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ABSTRACT 
Heating, Ventilation, and Air Conditioning (HVAC) is a major energy consumer in buildings. The 
predictive control has demonstrated a potential to reduce HVAC energy use. To facilitate 
predictive HVAC control, internal heat gains prediction is required. In this study, we applied Long 
Short-Term Memory Networks, a special form of deep neural network, to predict miscellaneous 
electric loads, lighting loads, occupant counts and internal heat gains in two United States office 
buildings. Compared with the predetermined schedules used in American Society of Heating, 
Refrigerating and Air-Conditioning Engineers (ASHRAE) standard 90.1, the Long Short-Term 
Memory Networks method could reduce the prediction errors of internal heat gains from 12% to 8% 
in Building A, and from 26% to 16% in Building B. It was also found that for internal heat gains 
prediction, miscellaneous electric loads is a more important feature than occupant counts for two 
reasons. First, miscellaneous electric loads is the best proxy variable for internal heat gains, as it 
is the major component of and has the highest correlation coefficient with the internal heat gains. 
Second, miscellaneous electric loads contain valuable information to predict occupant count, 
while occupant count could not help improve miscellaneous electric loads prediction. These 
findings could help researchers and practitioners select the most relevant features to more 
accurately predict internal heat gains for the implementation of predictive HVAC control in 
buildings. 
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Highlights 

• Internal heat gain prediction is important in energy efficient building operation 

• Long Short-Term Memory Networks, was applied to predict building internal load  

• Compared with ASHRAE fixed schedule, LSTMs could reduce prediction error by 40% 

• MELs was found to be the most important feature for internal heat gain prediction 

• The findings facilitate accurate load prediction for building predictive control 
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1. Introduction 

1.1 Importance of internal heat gains prediction 
HVAC systems consume 50% of building energy and 20% of the total energy in the U.S. [1]. This 
proportion would be even higher in regions where the ambient environment is more extreme [2]. 
To operate HVAC systems more efficiently, the predictive control has attracted increasing 
attention [3]. The idea of predictive control is to optimize the HVAC system operation based on the 
prediction of future disturbances and states [4], [5]. A typical example is the operation optimization 
for the ice-storage system [6]. To achieve an energy efficient heat storage and release strategy, it 
is required to predict the building load first. In other words, building load prediction is the input and 
prerequisite of predictive control, and the key to improve the performance of predictive building 
control and to save energy costs [7]. 
 
Because of the importance of load prediction in energy efficient building operation and control 
optimization, load prediction has been extensively studied. Building thermal loads comes from 
external and internal sources. The external loads are majorly influenced by outdoor climate while 
the internal load are more influenced by occupant behaviors [8]. Current building loads prediction 
majorly focus on the external loads, without considering too much about the internal heat gains. In 
Li et al.’s SVM model, internal heat gains variation was not considered, only weather-related 
features (outdoor temperature, humidity and solar radiation) were utilized for building load 
prediction [9]. Similarly, Kusiak’s research team only used weather forecast for building load 
prediction [10]. Another common practice is to use time-related features as proxy variable to 
predict internal heat gains. For example, Cheng (2017) utilized outdoor temperature, humidity, 
and time-related features to develop a ANN model for the building load prediction [11]. Using 
time-related features considers internal heat gain and could improve prediction accuracy, but 
might not be enough. 
 
Because of the overlook of internal heat gains, building load prediction is not accurate. Wilde 
(2014) identified a gap between the predicted and measured energy performance of buildings in 
his research and found inaccurate building load prediction is the major source behind this gap [12]. 
Menezes et al.’s case study in a high-density office building confirmed Wilde’s argument and 
further clarified that the root cause of discrepancies between the predicted actual building loads is 
the inaccurate internal heat gain prediction, which is the result of using unrealistic occupancy 
patterns as the model input [13].  
 
Actually in modern buildings, internal heat gains actually become increasingly important. For the 
external load, building insulation and window regulations are tightened as legislators keep 
passing stricter building energy regulations globally [14]. On the other hand, with diversified and 
increasing office equipment being used in commercial buildings, heat gains from office equipment 



is growing [15], which is expected to double in the next 20 years [16]. The curtailing external load 
and the fast-growing internal load make the internal heat gains account for a higher proportion of 
building thermal loads. Because of this, Goyal et al. found that prediction errors in internal heat 
gains have a stronger effect on the performance of predictive control compared with prediction 
errors in outdoor temperature or solar load [17]. Improving the prediction accuracy of internal heat 
gain patterns thus demonstrate a substantial energy saving potential [18], [19].  
 

