝑝𝑧𝑧. Similar to the algorithms solving air 

infiltration rate, the system supply air mass flow rate and supply air temperature need to be measured if the HVAC 
system is on. Equation (12) and (13) solve the people count with measured humidity ratio. Equation (14) and (15) 
solve the people count with measured CO2 concentration.  

��̇�𝑄𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1

= 𝐶𝐶𝑧𝑧

11
6 𝑇𝑇𝑧𝑧𝑤𝑤 − 3𝑇𝑇𝑧𝑧𝑤𝑤−𝛿𝛿𝑤𝑤 + 3

2𝑇𝑇𝑧𝑧
𝑤𝑤−2𝛿𝛿𝑤𝑤 − 1

3𝑇𝑇𝑧𝑧
𝑤𝑤−3𝛿𝛿𝑤𝑤

𝛿𝛿𝑐𝑐
− [ � ℎ𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

𝐴𝐴𝑖𝑖(𝑇𝑇𝑠𝑠𝑖𝑖𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑤𝑤) + � �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠

𝑖𝑖=1

𝐶𝐶𝑝𝑝(𝑇𝑇𝑧𝑧𝑖𝑖𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑤𝑤) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑝𝑝�𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑤𝑤�] 

(10) 

𝑁𝑁𝑧𝑧𝑒𝑒𝑒𝑒 =
∑ �̇�𝑄𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1 − ∑ �̇�𝑄𝑧𝑧𝑒𝑒𝑒𝑒𝑧𝑧𝑝𝑝𝑤𝑤_𝑝𝑝𝑧𝑧𝑧𝑧𝑝𝑝𝑝𝑝𝑧𝑧_𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1

�̇�𝑄𝑠𝑠𝑖𝑖𝑧𝑧𝑔𝑔𝑝𝑝𝑧𝑧
 



(11) 

�𝑚𝑚𝑤𝑤_𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1

= 𝐶𝐶𝑤𝑤𝑧𝑧

11
6 𝑊𝑊𝑧𝑧

𝑤𝑤 − 3𝑊𝑊𝑧𝑧
𝑤𝑤−𝛿𝛿𝑤𝑤 + 3

2𝑊𝑊𝑧𝑧
𝑤𝑤−2𝛿𝛿𝑤𝑤 − 1

3𝑊𝑊𝑧𝑧
𝑤𝑤−3𝛿𝛿𝑤𝑤

𝛿𝛿𝑐𝑐
− [ � 𝐴𝐴𝑖𝑖ℎ𝑚𝑚𝑖𝑖𝜌𝜌𝑤𝑤𝑖𝑖𝑤𝑤

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

(𝑊𝑊𝑠𝑠𝑖𝑖
𝑤𝑤 −𝑊𝑊𝑧𝑧

𝑤𝑤) + � �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠

𝑖𝑖=1

(𝑊𝑊𝑧𝑧𝑖𝑖
𝑤𝑤 −𝑊𝑊𝑧𝑧

𝑤𝑤) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝑊𝑊𝑠𝑠𝑠𝑠𝑝𝑝
𝑤𝑤 −𝑊𝑊𝑧𝑧

𝑤𝑤�] 

(12) 

𝑁𝑁𝑧𝑧𝑒𝑒𝑒𝑒 =
∑ 𝑚𝑚𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1 − ∑ �̇�𝑚𝑤𝑤_𝑧𝑧𝑒𝑒𝑒𝑒𝑧𝑧𝑝𝑝𝑤𝑤_𝑝𝑝𝑧𝑧𝑧𝑧𝑝𝑝𝑝𝑝𝑧𝑧_𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1
𝑚𝑚𝑤𝑤_𝑠𝑠𝑖𝑖𝑧𝑧𝑔𝑔𝑝𝑝𝑧𝑧

 

(13) 

�𝑚𝑚𝐶𝐶𝐶𝐶2_𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1

= 𝐶𝐶𝐶𝐶𝐶𝐶2

11
6 𝐶𝐶𝑧𝑧𝑤𝑤 − 3𝐶𝐶𝑧𝑧𝑤𝑤−𝛿𝛿𝑤𝑤 + 3

2𝐶𝐶𝑧𝑧
𝑤𝑤−2𝛿𝛿𝑤𝑤 − 1

3𝐶𝐶𝑧𝑧
𝑤𝑤−3𝛿𝛿𝑤𝑤

𝛿𝛿𝑐𝑐
− [ � �̇�𝑚𝑖𝑖_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑁𝑁𝑧𝑧𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠

