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0. ABSTRACT 
Anomalous patterns in subjective votes can bias thermal comfort models built using data-driven approaches. 

A stochastic-based two-step framework to detect outliers in subjective thermal comfort data is proposed 

to address this problem. The anomaly detection technique involves defining similar conditions using a 

k-Nearest Neighbor (KNN) method and then quantifying the dissimilarity of the occupants’ votes from 

their peers under similar thermal conditions through a Multivariate Gaussian approach. This framework 

is used to detect outliers in the ASHRAE Global Thermal Comfort Database I & II. The resulting anomaly-free 

dataset produced more robust comfort models avoiding dubious predictions. The proposed method has been 

approved to be able to effectively distinguish outliers from inter-individual variabilities in thermal 

demand. The proposed anomaly detection framework could easily be applied to other applications with 

different variables or subjective metrics. Such a tool holds great promise for use in the development 

of occupancy responsive controls for automated building HVAC systems. 
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1. Introduction 
The thermal environment is an important component of the Indoor Environmental Quality (IEQ) of a building. 

It has been shown, along with acoustics, to exert a marked influence on occupants’ overall satisfaction 

[1], [2], [3] in office buildings. Beyond satisfaction, thermal comfort has been linked to self-reported 

productivity measures in office workers [4], [5]. The importance of the thermal environment on 

satisfaction and productivity is often cited as justifying the significant energy use associated with 

the provision of thermal comfort in buildings. Heating, ventilation, and air-conditioning (HVAC) 

equipment used to deliver comfortable indoor environments accounts for 50% of total building energy 

consumption in the US [6], 40% in Europe [7], 33% in Hong Kong [8], and more than 70% in Middle East 

countries [9]. The efficient and effective management of indoor thermal environments is therefore crucial 

for both the well-being of occupants and reducing the energy usage and carbon footprint of buildings. 

 

The oft-cited dictum by the prominent management thinker Peter Drucker - you cannot manage what you cannot 

measure - is particularly relevant to building HVAC operation and occupant satisfaction. Metrics used 

for thermal comfort assessments can be broadly categorized into either physical (or objective) and 



subjective measures. Physical metrics describe the indoor environmental quality as measured by sensors, 

which includes air temperature, relative humidity, radiant temperature, and air speed. It is generally 

acknowledged, however, that physical measurements alone may not reliably determine or predict occupants’ 

thermal comfort due to the significant inter-individual differences in preference [10]. These differences 

have been observed across gender [11], age [12], physical fitness [13], and activity levels [14], and 

are partly influenced by clothing decisions (or corporate dress codes), basal metabolic rates, and a 

person’s unique experience and perception of their thermal environment. These types of effects can result 

in some people feeling comfortable in the same ambient conditions while others expressing dissatisfaction 

with the environment. 

 

Metrics from subjective evaluations of thermal comfort can effectively address the limitations of physical 

measurements by directly asking the occupants about their perception of and satisfaction towards the 

thermal environment. Frequently used psychometrics include Likert-type scales of thermal sensation, 

thermal comfort, thermal acceptability, thermal preference, and thermal satisfaction [15]. Each of these 

rating scales have different items and are therefore selected based on application scenarios [15]. The 

utilization of occupants’ subjective thermal responses in the context of building controls and operation 

is referred to as occupancy responsive control. Comparisons with conventional strategies based solely 

on objective measures has demonstrated the potential of occupancy responsive control to simultaneously 

enhance thermal comfort and reduce energy consumption [16], [17] in buildings. 

 

Empirical evidence supporting the use of subjective measures in building HVAC control systems is 

encouraging. However, there are significant differences in both the structure and reliability of objective 

and subjective data types that require careful consideration before widespread use in automated control 

algorithms. Unlike instrumental measurements of the physical environment, subjective evaluations of 

indoor environments relies on voluntary completion of surveys by occupants. The resulting data is 

intrinsically different from measurements of quantities as it involves evaluations by people that is 

subject to concerns of reliability and precision, perhaps more so than data from modern sensors. For 

example, respondents might misunderstand the question, form a response based on tangential factors, or 

fail to objectively evaluate their thermal environment for a range of reasons. Additional sources of 

error may occur in the coding and input of paper-based survey data. These biases and errors result in 

outliers, defined in statistics as an observation that lies an abnormal distance from other values in 

a random sample from a population. In this study, outliers refer to those thermal comfort votes that 

are substantially and illegitimately different from others that are comparable. Whilst a seemingly 

erroneous vote may in fact be a valid response from an occupant towards the extreme end of a given population, 

such an outlier introduces noise and uncertainty to any type of model being built on subjective data 

and may result in the specification of suboptimal control strategies for the building management system 

(BMS). A method of detecting and handling such outliers is therefore critical to the successful utilization 

of subjective measures of thermal comfort for automated building HVAC controls. 