1.2 Current state of internal heat gains prediction 
A widely adopted approach to predict the internal heat gains for predictive control is to follow the 
predefined load schedules used in ASHRAE Standard 90.1 [6], [20], [21]. As shown in Table 1 
and Figure 1, ASHRAE 90.1 specified the peak load and daily schedules of weekdays for the 
three major sources of internal heat gains: Miscellaneous Electric Loads (MELs)1, lighting and 
occupants [23].  
 

Table 1: Internal heat gains in ASHRAE Standard 90.1 [23] 

 MELs Lighting Occupants 

Peak load 8.07 W/m2 8.50 W/m2 7.10 W/m2 

Daily integrated load 112 Wh/m2 89 Wh/m2 65 Wh/m2 

 

 
Figure 1: Weekday schedules of internal heat gains in ASHRAE Standard 90.1 [23] 

 
As a simplification of general buildings, the standardized schedules might not be suitable for any 

                                                   

1 MELs are defined as non-main commercial building electric loads, that is, all electric loads except 

those related to main systems for heating, cooling and ventilation [22] 



specific building to be controlled. Additionally, the standardized schedules could not reflect the 
stochastic, diversified and dynamic behavior of occupant patterns, which is often the case in 
reality [24]. Due to the above limitations, methods to predict miscellaneous electric loads (MELs), 
lighting and occupants have been proposed, though no existing literatures discussing the 
prediction of internal heat gains as a whole have been found.  
 
Occupancy prediction 
The heat gain from occupants is linearly related to the number of occupants. Therefore, to predict 
the heat gain from occupants is equivalent to predict occupant counts. As a fundamental problem 
in occupant behavior research, occupant counts prediction is well studied. Multiple methods have 
been proposed so far. Among the various methods, Markov Chain (MC) method is among the 
most popular approach. Two-state (presence or absence) MC [25] and multi-state (different 
occupant counts) MC [26] have been used to simulate the variation of occupant counts. Based on 
MC model, Chen developed an on-line tool for occupancy prediction and simulation for office 
buildings [27]. Vázquez and Kastner utilized clustering methods to identify patterns for occupancy 
prediction in residential buildings, and found Fuzzy C-means and eXclusive Self-Organizing Maps 
obtain the best performance [28]. Other methods, such as multivariate Gaussian distribution [29], 
Agent-based Modelling [30], and queueing theory [31] were also applied to predict occupant 
counts.   
 
MELs prediction 
According to the principle of energy conservation law, the electricity consumed by MELs would 
finally dissipate into the ambient as internal heat gains if the thermal delay was ignored. Because 
of the strong correlation between MELs and occupant counts, one approach to predict MELs is to 
relate MELs with occupant counts. Kim and Srebric applied a linear relation to regress MELs with 
occupant counts and found the correlation coefficient could reach 68%-78% in an office building in 
Philadelphia [32]. Mahdavi et al. proposed a simplified (linear regression) and a stochastic model 
(based on Weibull distribution) to predict MELs based on the installed equipment power and the 
presence probability of occupants [33]. Wang and Ding utilized polynomial regression and Markov 
chain–Monte Carlo method to develop an occupant-based MELs prediction model, which has 
been validated by three office buildings in Tianjin, China [34]. 
 
Lighting prediction 
Similar to MELs, the heat gain from lighting could be approximated by the lighting load. Amasyali 
and El-Gohary applied Support Vector Machine to predict daily lighting energy consumption with 
two features: daily average sky cover and day type [35]. The model proposed by Amasyali and 
El-Gohary could only predict lighting load on a daily basis. However, for predictive control purpose, 
the hourly prediction is always needed. Zhou et al. analyzed the lighting energy consumption data 



on 15 large office buildings and found the lighting energy use is majorly driven by the schedules of 
the building occupants rather than the outdoor illuminance levels [36]. Based on this finding, a 
regression-based stochastic model has been proposed to predict the lighting schedule with the 
occupancy schedule. And then the lighting schedule was used to predict the lighting energy use. 
 