𝑖𝑖=1

(𝐶𝐶𝑧𝑧𝑖𝑖𝑤𝑤 − 𝐶𝐶𝑧𝑧𝑤𝑤) + �̇�𝑚𝑠𝑠𝑠𝑠𝑠𝑠�𝐶𝐶𝑠𝑠𝑠𝑠𝑝𝑝𝑤𝑤 − 𝐶𝐶𝑧𝑧𝑤𝑤�] 

(14) 

𝑁𝑁𝑧𝑧𝑒𝑒𝑒𝑒 =
∑ 𝑚𝑚𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1 − ∑ �̇�𝑚𝐶𝐶𝐶𝐶2_𝑧𝑧𝑒𝑒𝑒𝑒𝑧𝑧𝑝𝑝𝑤𝑤_𝑝𝑝𝑧𝑧𝑧𝑧𝑝𝑝𝑝𝑝𝑧𝑧_𝑖𝑖

𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1

𝑚𝑚𝐶𝐶𝐶𝐶2_𝑠𝑠𝑖𝑖𝑧𝑧𝑔𝑔𝑝𝑝𝑧𝑧
 

(15) 

2.3 Convergence 

There can be many factors affecting the convergence when trying to solve the differential equation numerically 
with the third-order backward approximation. The most common issue is the overflow. The latest version of 
EnergyPlus code is written in C++. Just as any other language, it overflows when the result from an operation 
exceeds a certain range. For the inverse modeling algorithms, overflow can happen when calculating the air 
infiltration rate. For instance, the indoor-outdoor air temperature difference term (𝑇𝑇∞𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑤𝑤) can be a very small 
number when the two temperatures are very close. Overflow will happen if the program tries to calculate the air 
infiltration rate by dividing the denominator of Equation (7) by 𝐶𝐶𝑝𝑝(𝑇𝑇∞𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑤𝑤). Therefore, conditional checks are 
needed when implementing the algorithm in the code. In this case, a threshold of 0.05 °C or greater temperature 
difference must be met to calculate the infiltration rate at one timestamp. Similarly, thresholds are added for the 
algorithms using humidity ratio and CO2 concentration. In practice, the thresholds implemented in EnergyPlus 
routines don’t have significant impacts on its ability to solve the unknown parameters in our tests. 

In addition, EnergyPlus uses a zone predictor-corrector mechanism to calculate the heating or cooling needs of a 
zone on the HVAC system, and update the zone air parameters based on the calculated amount of heating or 
cooling the HVAC system provides to a zone. The uncertainties such as truncation errors in those predictor-
corrector routines can cause an anomaly in the inverse modeling routine. Therefore, thresholds for infiltration and 
people count calculation are applied to the code. For infiltration, a valid value must be within the range of 0 to 10 
air changes per hour. For people count, the lower bound is zero, and the upper-bound is the total possible internal 
heat/moisture/CO2 gain divided by the heat/moisture/CO2 generation rate. 

3. Case Study 

To verify that the inverse modeling algorithms are correctly implemented in EnergyPlus and to demonstrate the 
use of the new EnegryPlus feature, a simulation-based case study was conducted. This section presents model 
settings, solution scenarios, and results of the case study. 

3.1 Model settings 

An EnergyPlus building model is used in the case study. The model represents a two-story building with two zones 
on each floor with a 1600 m2 total floor area. Three locations are considered to cover typical hot, cold, and mild 



climate. There are two rounds of simulations. The first round is the forward simulation, where the air infiltration 
rate and people count are provided as model inputs. The forward simulation is used to generate the virtual 
measurements of the zone air and system supply air parameters. Then in the second round of simulations, the 
virtual measurements are provided as the inputs to the inverse modeling algorithms to solve zone air infiltration or 
people count. Since only one unknown variable can be solved at a time, the people count should be provided when 
solving the air infiltration, and vice versa. Table 1 shows the model setting details. 

