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Abstract 

Predicting multi-building energy use at campus or city district scale has recently gained 

more attention; and more researchers have started to define reference buildings and study 

inter-impact between building groups.  However, how to integrate the relationship to 

define reference buildings and predict multi-building energy use, using significantly less 

amount of building data and reducing complexity of prediction models, remains an open 

research question. To resolve this, this study proposed a novel method to predict multi-

building energy use by integrating a social network  analysis (SNA) with an Artificial 

Neural Network (ANN) technique. The SNA method was used to establish a building 

network (BN) by identifying reference buildings and determine correlations between 

reference buildings and non-reference buildings. The ANN technique was applied to 

learn correlations and historical building energy use, and then used to predict multi-

building energy use. To validate the SNA-ANN method, 17 buildings in the Southeast 

University campus, located in Nanjing, China, were studied. These buildings have three 

years of actual monthly electricity use data and were grouped into four types: office, 

educational, laboratory, and residential. The results showed the integrated SNA-ANN 

method achieved average prediction accuracies of 90.67% for the office group, 90.79% 

for the educational group, 92.34% for the laboratory group, and 83.32% for the 
                                                           
∗ Corresponding author. tel.: +86 (25) 8379-5689; xxdseu@126.com (Xiaodong Xu) 

∗ Corresponding author. tel.: +1 (510) 486-7082; thong@lbl.gov (Tianzhen Hong) 



residential group. The results demonstrated the proposed SNA-ANN method achieved an 

accuracy of 90.28% for the predicted energy use for all building groups. Finally, this 

study provides insights into advancing the interdisciplinary research on multi-building 

energy use prediction.   
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Nomenclature 

BN Building network CT Construction type vector 

ANN Artificial neural network 𝑐𝑐𝑖 Construction type value of building i 

X Input layer vector C Correlation vector 

𝑥𝑖 Value of input neuron i V Weight vector between the input layer and 

hidden layer 

H Hidden layer vector 𝑣𝑗 Weight value of hidden neuron j 

ℎ𝑗 Value of hidden neuron j W Weight vector between the hidden layer 

and output layer 

Y Output layer vector 𝑤𝑘 Weight value of output neuron k 

𝑦𝑘  Value of output neuron k 𝑓(𝑥) Activation function of ANN algorithm 

𝑐_𝑖_𝑗 Correlation index of energy use between 

building i, j 

𝑑 Ground truth vector 

EU Energy use vector 𝑑𝑘 Ground truth value of output neuron k 

𝑒𝑖 Energy use of building i 𝐸 Error function 

∆𝐸𝐸 Change of energy use vector ∆𝑣𝑗𝑗 Deviation of weight from the input layer 

to hidden layer 

∆𝑒𝑖 Change of energy use of building i ∆𝑤𝑖𝑖  Deviation of weight from the hidden layer 

to the output layer 

NS Number of story vector 𝜂 Learning rate of algorithm 

𝑛𝑛𝑖 Number of story value of building i 𝑀𝑀𝑀𝑀 Mean Absolute Percentage Error 

YB Year-built vector RMSE Root Mean Squared Error 

𝑦𝑦𝑖  Year-built value of building i   

 

  



1. Introduction 

Buildings are the main energy consumer, demanding more than 40% of primary 

energy usage [1]; while in cities, buildings can consume up to 75% of total primary 

energy usage [2]. In particular, electricity use is a main driver. The latest Electric Power 

Monthly data reported in January 2018 by United States Department of Energy (DOE) 

indicated that electricity consumption from both commercial and residential buildings 

represented 77.5% of all the electricity produced in the U.S. [3].  The International 

Energy Agency (IEA)’s Energy in Buildings and Communities (EBC) Programme 

annexes discussed methods to analyze total energy use in buildings to reduce energy use 

and associated emissions [4,5]. The use of building energy modeling has significantly 

improved building energy efficiency and reduced environmental impact [6,7]. A 

considerable number of studies have been conducted to develop efficient energy models 

for single buildings [6,8,9]. In recent years, some researchers have recognized the 

importance of energy use studies in large-scale areas with distributed building groups to 

analyze distributed building energy use patterns and optimize net-zero building or 

distribution energy systems [10,11], also, for city-scale buildings through benchmarking 

building energy use and reducing city building emissions [12,13]. Focus on analyzing and 

modeling urban building energy use at the large scale can potentially provide insights into 

large-scale building energy use patterns and opportunities to save energy [14,15]. Also, in 

modeling large-scale building energy use, more researchers have started to study the 

impact and interrelationship between building groups. The concept of the Inter-Building 

Effect (IBE) was introduced to understand the complex mutual impacts within spatially 

proximal buildings [16–18]. Han et al. explored mutual shading and reflection for IBE on 

building energy performance with two realistic urban contexts in Perugia, Italy [19]. Han 

and Taylor further simulated the IBE on energy consumption by embedding phase change 

materials into the building envelope [20].  

Li et al. analyzed 51 high-performance office buildings in the U.S., Europe, and Asia 

using portfolio analysis and individual detailed case studies based on actual energy use 

data of buildings [21]. Pang et al. brought together real-time data sharing, a database for 

assessing past and present weather data, a network for communicating energy-saving 

strategies between building owners, and a set of modeling tools for real-time building 



energy simulation, all in an effort to promote large-scale energy efficiency in neighboring 

buildings [22]. Fonseca and Schlueter proposed one integrated model for the 

characterization of spatiotemporal building energy consumption patterns in 

neighborhoods and city districts. The model calculated the power and temperature 

requirements for residential, commercial, and industrial sectors using spatial (building 

location using geographic information system, GIS) and temporal (hourly) dimensions of 

analysis [23]. To predict energy use of a large group of buildings, Panao and Brito 

presented a bottom-up building stock energy model [20]. They predicted hourly 

electricity consumption of residential buildings and validated the model by using smart 

meter data of roughly 250 dwellings [24]. Kalogirou et al. utilized the electricity data of 

225 buildings and applied back propagation of neural networks to predict the required 

heating load of buildings [25]. Constantine used data-driven prediction models, including 

linear regression, random forest, and support vector regression, to predict city-scale 

electricity and natural gas usage in New York City buildings [22]. The project 

encompassed 23,000 buildings, with model validation at the building and ZIP code levels 

[12]. 