1.3 Objectives 
Literature reviews illustrated that several models had been proposed to predict the heat gains 
from occupants, MELs and lighting in buildings. For predictive control, what we care and need as 
inputs for control optimization is the internal heat gains, combining occupants, MELs and lighting 
as a whole. However, to the best of authors’ knowledge, there is a lack of research on predicting 
internal heat gains. The first objective of this study is to predict internal heat gains for predictive 
control. 
 
To build a prediction model, we need to collect data first. Generally speaking, the more data we 
collect, the better chance we could achieve a more accurate prediction. Data-fusion technique, 
which combines multiple categories of data from different sources to achieve better prediction 
performance, has been applied to predict building cooling load [37]. However, on the other side of 
the coin, extra data collection always means higher cost. There is always a trade-off between 
prediction accuracy and data collection cost. It would have substantial benefits and practical 
implications if we could achieve an adequately high prediction accuracy with as few inputs as 
possible. The next research question we are going to explore in this study is which feature is the 
most useful to predict internal heat gains (a typical data fusion and machine learning research 
question). Thus its data should be collected.  
 
The remaining of this paper is organized as follows. Section 2 introduces two buildings selected 
as the case studies in this paper and then presents the exploratory data analysis on the data we 
collected. The daily trend of MELs load, lighting load and occupant counts are presented in 
Section 2.1, followed by an analysis on how the internal heat gains is composed by and related 
with its three major components, i.e., MELs, lighting and occupants (Section 2.2). Section 3 
applies deep learning technique to predict MELs load, lighting load, occupant counts and the 
overall internal heat gains. Section 3 begins with an introduction about the deep learning method 
we use (Section 3.1), then the prediction result and prediction error are presented in Section 3.2 
and Section 3.3. In Section 4.1, we discuss the importance of MELs load, lighting load and 
occupant counts in internal heat gains prediction. Data collection is always the first step of 
prediction, and the cost associated with data collection is discussed in Section 4.2. Based on the 
benefit and cost analysis, Section 4.3 presents the implication for real practices. Section 4.4 
discusses the limitations of this study. Section 5 concludes this study. 
 



2. Building description and data collection 
Two office buildings are chosen for case studies to answer the research questions we proposed in 
Section 1. Detailed information about these two buildings is presented in Table 2. Because of the 
unavoidable data missing issue and different data collection frequency, all the measurements are 
resampled at an hourly basis for the later analysis. Even though we down-sampled the data, there 
is still a substantial proportion of data missing, majorly for the MELs and lighting data. As for the 
spatial resolution, for Building A, we monitored only half a wing of two floors, equivalent to a 
quarter of the total floor area. For Building B, the load and occupancy data is corresponding to the 
whole building.  
 

Table 2: Two buildings chosen for case studies 

 Building A Building B 

Location Berkeley, CA Philadelphia, PA 

Floor Area 6397 m2 6410 m2 

Year constructed 2015 1911 

Usage The first and second floors serve 
as the supercomputing center, 
the third and fourth floors serve 
as offices  

Office  

Data collected MELs, lighting, occupant counts, 
WiFi connection counts 

MELs, lighting, occupant counts 

Data resolution MELs and lighting load were 
collected at a 15-min interval; 
Occupant count was collected at 
a 1-min interval; 
WiFi connection count was 
collected at a 10-min interval 

MELs and lighting load were 
collected at a 15-min interval; 
Occupant count was collected at 
a 5-min interval 

Data collection year  May to Aug. 2018 Jan. to Dec. 2014 

 

2.1 Daily trend of MELs, lighting and occupancy 
Figure 2 presents the daily trend of MELs load, lighting load, occupant counts, and WiFi 
connection counts. To facilitate predictive control, we care more about the variation of the trend 
rather than the absolute value. For either Building A or Building B, a marked discrepancy could be 
observed between the actual schedules and the schedules used in ASHRAE_90.1. In both 
buildings, the ASHRAE schedules underestimate the lighting load in the early morning (between 
6AM and 9AM) and overestimate the MELs load and occupancy rate in the afternoon (between 
4PM and 6PM).  
 