Table 1. Model settings of the case study 

Model settings Forward simulation Inverse simulation 1: 
solving air infiltration 

Inverse simulation 2: 
solving people count 

Purpose 

Get the virtual 
measurements (i.e., 
zone air and system 

supply air parameters) 

Use the virtual 
measurements to 
inversely solve air 
infiltration rates 

Use the virtual 
measurements to 

inversely solve zone 
people counts 

Building geometry sketch 

   
Locations Chicago, Houston, San Francisco 

Interior lighting power density 9.69 W/m2 
Electric equipment power density 6.78 W/m2 

HVAC system type Ideal air load system: the HVAC system can meet the space heating and 
cooling loads as long as they are below the system capacity. 

Air infiltration Fixed schedule   
(ground truth) NA Fixed schedule 

Occupancy density 10 m2/person     
(ground truth) 10 m2/person NA 

 

In the forward simulation, air infiltration is modeled with the maximum air change rate and a schedule of the 
fractions of the maximum value at different hours of a day. Similarly, the zone people count is modeled with the 
maximum number of people and a schedule indicating the fractions of the maximum number of people at different 
hours. The forward simulation uses the infiltration rate schedule from DOE prototype small office building [31]. 
People’s behavior and movements in real buildings are hard to predict, which affect the presence of people in 
building spaces. Chen et al. [32] developed an agent-based algorithm to simulate occupant movements using 
Markov-chain model. Based on the study, an application was developed. In this case study, a stochastic occupant 
schedule generated by the application is used as the ground truth to mimic the high uncertain people movements 
in real buildings. Figure 3 and Figure 4 shows the air infiltration and example people count schedule for a day. 



  

Figure 3. Air infiltration schedule Figure 4. Occupancy schedule 
 

3.2 Inverse solution scenarios 

There can be different use cases and solution scenarios with the inverse modeling algorithms depending on which 
measured parameters and model details are available in the inverse simulation. Thus, experiments with different 
level of details of measurements and model assumptions are carried out in the case study. 

1) The simplest use case is when the building’s HVAC system is off, and the building is at free-floating mode 
during the zone air measurements and the HVAC system is not modeled in both the forward simulation 
and inverse simulation. This case is most suitable when limited measurements and limited building model 
details are available. However, it requires the building’s HVAC system be turned off. For example, this 
case can be used to solve air infiltration rate when HVAC system is off during unoccupied hours. 

2) A more complex use case is when the HVAC is on during the zone air measurements, but no HVAC detail is 
modeled in the inverse simulation. In this case, the HVAC system is not modeled in the forward simulation, 
but both zone air parameters and the HVAC system supply air parameters are measured and used in the 
inverse simulation. However, since HVAC is not modeled in the forward simulation, its effects on the 
zones interior surfaces are not accounted. This use case is most beneficial when the HVAC supply 
parameters can be easily measured, but the detailed system configurations are hard to be modeled (due 
to lack of information). 

3) The most complicated use case is when the HVAC is on during the zone air measurements, and HVAC 
details are modeled in the inverse simulation. This case requires not only the measurements but also the 
detailed HVAC information for the inverse model. It is most beneficial when both measurements of the 
HVAC supply parameters and the modeling of HVAC details are achievable. 

Figure 5 shows the different model inputs and measurements for the three use cases. 



 

Figure 5. Air infiltration schedule 

Table 2 shows the required measurements and model assumptions for different use cases and solution scenarios. 

Table 2. Inverse solution use cases and scenarios 

Use cases Case 1 Case 2 Case 3 
 Scenarios S1 S2 S3 S4 S5 S6 S7 S8 S9 

HVAC status during measurement Off Off Off On On On On On On 
HVAC is modeled No No No No No No Yes Yes Yes 

Climate zones Chicago, Houston, San Francisco 

Measured 
Parameter(s) 

zone air temperature x     x     x     
zone air humidity ratio   x     x     x   
zone air CO2 concentration     x     x     x 
supply air temperature       x     x     
supply air humidity ratio         x     x   
supply air CO2 concentration           x     x 
supply air mass flow rate       x x x x x x 

Note 

HVAC is off during 
measurements; no 
HVAC is modeled 
in the inverse 
simulation 

HVAC is on during 
measurements; no 
HVAC is modeled 
in the inverse 
simulation 

HVAC is on during 
measurements, 
HVAC is modeled 
in the inverse 
simulation 

 



3.3 Results 

Based on the previous discussion, there are 216 combinations (2 unknown parameters x 4 zones x 3 locations x 3 
measurements x 3 uses cases) in the case study. To illustrate the results, this section first presents time-series 
comparison examples between the ground truth and the inverse solutions. Then it presents the statistical metrics 
of the inverse solutions and summarizes the applicability of different use cases. 