 

1.1 Anomaly detection in building HVAC systems 
Outlier detection techniques, namely anomaly detection, have played an important role in building and 

HVAC system operations for decades. For example, Fault Diagnosis and Detection (FDD) is a typical 

application of anomaly detection that monitors building HVAC systems to identify faults. There are two 

typical methods to detecting outliers: the model-based approach or the stochastic-based approach. A 

model-based approach aims to build a physical model to predict a reasonable range for a normal observation. 

If the observed value lies far enough outside the predicted reasonable range then it is flagged as an 

outlier. This approach was used by Yu et al. to detect faults in building HVAC systems [18]. Other notable 

examples in the built environment context include FDD for air-handling units [19] or HVAC compressors 



[20]. Whilst the model-based approach can result in an effective anomaly detection tool, it does require 

detailed information and expert knowledge about the particular HVAC system and is therefore suitable 

for clearly defined and well-established technologies. Some of the barriers to widespread uptake of 

model-based anomaly detections in buildings [21] may be removed by recent innovations in Building 

Information Models (BIM). 

 

In contrast to the model-based approach to anomaly detection, a stochastic-based approach assumes and 

fits a statistical distribution of the target variable from either historical data or a group of peers 

with similar attributes and under similar conditions. If a new observation has a low probability density 

given the statistical distribution fitted to earlier data then it is flagged as an anomaly. Examples 

of stochastic anomaly detection techniques in building HVAC systems can be found in other research 

literature [22], [23]. Whether a model-based or stochastic-based approach is appropriate largely depends 

on the availability of input data and the desired application of the model, and is therefore determined 

on a case-by-case basis. The model-based approach requires a white-box physics model with all the requisite 

information, which poses significant challenges particularly for complicated systems. Alternatively, 

the stochastic-based approach is data intensive, requiring a relatively large database with adequate 

data coverage to fit a robust statistical model for the target variables. The large amount of data collected 

by increasingly pervasive Building Automation System (BAS) and the impending Internet of Things (IoT) 

revolution make the stochastic-based anomaly detection methods [24] more attractive for future control 

strategies. 

 

1.2 Research aims 
Although the heat-balance based PMV-PPD model [25] and the adaptive comfort model [26] are available 

and extensively used in thermal comfort studies, they are concerned with the prediction of human perception 

and are therefore less resolved than physical models used for air-handling units or compressors. There 

appear to be few attempts to apply anomaly detection techniques to subjective thermal comfort data within 

the research literature. This is somewhat surprising in light of the increasing attention given to occupant 

responsive controls. As such, this study proposes a stochastic-based two-step anomaly detection framework 

to automatically flag potential outliers in subjective thermal comfort datasets. The proposed method 

is tested using the recently published ASHRAE Thermal Comfort Database II [27]. 

 

2. Methods 
This section summarizes the ASHRAE Global Thermal Comfort Database and visualizes the presence of outliers 

to demonstrate the need for anomaly detection in subjective thermal comfort data. A detailed procedure 

of the anomaly detection method is introduced (section 2.2) with an explanation of how the proposed method 

is able to differentiate individual differences from true outliers (section 2.3). 

 

2.1 ASHRAE Thermal Comfort Database II 
A large dataset is required to build a stochastic model for anomaly detection. The ASHRAE Thermal Comfort 

Database II was a key deliverable of an international effort to collate both physical measurements and 

contemporaneous subjective evaluations from 52 field studies conducted in 160 buildings around the world 

[27]. Combining the original RP-884 Database (now referred to as Thermal Comfort Database I) [28] with 

the new ASHRAE Database II resulted in 107,583 records. This combined database is collectively referred 

to here as the comfort database. A resource of this size and detail is unprecedented in thermal comfort 

research, and affords an ideal opportunity to develop and test a stochastic-based model for anomaly 

detection.  