 
(a1) Building A – MELs                      (b1) Building B - MELs 

 
(a2) Building A – lighting                     (b2) Building B - lighting 

 
(a3) Building A – occupants                  (b3) Building B - occupants 

 

 
(a4) Building A – WiFi connection counts 



Figure 2: Daily trends of the two case study buildings: red for non-working days, and blue for 
working days  

 
Additionally, the actual schedules varied from day to day, which could not be reflected by the 
predetermined ASHRAE schedules. The daily load and occupancy variation could be observed by 
the length of the filled box, the upper and lower edge of which reflect the 75 and 25 percentile 
respectively. Among the four types of data we collected, WiFi connection counts have the largest 
variation, followed by occupant counts and MELs load. The large variation of WiFi connection 
counts is because short-term connected devices such as cellphones would enter the sleep mode 
if they were not used for a while.  
 
Among the three major components of internal heat gains, the occupant count is the most volatile, 
as occupants might temporarily leave their space for meetings or taking a rest without turning 
off/on the appliances nor lighting. The lighting load has the smallest variation especially between 
7AM and 4PM, indicating that the lighting system is more likely to be operated based on a 
predetermined schedule and would not be frequently adjusted during the normal office hours. 
Large variation of lighting loads might only be observed between 6-7AM or 5-9PM. There are two 
reasons behind this: First, the time people arrive at or depart from the office might vary, therefore, 
the time to turn on/off the light changes from day to day. Second, the sunset time in Berkeley vary 
from 5PM in winter to 8PM in summer, which also leads to markedly different lighting behavior in 
the nightfall. The variance of MELs load is just in the middle of occupant counts and lighting load. 
 
During non-office hours, there are a substantial amount of devices connected to the WiFi, running 
and consuming MELs load. The lighting load is not zero at Building B during non-office hours, 
which might be consumed by emergency and exterior lighting. 
 

2.2 Internal heat gains 
For predictive control, what we care is internal heat gains, which is a key input for control 
optimization. The internal heat gains could be approximated by Equation 1. According to the 
energy conservation law, the majority of electricity consumed by MELs and lighting would be 
converted to internal heat gains with some thermal delay. As for the occupant heat gains, a 
moderately active office worker averagely generate sensible heat of 250 Btu/(h·occ) and latent 
heat of 200 Btu/(h·occ) [38], which is equivalent to 131.9 W/occ. 
 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀 + 𝑖𝑖𝑙ℎ𝑖𝑀 + 0.13 ∗ 𝑜𝑜𝑜        Equation 1 
 
Using the approximated function of Eq1, the internal heat gains for Building A and Building B 
could be calculated and presented in Figure 3. Building A and Building B exhibit different daily 



trends. In Building A, the internal heat gains would be higher in the morning than in the afternoon. 
In Building B, the internal heat gains are more stable between 10AM and 3PM. A uniform 
predetermined schedule is unable to reflect this difference in different buildings. Accordingly, a 
more accurate internal heat gain prediction, which is capable of capturing the inter-building 
differences and dynamic daily changes, is needed. 
 

 
              (a1) Building A – daily trend                (b1) Building B – daily trend 

  
                (a2) Building A – load decomposition      (b2) Building B – load 
decomposition       

Figure 3: Internal heat gain 
 
The load decomposition shown in Figure 3 illustrates that MELs load is the major component of 
internal heat gains, accounting for more than 50% of total internal heat gains in either Building A 
and Building B. As more and more office equipment being used in commercial buildings, the 
proportion of MELs is expected to be further increased [15], [16]. Currently, the lighting load 
accounts for 20%-30% of the internal heat gains. With the adoption of energy efficient lighting 
technologies (such as compact fluorescent lighting and LED) that are increasingly economical 
[39], it is reasonable to expect the proportion of lighting load in internal heat gains would decrease 
in the coming years in the US office buildings. 



 
Figure 4 presented the correlation matrix between the internal heat gains and other 
measurements. In either Building A or Building B, the internal heat gains are most highly 
correlated with the MELs. Indicating that MELs might be a good proxy variable of internal heat 
gains. The high correlation between internal heat gains and MELs is due to two reasons. First, the 
MELs is the major component of the internal heat gains, as shown in Figure 3. Second, MELs is 
highly correlated to other components of the internal heat gains, which could be observed in 
Figure 4. The correlation coefficient between MELs with lighting and occupant counts are 0.92 
and 0.81 respectively in Building A, and 0.90 and 0.87 respectively in Building B. Contrarily, the 
correlation coefficient between lighting load and occupant counts in both Building A (0.74) and 
Building B (0.75) are lower than other pairs of components of internal heat gains.   