Time-series charts can help visually inspect the alignments between the inverse solution and the ground truth. 
Figure 6 through Figure 8 show the ground truth and the inverse solution of the air infiltration rate at one zone in 
the model for three use cases. The results from Chicago are selected since it covers hot summer and cold winter. 

 

Figure 6. Use Case 1 time-series comparison of the inverse solution and the ground truth of air infiltration rates 



 

Figure 7. Use Case 2 time-series comparison of the inverse solution and the ground truth of air infiltration rates 

 

Figure 8. Use Case 3 time-series comparison of the inverse solution and the ground truth of air infiltration rates 

As shown in the three figures above, the inverse solution of air infiltration rates with measured temperature, 
humidity ratio, and CO2 concentration have different performance for different use cases. The occurrences and 
frequencies of the spikes (extreme values) in the inverse solutions vary by use cases and measurements.  



Since there is more diversity in occupant count schedule, an annual comparison and a weekly comparison are used 
in the plots. Figure 9 through Figure 11 show the ground truth and the inverse solution of people count at one 
zone in the model for three use cases. 

 

Figure 9. Use Case 1 time-series comparison of the inverse solution and the ground truth of people count 

 

 

Figure 10. Use Case 2 time-series comparison of the inverse solution and the ground truth of people count 

 



 

Figure 11. Use Case 3 time-series comparison of the inverse solution and the ground truth of people count 

Similar to the inverse solutions of air infiltration rates, the accuracy of the inverse solutions vary by use case and 
measurements. However, there is an apparent discrepancy between the inverse solution and the ground truth for 
Case 2, when the measurement is zone air temperature. During the cooling season, the inverse solution of people 
count is smaller than the ground truth. The reason for the discrepancies will be discussed shortly. 

The time-series comparisons between the ground truth and the inverse solutions give a snapshot of how the 
inverse algorithm work overall. Comparison of the probability density between the inverse solution and the ground 
truth can provide a statistical view of how the inverse modeling algorithms perform in solving the unknown air 
infiltration rate or people count. Figure 12 and Figure 13 show the probability density distributions of the ground 
truth and the inverse solutions of different use cases in three experimental locations for a single zone in the 
modeled building. The density violin plots (smoothed by the kernel density estimator) use the data aggregated 
from 10-minute time interval values for a whole year. The plots reflect the full distribution of the ground truth and 
inverse solutions. In the facet plot grid, each row corresponds to one use case (see details in Table 2) and each 
column corresponds to a location. There are four traces in each child plot – one ground truth and three solution 
scenarios with the measured air temperature, measured air humidity ratio, and measured CO2 concentration, 
respectively. 



 

Figure 12. Probability density plots of the ground truth and the inverse solution of air infiltration rates 

For example, in Figure 12, the sub-plot in row one and column one shows the probability density distribution of 
the ground truth of the air infiltration rate and the inverse solutions for Use Case 1 in Chicago. There are three 
bulks in the violin plot where each bulk reflects the local average of the value while the width reflects the 
frequency. In this case, the ground truth has three typical values (1, 0.5, and 0.25) of air infiltration rate as shown 
in Figure 3.  The inverse solutions have similar violin plots with the ground truth, which means the solution 
matches the ground truth well. It can be seen from the figures that in general the probability density distribution 
of the inverse solution aligns well with the ground truth. There is one exception for the solution with Use Case 2 
when solving with measured temperature (row 2, column 2 in Figure 12). In this case, the solution’s probability 
density distribution shows there are many times when the solution differ from the ground truth, especially when 
the infiltration air change rate is below 0.25 (indicated by the large area at the bottom of the violin plot). The 
reasons for the poor performance of this case are discussed in the last two paragraphs of Section 4. 



 

Figure 13. Probability density plots of the ground truth and the inverse solution of people count 

The interpretation of Figure 13 is similar to that of Figure 12. The beads-like violin plots show the probability 
density distributions of the ground truth and inverse solutions of the people count. Each “bead” in the plot 
represents a local average of the people count in the schedule. Like the air infiltration rate, the solutions of people 
count with temperate in Use Case 2 differ from the ground truth, which is also indicated in Figure 10. 