 



The comfort database contains four subjective thermal metrics: thermal sensation (7-point), thermal 

comfort (6-point), thermal preference (3-point) and thermal acceptability (2-point). Subsetting the 

database with records containing all four subjective measures resulted in approximately 11,000 rows that 

were used in this analysis. Figure 1 plots the distribution of thermal preference and thermal acceptability 

on thermal sensation (Figure 1a) and thermal comfort scales (Figure 1b). These simple visualizations 

offer some evidence for strange or irrational voting behaviors. For example, the blue dots in the lower 

right segment of Figure 1(a) illustrate occupants who reported feeling unacceptably cold but still 

preferred cooler; the blue dots in the upper left segment of Figure 1(b) show occupants who reported 

feeling very comfortable but still deemed their thermal environment to be unacceptable and wanted warmer. 

 

 
(a) Thermal Sensation  

 
(b) Thermal Comfort 

Figure 1. Jitter plots of thermal preference and thermal acceptability votes on (a) thermal sensation 

scale and (b) thermal comfort scale. Each dot marks an individual vote and the colors indicate the thermal 

acceptability as described in the legend. Most studies in the ASHRAE Database used thermal comfort scale 

allowing integer votes only. 

 

There could be many reasons why such counter-intuitive or irrational votes exist, but it is more likely 

that these outliers are the result of dubious responses or incorrect data coding and input. If all records 

in the dataset were assumed to be true and subsequently used to develop and train an occupant responsive 

HVAC control model, the resulting predictions might be suboptimal by encouraging antagonistic operation 

or oscillations in equipment activity. This is especially true if the model is built using algorithms 

sensitive to outliers. It is therefore important to employ a method of flagging potential outliers before 

they are used to train building HVAC control models. 

 



2.2 Anomaly detection method 
The fundamental logic underpinning the development of a stochastic-based model for anomaly detection, 

as illustrated in Figure 2, is that an outlier is determined when an occupant’s vote is significantly 

different from his/her peers under similar conditions. After rescaling the inputs (step 1), there are 

two key steps: defining similar conditions (step 2) and quantifying the difference between a vote and 

its peers (step 3). The proposed anomaly detection technique uses the k-nearest neighbor algorithm (KNN) 

to define similar conditions (step 2) based on thermal sensation and thermal comfort votes and then uses 

Multivariate Gaussian methods to quantify the difference in thermal preference or thermal acceptability 

(step 3) between records with similar thermal sensation and thermal comfort votes. The key assumption 

behind this logic is that occupants with similar thermal sensation and comfort votes would have similar 

thermal preference and acceptability.  

 

 

 

Figure 2. Pseudocode for the proposed anomaly detection algorithm 

 

The first step of the anomaly detection method is rescaling the input data to harmonize the dimensions 

of different scales to the same range, which is 0 to 1 in this case. Data rescaling guarantees different 

dimensions have the same weight in the Euclidean Distance calculation used by the algorithm in subsequent 

steps. For example, the 7-point thermal sensation scale (from -3 to 3) is different from the binary option 

of thermal acceptability (from 0 to 1). Without rescaling, the difference in the Euclidean distance between 

unacceptable (0) and acceptable (1) is equivalent to the difference between neutral (0) to slightly warm 

(1). The process of rescaling removes this discrepancy and allows for equal comparison between parameters. 

 

After data rescaling, the second step in the process is to determine similar thermal conditions for each 

record in the database based on the Euclidean Distance. The k-nearest neighbors algorithm (KNN) is used 

as a pattern recognition method to identify samples that are similar. Other distance measures such as 

Manhattan Distance or Chebyshev Distance would also be suitable. The key parameter for KNN is the k value, 

which was set as one tenth of the total sample size for the present analysis. Considerations for the 

selection of hyperparameters such as k is discussed in more detail in Section 4. 

 

The third and final step is to quantify the difference in voting between each individual case (i.e. an 

occupant) and its peers (or neighbors) in a similar condition. This step requires the assumption that 

Step1: rescaling

Step2: defining similar conditions

Step3: quantifying dissimilarities

Step4: making decisions



subjective thermal votes follow a Multivariate Gaussian distribution in order to fit the model and derive 

the mean and variance. From this, the probability of a new observation (p-value) being within the expected 

range of values is determined based on the fitted Gaussian distribution. If the probability is below 

a predefined threshold value then the observation is classified as an outlier. The choice of the threshold 

value is another important hyperparameter that significantly influences the performance of anomaly 

detection method.  