Similarly, Hsu studied multi-family buildings in New York City and used 

clusterwise regression and cluster validation methods to determine building energy use 

[13]. Jain et al. applied a sensor-based forecasting approach coupled with support vector 

regression modeling and examined the impact of temporal and spatial granularity on to 

energy consumption of multi-family buildings [26]. Hawkins et al. applied statistical and  

artificial neural network (ANN) method to predict energy use determinants in UK higher 

education buildings [27], resulting in 34% of mean absolute percentage error for 

electricity use prediction and 25% for heating fuel use prediction. Kavgic applied Monte 

Carlo method to predict space heating energy use of Belgrade’s housing stock [28] and 

further analyzed uncertainty for a city-scale domestic energy model to address the impact 

of sensitivity on the modeled energy use [29]. 

Those machine-learning based models, usually called “black box”, provide users 

high accuracy by measuring the data of the building systems input and output and fitting 

a mathematical function to the data, even although such models ignore the understanding 

of the system physics with poor generalization capabilities. On the other hand, “white 



box” models implementing the system physics can use the building parameters for 

modeling the system dynamics [30]. For example, innovative software or web-based 

applications have been developed to analyze and predict the energy use of multiple 

buildings in distributed or urban areas. The City Building Energy Saver (CityBES), an 

Energyplus-based web application, provides a visualization platform, focusing on energy 

modeling and analysis of a city's building stock to support district or city-scale building 

energy efficiency programs [31–33], as well as to predict energy use for informing 

building retrofits. Based on CityBES, Chen et al. analyzed the impacts of building 

geometry modeling on urban building energy models to understand how a group of 

buildings perform together [33]. City Energy Analyst (CEA) provides a computational 

framework for the analysis and optimization of energy systems in neighborhoods and city 

districts. CEA has a unique interface to facilitate the spatiotemporal analysis of energy 

patterns for energy savings [34]. Usually, with these software or web-based applications, 

every building is explicitly and detailed modeled in EnergyPlus. While it can be accurate, 

it is time consuming and requires absorbent amounts of data.  

To reduce the complexity of urban building energy models, some studies advocate 

reduce-order building models or building prototype models. Felsmann used reduced order 

building energy system modeling, e.g., district heating or cooling systems, to create large-

scale urban energy simulations [35]. Heidarinejad et al. developed a framework to rapidly 

create urban scale reduced-order building energy models relying on the contributions of 

different influential variables to the internal, external, and system thermal loads [36]. 

Then the framework was validated by applying typical building geometries for 

simulations [36]. Zhao et al. developed a reduced order building energy model to estimate 

single building energy performance; then applied regression and Markov chain Monte 

Carlo techniques to integrate physics-based energy modeling to replicate the single 

building model [37]. The resulting model was an efficient energy model development at 

the city scale [37].  

One method to reduce data demands includes the development and replication of 

prototype building models. The U.S. DOE has developed a suite of prototype building 

models covering 80% of the commercial building stock in the U.S. to support the analysis 

of urban energy use. This database includes 16 commercial reference building types 



across different climate zones [38,39]. Similarly, Mastrucci et al. analyzed six types of 

dwellings by using a GIS-based statistical downscaling approach and adopted a multiple 

linear regression model for estimating energy savings at the city scale [40]. Caputo et al. 

used four archetypes to characterize the energy performance of the built environment in a 

city or neighborhood, and to evaluate the effects of different energy strategies [41]. Such 

prototype buildings or archetypes extend the knowledge beyond individual buildings for 

efficient energy models of neighborhoods or cities. Furthermore, city-scale building 

energy benchmarking policy provides a holistic dataset foundation and enables 

comparison of energy performance between similar buildings [13,42,43]. Holistic 

building energy consumption data can be used for defining reference buildings by 

investigating the closeness of building groups, for which, cluster analysis is one of the 

most efficient methods. Deb and Lee [44] studied the determining key variables 

influencing energy consumption in 56 office buildings through cluster analysis. The 

clustering approach focused on a small number of representative, reference buildings 

from a large building dataset [45,46]. Gaitani et al. [47] applied several variables, 

including the heated floor area, building age, insulation of the building envelope, number 

of classrooms and students, operation hours, and age of heating system, using principal 

component and cluster analysis methods to establish the reference buildings. Tardioli et 

al. developed a novel framework utilizing a combination of building classification, 

clustering, and predictive modeling to identify a total of 67 representative buildings out 

of a dataset of 13,614 mixed-use buildings in the city of Geneva [48].  

However, two challenges arise: (1) how to capture the impact and interrelationship 

between multi-buildings to define reference buildings from an existing building stock, 

and (2) how to use reference building energy datasets with machine learning techniques 

to learn and predict multi-building energy use. To address these prediction gaps, this 

study presents a novel data-driven method, integrating social network analysis based 

building network and artificial neural network (SNA-ANN) techniques, to predict multi-

building energy use. Energy use patterns between buildings are leveraged to identify 

reference buildings and create building networks with the theory of social network 

analysis. The building networks are created based on the correlation coefficients of 

energy use between any two buildings, which consist of correlation coefficients between 



the energy use of the reference buildings and the total energy use of all buildings, and 

correlation coefficients between the energy use of the reference buildings and that of the 

non-reference buildings. Built on the network, the SNA-ANN model aims to apply 

energy use and building features from a small reference group (e.g., n buildings) to 

accurately and efficiently predict energy use of a larger group (e.g., n + m buildings). To 

validate the technique, the proposed approach was evaluated using campus buildings at 

Southeast University, China. Three-years of monthly energy use data from 2015 to 2017, 

was used. Seventeen buildings were selected, covering four use types namely: office 

buildings, educational buildings, laboratory buildings, and residential buildings. 

The main contribution of this work is in the unique interdisciplinary method of 

combining social network analysis to create building network and reference buildings, 

and artificial neural network to learn multi-building energy use patterns. This technique 

efficiently learns the building feature and network for multi-building energy use and 

provides a framework for analyzing building energy use patterns in large-scaled areas. 