Coefficient of Variance of the Root Mean Square Deviation CV(RMSD) is a commonly used index to quantify how 
well the predictions describe the variability of the ground truth. Table 3 shows the CV(RMSD) between the inverse 
solutions and the ground truth. Smaller values of CV(RMSD) suggest better alignments between the inverse 
solution and the ground truth. The values are color-coded in the tables where green stands for a small value and 
red stands for a large value to better visualize the performance of different use cases and scenarios.  

Table 3. CV(RMSD) of the inverse solutions 

Location Chicago Houston San Francisco 

Zone Zone 
1 

Zone 
2 

Zone 
3 

Zone 
4 

Zone 
1 

Zone 
2 

Zone 
3 

Zone 
4 

Zone 
1 

Zone 
2 

Zone 
3 

Zone 
4 

Use 
case 

Measured 
Parameter(s) 

HVAC 
Status 

HVAC 
model CV(RSMD) of air infiltration solution  

Cas
e 1 

S1 Off No 14.8
9 

15.3
9 13.35 

12.3
1 

30.0
2 

27.9
2 

26.2
2 

24.5
7 10.98 11.47 9.42 9.22 

S2 Off No 63.7
2 

64.3
3 42.71 

44.1
4 

60.8
5 

60.4
4 

37.4
1 

39.4
6 65.32 70.05 37.55 33.81 

S3 Off No 24.0
3 

29.9
2 35.08 

39.5
8 

20.8
6 

19.7
3 

31.1
1 

37.3
4 22.42 24.37 33.43 38.15 

Cas
e 2 

S4 On No 51.4
8 

50.1
9 51.70 

49.6
3 

74.9
0 

72.8
7 

74.5
9 

72.6
6 22.33 20.69 22.24 20.29 

S5 On No 35.0
3 

38.0
9 29.56 

26.2
6 

32.4
2 

29.5
2 

29.0
1 

26.5
5 46.24 49.67 30.99 30.23 



S6 On No 26.9
1 

33.8
4 28.87 

29.9
5 

33.6
2 

29.0
3 

45.9
6 

51.0
8 27.78 31.20 30.28 32.74 

Cas
e 3 

S7 On yes 31.7
6 

35.3
1 31.93 

34.8
6 

52.9
3 

54.0
8 

52.8
8 

54.7
1 13.13 13.44 12.67 11.90 

S8 On yes 34.3
9 

36.2
7 29.23 

25.0
8 

32.0
0 

31.5
7 

28.0
3 

27.4
0 43.10 48.01 32.04 31.93 

S9 On yes 26.8
2 

33.0
1 28.81 

29.7
9 

33.4
1 

28.7
2 

46.0
8 

51.2
3 27.70 31.10 30.22 32.71 

Use 
cas
e 

Measured 
Parameter(

s) 

HVA
C 

Statu
s 

HVAC 
mod

el 
CV(RSMD) of people count solution 

Cas
e 1 

S1 Off No 22.1
3 

15.8
2 39.08 

23.8
2 

20.0
4 

15.2
1 

30.6
0 

19.2
3 20.29 15.39 31.30 19.00 

S2 Off No 23.2
8 

20.8
3 24.02 

21.3
0 

25.2
0 

22.2
0 

25.1
8 

22.1
1 21.48 18.70 19.98 16.56 

S3 Off No 9.59 9.57 14.31 
14.2

9 9.16 9.14 
11.8

8 
11.8

4 7.60 7.58 10.31 10.26 

Cas
e 2 

S4 On No 41.8
4 

23.6
9 

101.6
4 

55.8
6 

44.8
5 

26.0
7 

94.3
2 

55.8
3 

138.6
6 

122.9
3 

300.8
0 

196.1
9 

S5 On No 34.1
7 

30.3
6 24.31 

23.4
8 

34.1
6 

30.0
4 

23.4
5 

21.5
8 28.08 26.15 19.81 18.29 

S6 On No 4.01 3.97 6.28 6.19 7.77 7.64 
10.0

8 9.15 5.08 4.86 5.59 5.43 

Cas
e 3 

S7 On yes 15.3
1 

10.4
8 35.62 

21.5
0 

14.9
4 

10.3
6 

32.4
7 

20.0
5 23.28 20.83 24.02 21.30 

S8 On yes 13.6
9 

12.6
9 9.92 

10.0
7 

16.8
3 

14.0
6 

13.1
0 

12.5
7 18.99 17.71 11.45 11.70 

S9 On yes 3.60 3.52 5.91 5.88 7.83 7.72 
10.1

0 9.16 5.07 4.85 5.56 5.41 

 