  
                   (a) Building A                          (b2) Building B       

Figure 4: Correlation Matrix during working hours (between 9AM and 5PM)  
 

3. Predicting internal heat gains 

3.1 Problem statement and methodology 
This section discusses our research to find the most relevant features for internal heat gains 
prediction, rather than the best prediction algorithms. Figure 5 demonstrates a roadmap to answer 
this research question. By applying different combinations of features, i.e., MELs, lighting, 
occupant counts, WiFi connection counts (only in Building A), to the prediction algorithm to 
forecast the MELs, lighting, occupant counts and internal heat gains in the next 24 hours, the 
prediction accuracy would be compared to figure out which combinations of features is capable of 
providing the most accurate prediction.  
 



 
Figure 5: Methodology of prediction  

 
Algorithm 
The algorithm selected to build up the comparison platform is the Long Short-Term Memory 
Networks (LSTMs). As a special form of deep neuron network, LSTMs has the capability of 
leveraging not only the current state but also the information of several previous time steps to 
predict the future states [40]. Meanwhile, the forget gate was introduced to avoid computational 
problems when too many historical data are input [41]. The advantage of capturing the long-term 
dependencies makes LSTMs a suitable machine learning algorithm for internal heat gains 
prediction, since the load pattern in the past 24 hours contains valuable information to predict the 
load in the coming day.  
 
In this paper, we used the tenserflow and keras library with the Python language to construct and 
train the LSTMs. As for the detailed structure of LSTM network, we selected the default settings 
without tuning the hyper-parameters: 50 neurons in the hidden layer, mean squared error (mae) 
as the loss function, and adam as the optimizer. Tuning the hyper-parameters might improve the 
prediction performance, however is beyond the scope of this study. 
 
Evaluation metrics 
We use the relative Root Square Mean Error (RMSE), defined in Equation 2, as the evaluation 
metrics to compare the prediction accuracy of different input features. Through normalizing the 
RMSE by the average of the measured value, the prediction error would not be biased by the 
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scale of the problem. 
 

Relative RSME =  �∑ (𝑦𝑛�−𝑦𝑛)2𝑛
1

𝑛
/ ∑ 𝑦𝑛𝑛

1
𝑛

          Equation 2 

Where, n is the sample size, 𝑦𝑛 is the ground truth value, 𝑦𝑛� is the predicted value. 
 

3.2 Predicting MELs, lighting load and occupant count 
A natural thought to predict the future states of a specific variable is to use this variable’s historical 
data, which serves as the comparison baseline. The research question we are trying to answer is 
whether we could improve the prediction accuracy by adding more features other than its 
historical data. Theoretically, adding more features could improve the prediction accuracy on the 
training dataset, or at least not reduce the prediction accuracy. However, on the test dataset, it 
might not be the case if the added features do not contain valuable information, because adding 
irrelevant features would result in the problem of overfitting and worsen the performance of the 
predictor on the test dataset. Figure 6 compares the prediction errors on the test dataset with 
different combinations of features in Building A and Building B. The x-axis is the prediction time 
step, i.e., how many hours from now we are predicting. The comparison baseline in each case 
was highlighted as a thick red line.  

 
(a1) Building A: MELs load 



 
(b1) Building B: MELs load 

 
(a2) Building A: Lighting load 

 
(b2) Building B: Lighting load 



 
(a3) Building A: Occupant count 

 
(b3) Building B: Occupant count 

Figure 6: Error of predicting MELs load, lighting load and occupant counts on the test dataset 
 
As shown in Figure 6, the errors of MELs and lighting predictions could not be reduced by adding 
other features such as occupant count and WiFi connection count. However, the prediction 
accuracy of occupant count could be improved by 5% - 10% if MELs load is input to the prediction. 
The reason that occupant counts could not provide useful information for MELs and lighting load 
predictions is that office users tend to leave the lighting and office equipment (such as desktop PC, 
printer, etc.) on when they temporarily leave their office. As a result, the variation of occupant 
count is more likely to be noise for MELs and lighting load prediction. Contrarily, the action of 
turning off desktop PC is a strong signal that occupants are leaving their offices. Therefore, the 
information on MELs is a helpful feature to predict occupant count in the coming hours. 
 