Moreover, the proposed algorithm is validated using building groups with actual data to 

demonstrate significant accuracy in the results. While energy prediction is critical, the 

data-driven energy modeling also opens many other applications, such as performance 

monitoring, control and optimization of building groups, distributed energy systems and 

micro-grids implementation, which need co-operations between buildings. 

2. Methods 

To establish the BN-ANN relationship, three main components were first conducted: 

(1) the feature selection for building energy use prediction, (2) the extraction of the 

reference buildings and the networks between buildings with social network analysis, and 

(3) the integration of the building network-based artificial neural network algorithm. 

2.1 Feature selection  

Before implementing the SNA-ANN method, pre-processing of raw data is 

necessary to eliminate erroneous or missing measurements in the energy use data. In this 

study, the Lagrange polynomials for the interpolation filter is applied due to its 

computational efficiency and causality which are important in time-series applications. If 

we have time-series data as  (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) , we can formulate the 



interpolation for the default measurement as shown in Eq. 1. 

y = �𝑦𝑖

𝑛

𝑖=0

�
𝑥 − 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

𝑛

𝑗=0,𝑗≠𝑖

 (1) 

Where, y is the interpolation value and n is the size of the data used for interpolation.  

After the dataset is filtered, the time series data of energy use data for one building 

can be described in Eq. 2. 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑡, … , 𝑥𝑛)𝑇 (2) 

Where, 1, 2, …, n is the discrete time step. 

For feature-based prediction, the feature is a variable which contains the information 

relevant for object recognition. In forecasting energy use, it should include the use, trend, 

and the determined factors of building energy. Therefore, we considered two kinds of 

features, the value and the change of energy use parameter. The change of a parameter 

was equated using Eq. 3. 

∆𝑥 =  𝑥𝑡 − 𝑥𝑡−1 (3) 

To better predict building energy use, some determined factors are also considered in 

this study, including the year-built, construction type, number of stories, building area, 

and roof type.  

2.2 Network extraction 

Predicting the total energy use or the demand in a distributed building group is 

difficult and complicated, especially at the city scale. Moreover, the task of collecting 

historical energy use datasets for large-scale building groups is a big issue. One way to 

overcome these complexities is to simulate or estimate the total energy use using typical 

reference building geometry. However, such methods ignore actual energy use patterns 

which are influenced not only by building geometries, but also occupancy, operation 

mode, and so on.  Therefore, it is necessary to define the reference buildings with actual 

building energy use pattern and consider the correlation between the reference buildings 

and the non-reference buildings. Further consideration should include building physical 

information, e.g., building floor area, year-built, construction type, and so on. 



In this  study,  the theory of social network analysis method was applied to extract 

and enhance building networks through their historical energy use patterns. Social 

network analysis (SNA) is the process of investigating connections between networked 

nodes (individual actors, people, or things) and ties, edges, or links (relationships or 

interactions) to connect nodes using networks and graph theory [49]. The SNA is the 

process of investigating social structures of a group to build relation of participants in the 

group for network analysis and has contributed to various academic disciplines as well as 

practical applications such as social media networks [50], information system [51], and 

prefabricated building project [52], and so on. This method allows to interact the network 

and illustrate the participants’ interaction with other members of the group. The network 

analysis has also been applied in energy saving projects, e.g., using social networks for 

promoting domestic energy technologies adoption [53], using network analysis to 

understand wave energy policy [54], and advantage of social networks to diffuse energy-

efficiency innovations for households [55].  

In the SNA method, two main approaches are mainly used to build the networks: (1) 

the distance method (e.g., Euclidean distance), which is usually used to calculate the 

difference between two participants, and (2) the correlation method (e.g., Pearson 

correlation coefficient), which is usually used to find the similarity between the two 

participants. Therefore, to reduce the number of buildings used, this study establishes 

connection and relationship, that’s the network, between buildings in a building group 

with the SNA method using the building energy use dataset. Considering the distance 

method infers the closeness of energy use rather than the tendency of building energy use 

pattern, therefore, to build the connections of individual buildings using BN analysis in 

this study, we use the Pearson correlation coefficient method to calculate the connections 

between buildings shown in Eq. 4. Two steps are taken to extract the networks. The first 

step is to identify the reference buildings by using Eq. 4. The reference buildings are used 

to predict building energy use. The second step is to build networks between the 

reference building and the non-reference buildings. 

𝑐_𝑖_𝑗 =  
𝐸�𝐸𝐸𝑖𝐸𝐸𝑗� − 𝐸(𝐸𝐸𝑖)𝐸(𝐸𝐸𝑗)

�𝐸�𝐸𝐸𝑖2� − (𝐸(𝐸𝐸𝑖))2 − �𝐸�𝐸𝐸𝑗2� − (𝐸�𝐸𝐸𝑗�)2
 (4) 



Where, 𝑐_𝑖_𝑗 is the correlation coefficient between building i and j. 𝐸𝐸𝑖 and 𝐸𝐸𝑗 are 

the energy use dataset of building i and j.  

2.3 Building Network based Artificial Neural Network model (BN-ANN model) 

To predict the energy use of multi-buildings using a building subset, this study 

proposed the Building Network based Artificial Neural Network (BN-ANN) model 

shown in Fig.1. The ANN algorithm is used to solve problems similar to the human brain. 

ANN consists of a network of simple neuron elements connecting the output to the input 

with the directed and weighted graph. The capabilities of the ANN algorithm fall within 

the realm of regression analysis including time series prediction and modeling, 

classification, including pattern recognition and sequential decision making, and so on. 

Meanwhile, since this study considers multi-features in the prediction model, the ANN 

model is also well fit to tackle the different scale of feature datasets. 

 



Fig. 1. The construction of the BN-ANN model. 

The BN- ANN algorithm has four layers: the feature layer, the input layer, hidden 

layer, and the output layer. In the feature layer, we selected the building information 

property dataset and the BN dataset to represent the compiled dataset composing the 

input vector for the input layer of BN-ANN model. 

Suppose that EU represents the energy use vector, ∆EU represents the energy use 

difference vector, NS represents the number of building story vector, YB represents the 

year-built vector for buildings, CT represents the construction type vector, and C 

represents the correlation network vector between buildings, then, the input vector for the 

input layer can be illustrated in Eq. 5.   