 

2.3 Distinguish individual differences from outliers 
Although the method of anomaly detection described here is capable of efficiently identifying erroneous 

votes, the nature of subjective data means that an occupant, in some cases, will vote differently than 

their peers under similar thermal comfort conditions due to individual differences and preferences. A 

robust and reliable anomaly detection method should therefore be able to distinguish individual 

differences from actual outliers.  

 

The proposed algorithm has two mechanisms to avoid incorrectly flagging real differences as outliers. 

First, similar thermal conditions are defined using votes of thermal sensation and thermal comfort rather 

than instrumental measurements of thermal parameters such as air temperature. If an occupants’ thermal 

sensation or comfort vote is markedly different from their peers under similar thermal conditions as 

defined by air temperature and humidity, it may be due to individual difference and should not be flagged 

as an outlier. Second, the calculated p-value from the fitted Gaussian distribution quantifies and 

considers the dissimilarity between an occupant and their peers. If their neighbors in a similar thermal 

environment have markedly different thermal preference votes, for example, then the fitted variance of 

the Gaussian distribution would be high. The resulting p-value would be high, as shown by the red line 

compared with the blue line in Figure 3b, and therefore less likely to result in an incorrect outlier 

classification irrespective of how an occupant perceives their immediate thermal environment.  

 

 

(a) thermal acceptability votes                (b) thermal preference votes 

Figure 3. The calculated probability (p-value) of occupants voting unacceptable (left) or for prefer 

warmer (right) in different hypothetical scenarios (assuming a sample size of 100). The calculated 

probability increases as the total number of occupants (or neighbors) vote in a similar fashion. 

 

Figure 3 illustrates how the p-value is used to determine a true outlier in a hypothetical scenario for 



a group of 100 occupants in a similar thermal environment. If 99 of the 100 occupants voted acceptable, 

and only one occupant voted unacceptable, then that occupant voting unacceptable would likely be flagged 

as an outlier due to the close to zero calculated probability as shown in Figure 3(a). But if 90 occupants 

voted acceptable and 10 voted unacceptable, the p-value of this case is approximately 2% which may be 

deemed likely depending on the choice of threshold value. Thermal preference is more complicated than 

acceptability as there are three possible choices. If the majority of occupants in a similar thermal 

environment voted prefer cooler, then the probability of someone voting prefer warmer is lower, as shown 

by the blue line in Figure 3(a). An occupant voting prefer warmer would likely be flagged as an outlier 

in this case, since the Euclidean distance of his/her vote is far from the popular vote. However, if  

clear consensus is not reached, with half of the occupants voting prefer cooler and the other half voting 

prefer no change, the fitted variance would be high and the probability of someone voting prefer warmer 

would be higher as shown by the red line in Figure 3(b). In this scenario, the occupant voting prefer 

warmer is less likely to be detected as an outlier because of the difference in the evaluation by their 

peers. Individual difference in this specific application inflate the variance of the Gaussian 

distribution providing a robust and reliable method to differentiate between an inter-individual 

variability and a true outlier. 

 

3. Results 
The anomaly detection method discussed in the previous section is applied to ASHRAE Database I & II to 

detect outliers in Section 3.1, before discussing how a dataset free of outliers is able to provide more 

robust thermal comfort models compared with the original database (Section 3.2). 

 

3.1 Anomaly detection 
The results of the anomaly detection method applied to subjective votes of thermal comfort in ASHRAE 

Database I & II are shown in Figure 4. Those votes flagged as outliers are shown on the right plots distinct 

from the normal or reasonable votes shown on the left plots. Examples of unusual thermal preference voting 

patterns include occupants reporting feeling hot but still prefer warmer (blue dots on the right), 

occupants reporting feeling cold but still prefer cooler (red dots on the left), and some occupants voting 

comfortable or very comfortable but indicating they would prefer warmer or cooler (red or blue dots on 

the top). The majority of the flagged outliers for thermal acceptability are occupants who deem the thermal 

environment as comfortable but unacceptable (red dots on the top), which is considered unusual since 

acceptability is often considered to be more easily achieved than comfort.  