Another observation from Figure 6 is the prediction errors of MELs and lighting are less than 15% 
in both buildings. However, the occupant count prediction error is in the range of 10% and 30%, 



almost doubling the MELs and lighting prediction errors. The key reason is occupant count is 
subject to short-term variations since office users might leave their offices for activities such as 
attending meetings or going to the restroom. It is always challenging to capture those short-term 
variations. Contrarily, the MELs and lighting loads are not as variant as occupant count. The 
states of office devices and lighting are not likely to be changed due to a temporary leave of 
occupants and therefore easier to be predicted. This explanation is supported by Figure 2, where 
the variations of occupant count are higher than those of MELs and lighting load. 
 

3.3 Predicting the internal heat gains 
In the building industry, the data missing rate is relatively high. To obtain data on internal heat 
gains, MELs, lighting load and occupant count all need to be measured. The internal heat gains 
data are missing if any of the three measurements are missing. To predict the internal heat gains, 
we selected the longest period free from missing data in our dataset, i.e., 2nd to 29th July for 
Building A, and 7th May to 24th June for Building B. The whole dataset was split into training and 
test set.  
 

 
  (a1) Building A: 1-hour prediction                 (b1) Building B: 1-hour prediction 

 
  (a2) Building A: 8 hours prediction                (b2) Building B: 8 hours prediction 



 
  (a3) Building A: 24 hours prediction                (b3) Building B: 24 hours prediction 

  
(a4) Building A: a specific day in the test dataset  (b4) Building B: a specific day in the test 
dataset 

 
(a5) Building A: Prediction error on the test dataset 



 
(b5) Building B: Prediction error on the test dataset 

Figure 7: Internal heat gain prediction 
 

Table 3: Prediction errors 

  Building A Building B 

LSTM 1 hour prediction 7.3% 12.6% 

8 hours prediction 8.7% 16.7% 

24 hours prediction 8.9% 15.9% 

ASHRAE Schedule 11.9% 25.8% 

 
 
Figure 7 (a1) – Figure 7 (b3) presents the prediction results for the 1 hour, 8 hours, and 24 hours 
from now. The daily trend of internal heat gains could be well predicted for both Building A and 
Building B. Then we randomly selected a working day from the test dataset and compared the 
ground truth with the prediction from LSTMs and from ASHRAE schedule in Figure 7_4. 
Compared with the predetermined ASHRAE schedule, the prediction from LSTMs could better 
track the daily variation of internal heat gains. Figure 7(a5) - (b5) and Table 3 compare the 
prediction error when different combinations of features are input into the algorithm. The 
prediction errors were calculated on the test dataset only, by comparing the predicted value with 
the ground truth data, as shown in Equation 2. The prediction error is a function of k, as illustrated 
in Equation 3, where 𝑦𝑡 is the ground truth value, and 𝑦𝑡(𝑘)�  is the predicted value for timestamp 
t on timestamp (t-k). Contrarily, the prediction error of ASHRAE schedule is irrelevant of the 
prediction step k. Because in this case the predicted value 𝑦𝑡�  is based on a fixed schedule, and 
would be the same no matter the prediction was conducted 1 hour ago or 24 hours ago. 
 
𝑖𝑖𝑖𝑜𝑖 = 𝑅𝑀𝑅𝑀�𝑦𝑡(𝑘)� ,𝑦𝑡� ~ 𝑓(𝑘)          Equation 3 
 
The prediction errors were between 7% and 9% for Building A, and between 12% and 18% for 



Building B. The prediction error for Building B is larger than that for Building A, which is partially 
because the internal heat gains for Building B is more variant from day to day, and accordingly 
more difficult to be predicted. Compared with the ASHRAE schedule, deep learning could reduce 
the prediction errors from 12% to 8% in Building A, and from 26% to 16% in Building B. In the two 
buildings we tested, adding other features could not further improve the prediction accuracy. 
 

4. Discussion 

4.1 Feature importance  
In this study, four features have been collected for internal heat gains prediction. MELs load, 
lighting load, and occupant counts are key components of the internal heat gains. Additionally, the 
WiFi connection count has been collected in Building A since it is a meaningful signal of indoor 
activities. Table 4 compares the benefits and costs of collecting those features for internal heat 
gains prediction.     
 
To predict MELs, the historical data of MELs load is the only valuable information. Similarly, data 
other than the historical lighting load is not necessary for lighting load prediction. However, 
collecting MELs data is valuable for occupant counts prediction and could improve the prediction 
accuracy by 5% - 10%. In either case, WiFi connection counts could not help improve prediction 
accuracy. 
 