𝑋𝑖𝑖𝑖𝑖𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑁)𝑇 =  (𝐸𝐸, ∆𝐸𝐸, 𝑁𝑁, 𝑌𝑌, 𝐶𝐶, 𝐶)𝑇 (5) 
Where, N is the size of input layers. 

Suppose n is the number of buildings, then, 

EU = (𝑒1, 𝑒2, … , 𝑒𝑖, … , 𝑒𝑛) (6) 
∆EU = (∆𝑒1, ∆𝑒2, … , ∆𝑒𝑖, … , ∆𝑒𝑛) (7) 
NS = (𝑛𝑛1, 𝑛𝑛2, … , 𝑛𝑛𝑖, … , 𝑛𝑛𝑛) (8) 
YB = (𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑖, … , 𝑦𝑦𝑛) (9) 
CT = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑖, … , 𝑐𝑐𝑛) (10) 

C = (𝑐_1_2, 𝑐_1_3, … , 𝑐_1_𝑛 … , 𝑐_𝑖_𝑗, … , 𝑐_(𝑛 − 1)_𝑛) (11) 
To eliminate the impact caused by different scales of the feature dataset, we need to 

normalize the different feature vectors. The output of the hidden layer, the output of the 

output layer, weights from the hidden layer, and weights from the hidden layer to the 

output layer are defined in Eq. 12, Eq. 13, Eq. 14, and Eq. 15, respectively. 

𝐻 = (ℎ1, ℎ2, … , ℎ𝑗, … , ℎ𝑚)𝑇 (12) 
𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑘, … , 𝑦𝑙)𝑇 (13) 
𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑖,𝑗, … , 𝑣𝑚,𝑛) (14) 
𝑊 = (𝑤1,𝑤2, … ,𝑤𝑗,𝑘, … ,𝑤𝑚,𝑙) (15) 

Where, m and l are the length of the hidden layer and the output layer, respectively. 

The 𝑣𝑖,𝑗 donates the weight vector from xth neural cell of the input layer to the jth neural 

cell of hidden layer and 𝑤𝑗,𝑘 donates weight vector from jth neural cell of the hidden layer 



to the kth neural cell of output the layer. The length of input layer the is determined by the 

number of elements of the input data while the length of the hidden layer (m) is randomly 

selected.  The mathematic information transfer between each layer can be expressed in 

Eq. 16 and Eq. 17. The activation function is shown in Eq. 18. 

ℎ𝑗 = 𝑓(� 𝑣𝑖𝑖𝑥𝑖)
𝑛

𝑖=0
,    𝑗 = 1,2, … ,𝑚 (16) 

𝑦𝑘 = 𝑓(� 𝑤𝑗𝑗ℎ𝑗)

𝑚

𝑗=0
 ,   𝑘 = 1,2, 3 (17) 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (18) 

 In this study, the measured building energy use dataset can be the ground truth of 

energy output, which is presented in Eq. 19. Compared with prediction results from the 

output neuron, Eq. 20 shows the squared error function. 

𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑘, … , 𝑑𝑙)𝑇 (19) 

𝐸 =
1
2
� (𝑑𝑘 − 𝑦𝑘)2

𝑙

𝑘=1
 (20) 

The gradient descent approach computes the derivative of the squared error function 

and iterates through different weights to minimize the error shown in Eq. 20. Eq. 21 and 

22 show the adjustment process of weight  𝑣𝑗𝑗  and 𝑤𝑖𝑖  and 𝜂  is learning ratethe  of 

gradient descent. 

∆𝑣𝑗𝑗 = 𝜂 �� (𝑑𝑘 − 𝑦𝑘)𝑦𝑘(1 − 𝑦𝑘)𝑤𝑗𝑗
𝑙

𝑘=1
� ℎ𝑖(1 − ℎ𝑖)𝑥𝑖 (21) 

∆𝑤𝑖𝑖 = 𝜂(𝑑𝑘 − 𝑦𝑘)𝑦𝑘(1 − 𝑦𝑘)ℎ𝑖  (22) 

3. Case study 

3.1 Description of the case study 

A distributed building group from Southeast University (SEU) was selected to 

validate the proposed multi-building energy consumption prediction algorithm. The SEU 

is located in the center of Nanjing City, Jiangsu Province, China. The SEU has a total 

area of 3.9 km2 and consists of 53 buildings on the main campus, including office 

buildings, laboratories, educational buildings, multiple-use buildings, residential 

buildings, and other building types. A group of other buildings includes some auxiliary 

service buildings, such as a kindergarten, an elementary school, retail stores, canteen, and 



so on. The multi-use buildings usually consist of classrooms, research rooms, office 

rooms, lab areas, etc. With only two multi-use buildings on the campus and the pattern of 

their energy use hard to identify, the multi-use buildings and a few other buildings were 

not considered. The four types of buildings analyzed include office, educational, 

laboratory, and residential. The dataset of the four building groups, provided by the 

General Affairs Department of SEU, includes energy use, year built, construction type, 

wall material, total building floor area, use type, and the number of stories. Energy use 

data were collected monthly from 2015 to 2017. The buildings without complete three-

year data were excluded, resulting in: six office buildings (O1-O6), four educational 

buildings (E1-E4), four laboratories (L1-L4), and three residential buildings (R1-R3) 

being used for validation purposes (Fig. 2). Details of each office, educational, laboratory 

and residential building groups are presented in Tables 1, 2, 3, 4, respectively.  

 
Fig. 2. Diagram of the footprint and location of the building groups. 