 

Some of the anomalous votes shown in Figure 4 are likely to be incorrectly classified and instead may 

represent unusual but not erroneous voting. For example, occupants who vote prefer warmer when they feel 

cold (blue dots on the left of Figure 4a), or those who feel the thermal environment is unacceptable 

but comfortable (red dots on the bottom of Figure 4b). These false positives occur because outliers are 

determined by both the thermal preference and thermal acceptability votes. If either thermal preference 

or thermal acceptability vote is markedly different from others, then that occupant is more likely to 

be flagged as an outlier even though their other vote is reasonable. 



 

(a) Thermal preference 

 

(b) Thermal acceptability 

Figure 4. The results of the outlier detection method when used on thermal preference (top) and thermal 

acceptability (bottom) votes in the ASHRAE Database I & II. The right plots show the observations flagged 

as anomalous, and the left plots show the dataset with those anomalies removed. 

 

3.2 Influence of outliers on thermal comfort models 
A common motivation for collecting subjective thermal comfort data is the development of a model capable 

of predicting thermal comfort in different contexts. For instance, the PMV-PPD model is a popular tool 

used to predict the percentage of dissatisfied occupants based on environmental (e.g. air temperature) 

and personal parameters (e.g. clothing) [25], and the adaptive comfort model is used to derive an 

acceptable temperature range for buildings in different climates using outdoor temperature [26]. Both 

of these are data-driven models, where the accuracy and predictive power is largely dependent upon the 

data used to develop the model. If the training data is noisy or unreliable, the performance of the 

resulting model will be compromised regardless of which sophisticated statistical tools are used to 

develop it. This idea is encapsulated in the popular ‘garbage in, garbage out’ modeling rule that is 

widely known in the field of data science. 

 

To demonstrate the effect that outliers or anomalies have on the performance of a predictive thermal 

comfort tool, two models for thermal preference and thermal acceptability were developed using a Support 

Vector Machine (SVM) algorithm based on thermal sensation and thermal comfort votes. These models are 



not meaningful beyond this analysis, but rather serve as a useful demonstration of the negative influence 

of outliers on model development. 

  

(a) Thermal preference model with outliers        (b) Thermal preference model without outliers 

  

(c) Thermal acceptability model with outliers      (d) Thermal acceptability model without outliers 

Figure 5. Models of thermal preference (top) and thermal acceptability based on thermal comfort and thermal 

sensation votes. An SVM algorithm was used to develop the models based on a dataset with outliers (left) 

and without outliers (right). The colored shading shows the classification boundaries of the predicted 

votes. The purple dotted circle marks an example individual difference where occupants feel slightly 

comfortable and slightly cool, with some prefer no change and others prefer warmer or prefer cooler. 

In contrast, the orange dotted oval indicates a likely outlier as the majority of occupants voted prefer 

cooler in similar conditions. 

 

Figure 5(a) offers a visual representation of how the proposed anomaly detection method is able to discern 

the outliers from individual differences or preferences. Figure 5(a) and 5(c) show the prediction models 

built using the full dataset with any outliers still present; figure 5(b) and 5(d) show the models built 

using the dataset with outliers removed. The presence of outliers in the thermal preference model led 

to some strange outputs indicated in the blue region on the right of Figure 5(a).There it predicts that 

occupants will prefer warmer when they are slightly comfortably warm or slightly uncomfortably warm. 

However, after flagging and excluding the potential outliers, the predictive performance of the thermal 

preference model (Figure 5b) appears to improve. The thermal acceptability model is less affected by 

the outliers than the thermal preference model. The model trained by the dataset without outliers predicts 

a higher acceptability rate (Figure 5d)) when thermal comfort votes are high than the model trained with 

the entire dataset (Figure 5c)). 

 



4. Discussion 
This section discusses the impact of hyperparameter tuning on model performance and the trade-off between 

model robustness and representation of occupants’ thermal perception. 

 

4.1 Hyperparameter settings 
Developing an anomaly detection algorithm using the proposed method requires the definition of three 

important hyper-parameters: the choice of distribution family (simple multivariate or covariate Gaussian 

distribution), the value of k (the number of neighbors required for a condition to be considered similar), 

and the threshold of the p-value set to detect outliers. These hyperparameters are important as they 

have a significant influence on the overall performance of the anomaly detection method. 