As for the internal heat gains prediction, MELs load, lighting load and occupant counts are all 
valuable as internal heat gains are basically a weighted sum of MELs, lighting and occupant 
counts. If for the purpose of reducing data collection costs and simplifying the internal heat gains 
predictor, only one data type is expected to be collected, then it should be MELs for four reasons. 
First, the MELs load is the major component of internal heat gains, accounting for more than 50% 
and is expected to further increase its proportion [15], [16]. Second, the MELs load is found to 
have a higher correlation coefficient with internal heat gains than lighting load and occupant 
counts. Third, as shown in Figure 6, MELs could be used to improve the prediction accuracy of 
occupant counts, but not vice versa. Fourth, as shown in Figure 2, the lighting load is relatively 
stable throughout the whole day while the occupant count is too volatile due to frequent short-term 
leaves. The MELs load is just in the middle in terms of the volatility, and might be the best 
indicator for the internal heat gains. 
 

4.2 Cost of data collection  
In real practice, which feature is recommended to be collected is not only determined by the 
benefits but also by the costs. The cost of data collection could be analyzed from two perspectives, 
whether it requires to install additional devices and whether it triggers privacy concerns.   



 
To measure MELs and lighting load, sub-metering is needed. As a bonus point in many Green 
Building Evaluation system, such as LEED Building Operation and Maintenance [42] and China’s 
Three Star Green Labeling System [43], a substantial proportion of newly constructed buildings 
have installed the sub-metering system. For buildings equipped with the sub-metering system, it 
is very likely that no additional devices are required to measure MELs and lighting at the building 
level. For thermal zone level MELs and lighting load, whether additional devices are required 
depends on the resolution of the sub-metering system. For those buildings without sub-metering 
system, it might be very challenging to measure MELs and lighting load due to the possibly 
complicated circuit reconstruction. As for the privacy concern, there are limited privacy concerns 
of collecting MELs and lighting load once they are collected at the thermal zone level rather than 
at the individual workstation level.  
 
Occupant counts could be detected through multiple ways, such as CO2 concentration based 
method, Radio-Frequency Identification detection (RFID) systems, camera-based sensors, Wi-Fi 
connection data [44] etc. Yang et al. compared the strength and weakness of each method [45]. In 
this study, camera-based sensors are selected to detect the occupant counts due to its relatively 
high measurement accuracy. However, no matter which method is chosen, extra measurement 
devices need to be installed. Additionally, there is a privacy concern when the camera based 
occupancy detector is utilized.  
 
Compared with the other three types of data, WiFi connection counts has the lowest data 
collection cost, since almost every modern building is equipped with WiFi infrastructure. No 
additional devices need to be installed except for some software development to record and 
upload the relevant data. Furthermore, there would be no privacy concerns associated with WiFi 
connection count data since only the number of connection counts is needed rather than the 
individual device MAC address. 
 
Table 4: Summary of the benefits and costs of measuring MELs, lighting power, occupant counts, 

WiFi connection counts to predict internal heat gains  

  MELs Lighting Occ. counts WiFi 
counts 

Benefits To predict MELs  \ Not helpful Not helpful Not 
helpful 

To predict lighting 
load  

Not helpful \ Not helpful Not 
helpful 

To predict occupant 
count 

Helpful Slightly 
helpful 

\ Slightly 
helpful 



To predict internal 
heat gains 

Valuable Valuable Valuable Not 
helpful 

Proportion of internal 
heat gains 

50%~55% 20%~30% 15%~25% \ 

Correlation with 
internal heat gains 

High Medium Medium \ 

Cost Additional devices  Energy 
sub-metering 

Energy 
sub-metering 

Yes Might 
require 

additional 
software 

Privacy concerns Low Low Yes for 
camera-based 

sensors 

Low 

 

4.3 Contribution and implication  

Accurate building load prediction is important and has wide application in energy efficient building 

operation and control optimization, for instance, Model Predictive Control [46]. With the tightening 

regulation on building insulation and increasing usage of appliances, internal heat gains account 

for a higher proportion of building load and should be carefully considered in building load 

prediction. This paper focus on the prediction of internal heat gains for office building, which has 

has been overlooked in existing studies, as existing literatures discuss the prediction of MELs, 

lighting and occupants individually but not the internal heat gains as a whole. The contributions of 

this paper are twofold. First, we discussed which feature is the most important and relevant for 

internal heat gains prediction, which could help building researchers and operators reduce data 

collection cost while achieve an acceptably accurate prediction. Second, we apply LSTMs method, 

improving the prediction accuracy compared with the predetermined schedules used in ASHRAE 

standards.  