Table 1. Office building group 

Building Type Year Built Construction Type No. of story Building 
Area Roof Type 

Office Building 1 (O1) 1980 Reinforced concrete 
structure 16 16910 Flat roof 

Office Building 2 (O2) 1927 Reinforced concrete 3 5072 Sloping roof 



structure 

Office Building 3 (O3) 1957 Brick-concrete 
structure 4 3938 Sloping roof 

Office Building 4 (O4) 1922 Brick-concrete 
structure 2 4500 Sloping roof 

Office Building 5 (O5 1990 Brick-concrete 
structure 8 11748 Flat roof 

Office Building 6 (O6) 1991 Reinforced concrete 
structure 4 7106 Flat roof 

Table 2. Educational building group 

Building Type Year Built Construction Type No. of 
story 

Building 
Area Roof Type 

Education building 1 (E1) 1980 Brick-concrete 
structure 3 3630 Sloping roof 

Education building 2 (E2) 1987 Brick-concrete 
structure 6 5595 Flat roof 

Education building 3 (E3) 1982 Brick-concrete 
structure 6 7482 Flat roof 

Education building 4 (E4) 1982 Brick-concrete 
structure 3 2859 Flat roof 

Table 3. Laboratory building group 

Building Type Year Built Construction Type No. of 
story 

Building 
Area Roof Type 

Laboratory 1 (L1) 1994 Brick-concrete 
structure 4 2993 Flat roof 

Laboratory 2 (L2) 1955 Reinforced concrete 
structure 6 10902 Flat roof 

Laboratory 3 (L3) 1957 Reinforced concrete 
structure 1 949 Sloping roof 

Laboratory 4 (L4) 1957 Reinforced concrete 
structure 1 1421 Sloping roof 

Table 4. Residential building group 

Building Type Year 
Built Construction Type No. of 

story 
Building 

Area Roof Type 

Residence building 1 (R1) 1980 Reinforced 
concrete structure 4 1313 Flat roof 

Residence building 2 (R2) 1990 Reinforced 
concrete structure 16 12906 Flat roof 

Residence building 3 (R3) 1980 Reinforced 
concrete structure 15 9980 Flat roof 

3.2 Model configuration and assessment 

To eliminate the impact of different scales embedded in the different building 

features, it was necessary to configure the inputs of the BN-ANN model before model 

training. For the year-built feature, the age varied from 1922 to 1994 with a clear 

separation around 1960 to 1970. The model sets a binary value of 0 for buildings built 

before the year 1965, otherwise 1. Construction type also required two values. The model 



sets the value of “reinforced concrete structure” as 0 and the value of “brick-concrete 

structure” as 1. Similarly, the value of “flat roof” and “sloping roof” was set as 0 and 1, 

respectively. The value of the number of stories was normalized as in [0, 1], while the 

building floor area was used to calculate the building energy use intensity. Table 5 shows 

the details of different scales of feature data for model input. Fig. 3 shows the learning 

process of the BN-ANN model. With the EUI dataset, Eq. 4 was used to identify 

reference buildings.  

To dynamically update the network between buildings, one time window with length 

∆T was applied in the model to calculate the correlations. During model training, the 

initial parameters for the neural networks were defined randomly, including the weights 

and bias of each neural between each layer. The gradient descent rule was applied to 

learn and update the weights and bias shown in Eq. 23 and 24 until the errors between 

predicted values and actual values were minimized. In validation, this study selected the  

cross-fold validation method, which splits the dataset into 70% for training and 30% for 

test. In comparison, this study compared the predicted energy use proposed by the BN-

ANN and ANN models with the measured energy use data. The former integrates the 

building network into the ANN algorithm as the prediction model, which considers 

physical information, energy use intensity of the reference buildings, and, the physical 

information of non-reference buildings and correlations between the reference and the 

non-reference buildings and the total EUI, respectively. While for the ANN algorithm, 

only physical information and energy use intensity of the reference buildings are applied 

in the prediction model without the building networks. Fig. 3 shows the learning process 

of the proposed BN-ANN model. To assess the model performance, three indices were 

used to compare the results for accuracy, the mean absolute percentage error (Eq. 25), the 

root mean squared error (Eq. 26) and the Q-Q plot curve.  

a. Mean Absolute Error shows the mean error between the predicted EUI and the 

actual EUI of the building. 

𝑀𝑀𝑀(𝐸𝐸𝐸𝑝) =  
1
𝑁
� �𝐸𝐸𝐸𝑖𝑎 − 𝐸𝐸𝐸𝑖

𝑝�
𝑁

𝑖=1
 (23) 

b. Mean Absolute Percentage Error (MAPE) shows the mean percentage error 

between the predicted EUI and the actual EUI of the building. 
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c. Root Mean Squared Error (RMSE) shows the magnitude of the estimation error. 

𝑅𝑀𝑀𝑀(𝐸𝐸𝐸𝑝): = �� (𝐸𝐸𝐸𝑖𝑎 − 𝐸𝐸𝐸𝑖
𝑝)2

𝑁

𝑖=1
/𝑁 (25) 

Where, the 𝐸𝐸𝐸𝑎 and 𝐸𝐸𝐸𝑝 are the actual and predicted building EUI, respectively. 

N is the sample size. 

d. Standard deviation of the absolute percentage error shows the error variation 

between the results of the predicted EUI and the actual EUI of buildings. 

𝑆𝑆𝑆𝐴𝐴𝐴 = �
1

𝑛 − 1
� (𝐴𝐴𝐴𝑖 − 𝑀𝑀𝑀𝑀)2

𝑛

𝑖=1
 (26) 

Where 𝐴𝐴𝐴 = (𝐸𝐸𝐸𝑖𝑎 − 𝐸𝐸𝐸𝑖
𝑝) 𝐸𝐸𝐸𝑖𝑎⁄  

e. Q-Q plot curve is a graphical plot used to compare the true positive rate and the 

false positive rate as the criterion changes. 

Table 5. Details of the BN-ANN model input 

Feature Source/Scope Description 

Year Built  Discrete, Binary 

Construction Type 
Reinforced concrete 

structure, Brick-concrete 
structure 

Binary 

No. of story [1, 16] Discrete, Normalization 
Roof Type Flat roof, Sloping roof Binary 

Building Area [1313, 16910] To calculate Energy Use Intensity 
Energy Use Intensity N.A. Normalization 

Correlation Eq. 4 Normalization 
 



 
Fig. 3. Overview of the learning process of the BN-ANN model 

4. Results and assessment 

4.1 Building Energy Use Intensity Results 

The energy use intensity measurement results of the office, educational, laboratory, 

and residential buildings are shown in Figs. 4(a-d), 5(a-d), 6(a-d), 7(a-d), respectively. 

For each building group, the energy use intensity distribution in the year 2015, 2016, 

2017, and the total building energy use intensity box plot are presented.  



   
Fig. 4 (a-d). EUIs of the office building group (a, b, c) and total building energy use (d). 