It can be seen from the table that the accuracy of the inverse solutions varies by solution scenarios and locations. 
In general, the solutions from Case 1 and Case 3 have higher accuracy than Case 2. For example, Scenario 1 (free-
floating, solved with measured temperature) shows the lowest CV(RMSD) among the solutions of air infiltration. 
Case 3 (Scenario 7 ~ 9) shows better accuracy than Case 2 (Scenario 4~6). Similar results can be seen from the 
solutions of people count where the accuracy of Case 1 and Case 3 are better than Case 2.  

EnergyPlus uses a predictor-corrector mechanism to simulate the relationship between the HVAC system and the 
zone air. In the “predictor” step, the HVAC system load is estimated from the zone heat gains.  In the “corrector” 
step, the zone air and related terms are updated with the actual simulated HVAC system supplies.  

The reasons for the worse accuracy of Case 2 when trying to solve with the sensible heat balance equations include: 
(1) the inaccuracy from uncertain zone internal thermal mass, and (2) the convective heat transfer between zone 
interior surfaces and the zone air may not be accounted correctly. In Case 1, the HVAC system is off during both 
the measurement and the solution period. In the solution period, HVAC kept off (achieved by the dual setpoints 
thermostat control logic with extremely low cooling setpoint and extremely high setpoints in EnergyPlus). The 
solution reflects the actual zone air heat balances. However, in Case 2, HVAC is on during the measurement period 
while it is not simulated in the solution period. Although the zone air parameters and system supply terms are 
provided in the inverse balance equations, the effects of HVAC supplies on the interior surface temperature and 
thermal mass are not simulated in the “corrector” step. Thus, the solutions might not reflect the actual zone air 
heat balances when the thermal mass and interior surface convective heat transfer account for a significant 
portion in the balance equations. In this case study, Chicago and Houston have more extreme weather conditions 
than San Francisco, which causes more drastic changes of the zone thermal mass and surface temperatures. When 
the HVAC system is not simulated in the solution period, the thermal mass and interior surface convective heat 
transfer are not accurately represented, which leads to the inaccurate inverse solutions. In Case 3, since HVAC is 



on during both measurement and solution periods, the balance equations are close to the real zone air heat 
balances. Thus, the inverse solutions are more accurate than Case 2. 

Another finding is that the solution with moisture and CO2 balance equations are more accurate than the solution 
with the sensible heat balance equations. That is due to the very small impacts of the interior surface moisture and 
CO2 transfer on the corresponding balance equations. 

 

4. Discussion 

Traditionally, building performance simulations are used to predict building energy use and environmental 
performance with known or assumed building characteristics, system operation strategies and control logic, and 
occupancy schedules. However, some of the model inputs such as the air infiltration rate and occupancy schedule 
are highly uncertain and hard to measure on the per-zone basis. As discussed in the introduction, extensive 
research has been conducted to directly or indirectly measure those unknown variables. The limitations of those 
approaches include the high cost of measurement devices, the disturbance of normal building operation, privacy 
concerns, and the cost of data collection and analytics. At the meanwhile, environmental sensing technologies 
become cheaper and more prevalent in modern buildings. The novelty of this study is that it marries the physics-
based building energy model with the building environmental measurements to inversely solve the highly 
uncertain zone-level air infiltration rates and people count in buildings. 