 
Theoretically, to develop an internal heat gains predictor, MELs load, lighting load and occupant 



count need to be collected and predicted respectively. However, it is not economical to collect all 
those three types of data. Which data should be collected depends on the current infrastructure of 
the building. For buildings that are already equipped with electricity sub-metering system, 
collecting MELs load is recommended for internal heat gains prediction for three reasons. First, 
MELs is a valuable feature for MELs and occupant count prediction. Second, MELs load is a 
better proxy variable for internal heat gains than lighting load and occupant count, since it is the 
major component of and has the highest correlation coefficient with the internal heat gains. Third, 
for buildings equipped with electricity sub-metering system, collecting MELs load does not 
demand to install additional devices and has no or low privacy concerns. For buildings without 
electricity sub-metering system, it might be expensive and challenging to collect MELs and 
lighting load. In this case, it is recommended to collect WiFi connection counts and occupant 
counts to predict internal heat gains. Though not the best proxy variables for internal heat gains, 
occupant and WiFi connection counts could provide useful information for internal heat gains 
prediction. The WiFi connection count is especially promising for control optimization as it is 
almost a free data source in modern commercial buildings. 
 

4.4 Limitations 
In this study, we utilized a deep learning technique to predict internal heat gains and to select the 
most relevant features. As a black box model, the deep learning technique has a limitation that the 
physical implications behind the model are not as clear as physics-based models. Because of this, 
we need to be careful to generalize our findings. To make our conclusions robust and reliable, the 
authors took two measures. First, we selected two office buildings, located in the West and East 
Coast respectively, as our testbeds. Significantly different locations are expected to be associated 
with different occupant behaviors, climate conditions, etc. Second, we not only presented the 
results but also explained the possible reasons behind what we observed. Despite our above 
efforts, we still highlight a limitation of this study that the actual results might be sensitive to the 
buildings investigated.  
 
The second limitation of this study is we chose LSTMs method to set up the comparison platform 
due to the focus on data fusion (feature selection) rather than testing various machine learning 
algorithms for prediction. Though we explained why we choose LSTMs in this study, we 
acknowledge that there are multiple other machine learning techniques available and applicable 
to the prediction of internal heat gains. Although pioneer research in the field of machine learning 
found that different machine learning algorithms have similar performance given the sample size 
of data is big enough [47], we would like to try other machine learning methods in future work. 
Additionally, due to the high missing rate, the data size for model training is relatively small in this 
study (around 3 weeks for Building A, and 5 weeks for Building B). The insufficient data size might 
limit the application and performance of deep learning methods, since large data size is needed to 



train a complicated neural network, such as LSTMs. Improving the data quality and reducing the 
data missing rate would be critical for applying machine learning techniques to the building 
industry in the future. 
 
Another limitation lies in the fact that only two buildings are tested in this study, which might be 
insufficient to prove the validity of the method and conclusion. Testing on more buildings would 
definitely be helpful to make our arguments more convincing. However, we believe the following 
two reasons could strengthen the credibility of the conclusions. First, as we mentioned, the two 
selected testbeds are located geographically far away from each other, leading to different climate 
conditions and occupant behaviors. Second, we explain our findings and believe the reasons 
behind the findings might also be true for other buildings.    
 

5. Conclusion 
In this study, we applied Long Short-Term Memory Networks (LSTMs), a special form of deep 
neural network, to predict internal heat gains in office buildings. Two U.S. office buildings are 
selected as the testbed for our research. Compared with the predetermined schedules 
recommended by ASHRAE standards, LSTMs reduced the prediction errors from 12% to 8% in 
Building A, and from 26% to 16% in Building B.  
 
Among the three components of internal heat gains, the prediction on occupant count is well 
studied, while very few research has been found on the prediction of Miscellaneous Electric Loads 
(MELs) and lighting load. However, it is found in this paper that: for internal heat gains prediction, 
MELs load is actually a more important feature than occupant count for two reasons. First, MELs 
load is the best proxy variable for internal heat gains, as it is the major component of and has the 
highest correlation coefficient with the internal heat gains. Second, MELs contains valuable 
information to predict occupant count, while occupant count could not help improve MELs 
prediction.  
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