The results show in Figure 4(a-c) that the three biggest energy consumers are O1, 

O3, and O6 in 2015 and 2016, and O3, O5, and O6 during 2017. Figure 4(d) shows the 

combined total of the EUI of the office building group. The EUI trends show that the 

office buildings generally consumed more energy in the winter (December and January), 

and summer (July and August) months, due to typical seasonal patterns. The results show 

the EUI of O1 varies from 2 to 22 kWh/m2, with an average of 6 kWh/m2 and a standard 

deviation of 4 kWh/m2. The O2 and O4 buildings consumed less energy and had 

minimum EUIs of about 1 and 0.5 kWh/m2, respectively. The average EUIs for O2 and 

O4 buildings is about 2 kWh/m2 (for both), with maximums of 4 and 4.7 kWh/m2 and a 

standard deviation of 0.8 and 1.2 kWh/m2, respectively. Observed from Table 6, O2 and 

O4 have smaller floor areas and are also older, than O1 and O3. O3 has the biggest 

average EUI of 11 kWh/m2 and a minimum EUI of 7 kWh/m2.  For the entire office 

building group, the EUI varies from 3 to 12.5 kWh/m2 with an average of 6 kWh/m2.  

Table 6. EUIs of the office building group (kWh/m2) 

 Min. Mean Std. Max. 

O1 2.01 6.14 4.35 21.64 

O2 1.05 2.13 0.83 3.97 

O3 6.89 10.76 2.25 15.51 

O4 0.46 2.00 1.21 4.66 



O5 0.54 6.81 5.35 20.89 

O6 4.51 8.01 2.88 14.50 
O_total 2.86 6.15 2.29 12.46 

Fig. 5(a-d) and Table 7 show the EUIs and the combined total building energy use 

intensity box plot of the educational buildings. The educational buildings are relatively 

new and smaller (Table 2) compared with the office buildings and the EUI results are 

reflective of this fact. Additionally, the educational buildings empty during summer (July 

and August) and winter (February) breaks. For E1, E2 and E4, the EUI varies (minimum 

to maximum) from 1 to 3 kWh/m2, from 1 to 5 kWh/m2, from 1 to 3 kWh/m2, 

respectively. While E2, the biggest energy consumer, varied from 4 to 14 kWh/m2.  

 

 
Fig. 5 (a-d). The EUIs of the educational building group (a, b, c) and total building 

energy use (d). 

Table 7. EUIs of the educational building group (kWh/m2) 

 Min. Mean Std. Max. 
E1 1.06 1.83 0.49 3.11 
E2 3.63 7.84 2.54 14.34 
E3 0.97 2.51 0.90 4.86 
E4 0.79 1.58 0.45 3.22 

E_total 1.89 3.77 1.13 6.85 
Fig. 6(a-d) and Table 8 show the EUIs of the laboratory buildings with no unclear 

trend. The average EUI for L4 is substantially less than the EUIs of the other laboratory 



buildings. L4 varied from nearly zero (0.04 kWh/m2) to 6 kWh/m2 and with an average of 

1 kWh/m2. Although L3 has a similar EUI maximum to minimum range as L4 (varying 

from 0.2 to 7.3 kWh/m2) the average EUI of L3 was 4.8, far higher than that of L4. L2 

consumes the largest amount of energy and has the largest building area. Its EUI varies 

from 6.4 to 11.4 kWh/m2, with an average of 8.5 kWh/m2. While for L1, its EUI ranged 

from 0.7 to 11 kWh/m2, with an average of 3.6 kWh/m2.  

  
Fig. 6 (a-d). The EUIs of the laboratory building group (a, b, c) and total building energy 

use (d). 

Table 8. EUIs of the laboratory building group (kWh/m2) 

 Min. Mean Std. Max. 

L1 0.72 3.58 3.11 10.87 

L2 6.36 8.48 1.44 11.40 

L3 0.16 4.75 1.53 7.27 

L4 0.04 0.89 1.05 6.01 

L_total 4.67 6.70 1.29 10.01 
Fig 7(a-d) and Table 9 shows the EUIs of the residential buildings. The EUI trend 

for the student residential buildings is very similar to the educational buildings, as they 

are utilizing the same educational schedule. During the summer and winter breaks, the 

occupancy and operation of the residential buildings decreases, thus the building energy 

use decreases accordingly. This study selected three adjacent residential buildings which 

were built in the same year, with the same construction wall and roof type. The R2 and 



R3 are high-rise buildings with 16 and 15 stories, respectively. R2 has a floor area of 

12,906 m2, larger than R3. The EUIs of R2 vary from 0.2 to 17 kWh/m2 with an average 

of 4 kWh/m2; while EUIs of R3 vary from 0.2 to 6 kWh/m2 with an average of 2 

kWh/m2. While for R1, its EUI is from 0.7 to 10 kWh/m2 with an average of 3.5 

kWh/m2. 

    
Fig. 7(a-d). The EUIs of the residential building group (a, b, c) and total building energy 

use (d). 

Table 9. EUIs of the residential building group (kWh/m2) 

 
Min. Mean Std. Max. 

R1 0.77 3.54 2.25 9.81 

R2 0.16 3.82 4.03 17.24 

R3 0.21 1.89 1.59 5.85 

R_total 0.27 3.35 3.12 13.08 

4.2 Network analysis and prediction accuracy 

This section discusses the applications of the SNA based building network modeling 

and the building network-based machine learning technique, as well as presents the 

multi-building prediction accuracy. Fig. 8 (a-d) shows the networks between the 

buildings in each group, by calculating the correlations of individual building EUI with 

the total building group EUI, in the year 2015 to 2017.  

In the office building group, buildings O1, O3, and O6 were identified as the 



reference buildings (Fig. 8a). The correlations between O1, O3, O6 and the total 

building’s EUI are 0.7, 0.6, and 0.7, respectively. Building O1 shows the most relevant 

trend to the total building EUI. Observed from the networks between the non-reference 

buildings and the reference buildings, it is found that most non-reference buildings do not 

have much relevancy to the reference buildings and their EUI trend correlations are 

generally less than 0.6 (except for O2 and O3 with a correlation of 0.7). This is especially 

true for O1 and O5 as they shared a negative network correlation.  

For the educational building group building E4 is the only non-reference building 

(Fig. 8b). The building with the most relevant trend to the total building’s EUI trend is 

building E2 with a high correlation of 0.98. The building E3 is also highly correlated to 

the total building’s EUI trend with a correlation of 0.91.  