The inverse modeling algorithms are verified in the simulation-based case study. Validation of the inverse models 
in EnergyPlus using laboratory experiments and measured data was conducted in another study and results are to 
be published in a separate paper. In the case study, normal (forward) simulations are used to generate virtual 
measurements of HVAC system supply and zone air parameters including dry-bulb temperature, humidity ratio, 
CO2 concentration, system supply air temperature and flow rate. Then, the virtual measurements are used as the 
inputs of the inverse simulation to solve the unknown air infiltration rate or people count. Finally, the solution is 
compared with the ground truth. Nine solution scenarios (grouped into three use cases) are developed to mimic 
the different level of measurement availability and model assumptions. The simplest use case is when the HVAC 
system is off during the measurements. And there is no need to model the HVAC system in the inverse simulation 
either. This case is suitable when the building is not conditioned, or the HVAC configurations are unknown for 
creating a building energy model. The second use case is when the HVAC system is operating during the 
measurement, the system supply terms are considered in the inverse balance equations, but HVAC is not modeled 
in the inverse simulations. This case is suitable when the measurements of both space and HVAC supply air 
parameters can be measured, but the HVAC details are unknown to create the building model. The most 
comprehensive use case is when the HVAC system is operating during the measurements, and the HVAC system 
details are known and modeled in the inverse simulation. This use case requires the most amount of 
measurements and the knowledge to model the HVAC system. The modeling parameters can vary significantly 
from building to building. The inverse modeling method is proposed for real case measurements. In the future, it is 
important to evaluate the different use cases and measurement scenarios by comparing the efforts and accuracy 
of the traditional approach against the inverse modeling approach. 

It is found that those use cases have different accuracies depending on what the environmental measurement is 
and what the unknown parameter is. For air infiltration, Case 1 when solving with measured zone air temperature 
and Case 3 when solving with humidity ratio or CO2 concentration have better accuracy. For people count, overall, 
Case 1 and Case 3 have better accuracy than Case 2 when the measurement is temperature or humidity ratio. But 
the solution with measured CO2 concentration has good accuracy in all three cases. The differences in the 
accuracies are caused by the different level of sensitivity of the air parameters to the model settings. In the case 
study, zone air temperature and humidity ratio can be affected by more factors than zone air CO2 concentration. 
Thus, the inverse solution with measured CO2 concentration has better agreements with the ground truth. 



Although the inverse modeling algorithms can solve the uncertain zone air infiltration rate and people count, they 
are subject to some limitations. First, like the normal simulations, the inverse simulation requires accurate model 
inputs of building geometry, thermal zoning, lighting and equipment settings. The zone air balance equations can 
correctly solve the unknown parameters only when the known terms are input correctly. In future studies, we are 
interested in quantifying the sensitivities of the inverse model results due to the uncertainties of those assumed 
parameters, which will inform how the inverse models can be applied, for example, at what stage of the model 
calibration to gain the maximum value, or how to combine with the traditional uncertainty analysis to improve the 
model accuracy. Secondly, the current algorithms assume the occupants have a constant sensible and latent heat 
generation rate, as well as a constant CO2 dissipation rate. This assumption may not be accurate when there is a 
variety of occupant type and activities. Thirdly, the environmental measurements play an important role in the 
inverse solution. Data processing such as aligning the measurements to the same time interval with the simulation 
is necessary. Lastly, there can be computational errors in the inverse simulation. For example, when the indoor and 
outdoor air temperatures are too close, the program may not solve the correct value of that timestamp because of 
the overflowing issues. One potential future improvement is to couple the temperature, humidity, and CO2 inverse 
algorithms. This way, the inverse solutions from different measured parameters could be used to validate each 
other at each timestep.  

5. Conclusions 

This study develops a novel inverse modeling method to solve hard-to-measure building parameters such as zone 
air infiltration and people count using easy-to-measure zone air temperature, humidity and CO2 concentration.  
The inverse method integrates the physics-based building performance models with sensor data, posing a new 
opportunity of sensor data application in building performance simulation field. The new inverse modeling feature 
developed in EnergyPlus can improve the simulation accuracy of existing buildings as they reduce the uncertainty 
in model inputs. Although the inverse models are implemented in EnergyPlus, the algorithms are generic and can 
be adopted by other building performance simulation engines.  

The inverse models should be used with caution in building simulations as they require other building model 
parameters to be reasonable or tuned to avoid overfitting of the calculated zone air infiltration or people count. 
Therefore, it is suggested the inverse models be used in later (when most model parameters are corrected or 
tuned) rather than early stages (when most parameters are of uncertainty) of building energy modeling workflow. 

Future research can extend the inverse models to simultaneously solve the two unknown zone parameters 
(infiltration rate and people count) using two measured zone air parameters (selecting two from air temperature, 
humidity, and CO2 concentration). The three inverse models are publicly available in EnergyPlus version 9.1 in 2019. 
Validation of the inverse models in EnergyPlus using measured data from real buildings is also an important future 
work. 
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