 

Before evaluating the effect of tuning the hyperparameters, it is necessary to define a numerical indicator 

to determine the performance of the anomaly detection. The accuracy rate, True Positive Rate (TPR), True 

Negative Rate (TNR), and F1-score are widely used numerical evaluators for classification problems. 

However, these metrics are not suitable in this particular application because the true outliers need 

to be known to calculate the accuracy rate. Unfortunately there is no way to determine which observation 

is true outlier in the ASHRAE Thermal Comfort Database I & II. Instead, the prediction accuracy of the 

thermal preference/acceptability classifier (section 3.2) was used as an indirect performance indicator. 

Figure 5 indicated two causes of incorrect predictions in thermal preference or acceptability: individual 

difference and the existence of outliers. If those outliers are detected and removed then the SVM 

classifier should in theory be more accurate. Accordingly, the prediction accuracy of the SVM classifier 

was chosen as an indirect performance metric to evaluate the anomaly detection and test the hyperparameter 

settings. 

 

Variable Dependence 
The density function for a 2-dimensional vector is calculated in two ways. If the two attributes are 

independent, the probability density is the product of the probability densities of each attribute, as 

shown in Equation 1. The probability density of each attribute is a Univariate Gaussian Distribution 

and could be calculated from Equation 2, where µ and σ denotes the mean and standard deviation of thermal 

preference and thermal acceptability respectively. If the two attributes are correlated, then the 

Multivariate Gaussian Distribution should be used to calculate the probability density, as shown in 

Equation 3, where µ and Σ denotes the mean vector and the covariance matrix respectively. The first 

approach to calculate the probability density is a simplified version of the second approach, which ignores 

the covariant terms in the covariance matrix, assuming the covariance matrix in the form of �𝜎𝑇𝑇
2 0
0 𝜎𝑇𝑇2

�. 

 

p(𝑇𝑇,𝑇𝑇|µ,Σ) = p(𝑇𝑇|µ,Σ) ∗ p(𝑇𝑇|µ, Σ)                         Equation (1) 

p(𝑥|µ,Σ) = 1
√2𝜋σ2

exp (− (𝑥−µ)2

2σ2
)                                Equation (2) 

p(𝑇𝑇,𝑇𝑇|µ,Σ) = 1
2𝜋�det (Σ)

exp (−1
2

(�𝑇𝑇𝑇𝑇� − µ)𝑇Σ−1(�𝑇𝑇𝑇𝑇� − µ))     Equation (3) 

 

Both approaches were tested for the anomaly detection method, and Figure 6(a) and Figure 6(b) shows an 

insignificant difference between the results. The slight discrepancy may be explained by the very low 

correlation (Pearson coefficient) between thermal preference and thermal acceptability shown in Figure 

6(c). The close-to-zero covariant terms are therefore unsurprising, and explain why including covariant 

terms did not make any significant difference. Whether the covariance should be considered or not does 

not make significant difference if the parameters are independent. 



 

 

(a) Prediction accuracy 

 Thermal Sensation Thermal Comfort Thermal Preference Thermal 

Acceptability 

Thermal Sensation  -0.15 -0.12 -0.24 

Thermal Comfort -0.15  0.04 0.40 

Thermal Preference -0.12 0.04  0.00 

Thermal 

Acceptability 

-0.24 0.40 0.00  

(b) Pearson coefficient  

Figure 6. A comparison between the performance of anomaly detector of thermal preference and thermal 

acceptability both with (blue) and without (green) a covariant term. A correlation matrix (bottom) shows 

a very low (0.001) correlation coefficient between thermal preference and thermal acceptability. 

 

Number of neighbors (k) 
The second important hyper-parameter for tuning the anomaly detection algorithm is the value of k, which 

sets the number of neighbors required to classify given thermal conditions as similar. If k is set too 

low it could lead to overfitting and reduce model reliability, and if it is set too high it might underfit. 

Figure 7(a) show the effect of the k value on the prediction accuracy for the thermal preference and 

thermal acceptability models. Increasing the value of k slightly improves the prediction accuracy for 

thermal acceptability but has marginal influence on the performance of the thermal preference model. 