While considering the networks in the laboratory buildings, buildings L1 and L2 are 

the reference buildings with correlations of 0.72 and 0.92, respectively (Fig. 8c). For the 

non-reference buildings, building L4 is negatively relevant to both buildings L1 and L2, 

showing opposite EUI trends between L4 and L1, L2, respectively. Meanwhile, building 

L3 shows a much lower relation of EUI trend to the reference buildings L1 and L2.  

In the residential buildings group, buildings R2 and R3 are identified as the 

reference buildings with high correlations of 0.82 and 0.96 (Fig. 8d). Building R1 shows 

a positive relationship between the two reference buildings, but with low correlations. 



 
Fig. 8 (a-d). The building network analysis results of (a) office, (b) educational, (c) 

laboratory and (d) residential buildings. 

After calculating the networks between buildings, the building dataset consisted of 

the networks, building physical information, and the building EUI. To validate the 

algorithms, 70% of dataset was used to train the models while 30% of the dataset was 

used to test the models. Fig. 9-12 show the training and test results of the BN-ANN and 

the ANN for four types of the building dataset. To compare the proposed BN-ANN 

model, two baseline results were applied (Fig. 13). The first one compares the actual 

building EUI to the predicated EUI using the BN-ANN model for a six-month period 

from July to December. The second compares the actual EUI with the predicted building 

EUI generated by applying the reference buildings in the ANN model while ignoring 

networks between the buildings. In most cases the actual and predicted values are 

reasonable. To further understand the prediction performance Q-Q plots were generated.   



 

Fig. 9. Training and test results with the office building dataset for the BN-ANN and the 

ANN models 

 

Fig. 10. Training and test results with the education building dataset for the BN-ANN and 

the ANN models 



 

Fig. 11. Training and test results with the laboratory building dataset for the BN-ANN 

and the ANN models 

 

Fig. 12. Training and test results with the residence building dataset for the BN-ANN and 

the ANN models 



 

 
Fig. 13. The building EUI prediction results for the office, educational, laboratory and 

residential buildings. 

The Q-Q plot represents the quantiles of the actual data set compared against the 

quantiles of the predicted data set. Fig. 14 presents an assessment of the results for the 

office and educational buildings. The results from the office buildings Q-Q plot validate 

the predicted BN-ANN model results with R2 of 1. Moreover, the BN-ANN model 

performed better than using just the ANN model (R2 of 0.6309). Additionally, the BN-

ANN predicted results gravitate closer to the line Y = X, which indicates the BN-ANN 

model can predict more accurately the actual EUI. However, for the educational 

buildings, although the two models achieved good prediction performance (R2 of 0.9578 

for the BN-ANN model and R2 of 0.988 for the ANN model), the ANN model predicted 

results far better when assessing the line Y = X.  



 

 
Fig. 14. The Q-Q plot for the office and educational buildings. 

Fig. 15 presents the Q-Q plot results for the laboratory and residential buildings. 

Observed from the results, the ANN model achieved better predicted results in both 

building groups than the BN-ANN model as indicated by the R2 values. However, 

compared with the ANN model, the BN-ANN model has more predicted building energy 

results falling with the line Y = X. This means the BN-ANN model achieved more 

accurate prediction results. A numerical comparison of the ANN and BN-ANN results are 

presented in Table 10 with MAPE and RMSE calculations. Compared with the ground 

truth, the BN-ANN model for the office building group showed greater than a 23% 

improvement in prediction accuracy over the ANN model for both the MAPE (9.33% 

BN-ANN, 32.6% ANN) and the RMSE (9.12% BN-ANN, 36.1% ANN). The standard 

derivation of absolute percentage error (𝑆𝑆𝑆𝐴𝐴𝐴) for the BN-ANN model is 1.62% while 

(𝑆𝑆𝑆𝐴𝐴𝐴) for the ANN model is 21.51%, which proves that proposed BN-ANN model can 

improve accuracy significantly and reduce the variation of error. For the educational 

buildings, The MAPE results for the BN-ANN and the ANN are 9.21% and 3.6%, 



respectively; and the RMSE results for the BN-ANN and the ANN are 9.56% and 3.66%, 

respectively. For 𝑆𝑆𝑆𝐴𝐴𝐴, 10.35% and 3.3% are for the BN-ANN and the ANN. The 

results show that although the BN-ANN model achieved an acceptable accuracy, the 

ANN model can lead to a better total building EUI prediction without considering the 

networks between the non-reference building E4 and the reference buildings E1, E2, and 

E3. This might be because there are already two reference buildings (E1, E2) that are 

highly related to the total building energy EUI. It is adequate to predict the total building 

EUI with the reference buildings. While for the laboratory buildings, we can find the BN-

ANN model can have a better performance with the MAPE and RMSE of 7.66% and 

9.04%, respectively, while the two assessment indices are 12.1% and 12.2% for the ANN 

model. For 𝑆𝑆𝑆𝐴𝐴𝐴, 5.01% and 8.80% are for the BN-ANN and the ANN. The BN-ANN 

model has a slight advantage compared with the ANN model for the laboratory buildings. 

In the residence buildings, the RMSE results show the BN-ANN model doesn’t improve 

a lot on the robustness of the total building EUI prediction compared with the ANN 

model. However, the BN-ANN can improve the accuracy of EUI prediction results from 

27.46% to 16.68% compared with the ANN model and 𝑆𝑆𝑆𝐴𝐴𝐴  from 16.9% to 10.94. 

Finally, the overall assessment shows the BN-ANN model based prediction accuracy with 

MAPE is 10.72% while the ANN model-based accuracy with MAPE is 18.94%. Also, the 

robustness can be improved from 26.06% to 14.52% when comparing the BN-ANN with 

the ANN model. The BN-ANN model can reduce  𝑆𝑆𝑆𝐴𝐴𝐴 from 17.98% to 8.25%. It can 

be concluded that the building network analysis can greatly improve the prediction 

performance of the ANN model by integrating the networks between the reference 

buildings with the total building energy use and the non-reference buildings.  



 

 
Fig. 15. The Q-Q plot for laboratory and residential buildings. 