This is because the subset of the ASHRAE Thermal Comfort Database I & II used for this analysis is large, 

so using only 2% of the data is sufficient in detecting outliers. The model presented in Section 3 used 

10% of the total sample size as the number of neighbors to define similar thermal conditions. A higher 

k value might be suitable in applications where the sample size is smaller.  

 

P-value Threshold 
The influence of the p-value threshold on the model prediction accuracy is shown in Figure 7(b). A higher 

threshold value means more observations are likely to be detected as outliers and removed from the training 

dataset used to build a thermal comfort model. Since more points with unusual voting patterns are removed 

by a higher p-value, there is likely to be more unanimity in the remaining data that varies in a more 

predictable way. Therefore, the prediction accuracy will increase with a higher p-value threshold, as 



shown in Figure 7(b). However, raising p-value threshold would also increase the risk of detecting normal 

or true observations as outliers (false negative). Setting the value of k depends on the application 

and the quality of the available training data. If the desire is to use as many observations as possible 

in the interest of developing a robust model, then a low threshold may be set to limit the number of 

observations flagged as outliers. On the other hand, if the training data is known to be noisy, which 

is often the case for subjective thermal comfort data from surveys, then a less strict threshold might 

be preferred. The model used in Section 3 had a p-value threshold of 0.15. Determining an appropriate 

p-value therefore requires a balance of prediction accuracy, and representation of the available data 

and future prediction performance.  

 

  

         (a) Value of k                                     (b) Threshold of p 
Figure 7. The effect of the k value (left) and the p value (right) hyperparameters on the model prediction 

accuracy for thermal preference (blue) and thermal acceptability (green). A k-value of 0 indicates that 

no outliers were removed from the training dataset. 

 

4.2 Limitations of current study and proposed future work 
The proposed method to detect outliers, whilst delivering promising results, should not be taken as a 

suggestion for a wholesale reliance on mathematical or statistical procedures designed to remove different 

voting behaviors and flatten individual differences in order to develop reliable models for building 

HVAC control. Indeed, the question on what is the best approach to provide comfort for occupants with 

unusual or difficult thermal preferences remains an open question, and one that is likely to be addressed 

on a case-by-case basis. Instead, it is the hope of the authors that the procedures introduced in the 

present work to automate anomaly detection will draw attention to the importance of considering the effect 

of outliers on thermal comfort model development and performance. By highlighting spurious voting patterns, 

those tasked with implementing occupancy responsive control solutions can adjust the models to ensure 

appropriate and efficient system response to a range of different comfort demands.  

 

The anomaly detection algorithm proposed is only capable of detecting erroneous voting pattern among 

the four common subjective thermal metrics, and does not consider any environmental measures such as 

temperature or relative humidity. However, the logic behind this approach could be applied to other 

applications with different types of input variables. For example, using indoor air temperature and 

relative humidity to define similar conditions and comparing thermal sensation and comfort votes to 

determine outliers. Furthermore, other algorithms could be used for determining similar conditions (e.g. 

density based clustering) or quantifying dissimilarities (e.g. distance based dissimilarity).  

 

5. Conclusions 
Outliers from strange voting behaviors have been found in databases of subjective thermal comfort votes 



that could bias subsequent models or lead to suboptimal operation of building automation systems. An 

efficient method of identifying and handling outliers is needed to facilitate the utilization of 

subjective thermal metrics in automated building HVAC operation. A stochastic-based two-step framework 

has been proposed to detect outliers in subjective thermal comfort data. The first step is to define 

similar conditions using a k-Nearest Neighbor (KNN) algorithm and then apply the Multivariate Gaussian 

method to compare an occupant vote to their peers under similar thermal conditions to detect possible 

outliers. This method was shown to be capable of distinguishing outliers from real but unusual voting 

patterns arising from personal preferences. The anomaly detection algorithm was used to successfully 

determine anomalies in the ASHRAE Global Thermal Comfort Database. Using the anomaly-free dataset led 

to the development and training of more robust thermal comfort models that were less likely to make strange 

predictions. It would be possible to improve the performance of the anomaly detection process by tuning 

the hyperparameters further depending on the dataset used. This framework could easily be applied in 

other applications or settings with different variables or metrics of comfort. We believe the proposed 

method could help researchers efficiently detect potential outliers in large datasets, and also be a 

powerful data processing tool for practitioners developing occupant responsive building controls. 
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