Table 10 Comparison of the predicted results from the BN-ANN and ANN models 
  BN-ANN model  ANN model 
 MAE MAPE RMSE 𝑆𝑆𝑆𝐴𝐴𝐴  𝑅2 MAE MAPE RMSE 𝑆𝑆𝑆𝐴𝐴𝐴  𝑅2 

Office 
buildings 0.75 9.33% 9.12% 1.62% 1.0 2.57 32.6% 36.1% 21.51% 0.6309 

Education 
buildings 0.30 9.21% 9.56% 10.35% 0.9578 0.12 3.6% 3.66% 3.3% 0.988 

Laboratory 
buildings 0.60 7.66% 9.04% 5.01% 0.7853 0.83 12.1% 12.2% 8.80% 0.9627 

Residence 
buildings 1.26 16.68% 23.55% 10.94% 0.8142 1.60 27.46% 24.19% 16.90% 0.9592 

Total  0.73 10.72% 14.52% 8.25% 0.8591 1.28 18.94% 26.06% 17.98% 0.56 
In the proposed BN-ANN model, three networks are vital for the building group EUI 

prediction. They are: (1) the network between the reference buildings’ EUI and the total 

buildings’ EUI, (2) the network between each other of the individual reference buildings’ 

EUI, and (3) the network between the reference buildings’ EUI and the non-reference 

buildings’ EUI.  For office buildings, it shows in Fig. 13 that the predicted building EUI 

results based on the BN-ANN and ANN models are less than the actual building EUI. 

This may be attributed to two important reasons, that the three networks are weak in the 



office buildings group and the sum of reference buildings’ EUI is far less than the total 

building’ EUI. However, the accuracy using the BN-ANN model is improved 

substantially when compared with the ANN model, which only used the reference 

buildings’ EUI to predict the total buildings’ EUI. While for the educational buildings, the 

findings are on the contrary; the networks between each reference building’s EUI and the 

total buildings’ EUI and the networks between reference buildings, are both strong so that 

the accuracies based on the BN-ANN and the ANN models are both significant with the 

latter being a little better. This indicates that the ANN model, using only the reference 

buildings’ EUI, is good enough to predict the total building energy use.  

For laboratory buildings, the accuracy using the BN-ANN model is also improved. 

Although the network between the reference buildings’ EUI and the total buildings’ EUI 

is strong, it shows that most of the networks between the reference buildings’ EUI and the 

non-reference buildings’ EUI are negative. This phenomenon causes the predicted results 

based on the BN-ANN model to be less than those based on the ANN model. In the 

residential building group, the accuracy is improved and networks between each other of 

reference buildings’ EUI, and the reference buildings’ EUI and the total buildings’ EUI 

are both strong. Considering the standard deviation of each building group’s EUI pattern, 

we found that the standard deviation of the office building group and the residential 

building group are relatively high. Applying the BN-ANN model in those two groups can 

improve accuracy when predicting the total building EUI.   

In conclusion, the findings indicate that the BN-ANN model is more suitable and 

accurate for those buildings, in which the networks (or correlations) between reference 

buildings’ EUI and the total buildings’ EUI are weak and standard deviation of building 

groups’ EUI is relatively high. While for other building groups, e.g., the educational 

buildings, in which the three networks are strong, it might infer that the ANN model will 

be accurate enough to predict the total building EUI.  

5. Discussion 

This study presented interdisciplinary research integrating SNA-based building 

network analysis and an artificial neural network algorithm. First, we applied the theory 

of SNA method to conduct the building network analysis and identify: (1) the reference 



buildings, the building’s energy use that closely matched the total buildings energy use 

(correlation coefficient >= 60%), (2) the networks between the reference buildings, (3) 

the total building energy use trend, and (4) the non-reference buildings. In the second 

step, we integrated machine learning techniques with the building networks to predict the 

total building energy use. The final validation step used buildings from Southeast 

University that were divided into four building types, including office, educational, 

laboratory and residential groups. Notably, each group had unique operational hours 

resulting in different peak energy use. The results demonstrated the proposed SNA-ANN 

model predicted the multi-building EUI with satisfactory accuracy.  

For city planners and energy policymakers, understanding energy use dynamics is 

critical to (1) knowing where and how energy is being consumed across the morphologic 

and socioeconomic contours of the city, (2) providing situational awareness of energy use 

to better allocate resources and target policy interventions, and (3) identifying cost-

efficient savings opportunities across the city. Campuses consisting of a big group of 

buildings are an important component of a city, and optimization of distribution energy 

systems in a campus can help reduce energy use and GHG emissions in the city. In this 

view, although the SNA-ANN is a black-box model, it provides insights into which 

buildings are the most significant users and to predict the dynamic building EUI. The 

SNA-ANN model provides policymakers the prediction of multi-building energy use 

with much less required data which helps allocate energy resources and prioritize energy 

retrofit. This study provides interdisciplinary framework outlining how to define 

reference buildings and apply them to predict multi-building energy. Finally, the multi-

building energy prediction model can estimate the energy use, which is one key feature of 

the grid-interactive efficient buildings [56]. 

This study has some limitations. Firstly, it only selected Southeast University as a 

case study with a limited number of buildings and did not test the method in other types 

of building groups, such as the multi-use buildings. This study also does not validate the 

performance of the proposed SNA-ANN model to predict non-campus building energy 

use at the city scale. Secondly, when applying the building network analysis method, 

three networks were created and inputted into the SNA-ANN model. However, this study 

did not investigate if all the networks are needed or which network is better for multi-



building energy prediction. Also, the findings in this study indicated that the SNA-ANN 

model is more suitable for those building groups with a higher standard deviation of EUI 

patterns.  Therefore, more effort and richer building datasets are needed to support further 

research. Thirdly, the attributes of buildings used to create the building networks are 

limited in the scope of building physical information; and the building networks are 

created by calculating the correlations between those attributes of two buildings; 

however, two limitations should be noted. One is that more attributes of buildings (e.g., 

occupancy information, schedule) are recommended to be included in forming the 

networks of buildings, which can improve the representation of the reference buildings 

for the non-reference buildings as well as the accuracy of the prediction results. Another 

potential for future study is the contribution of each attribute to the EUI prediction and 

how to determine and select the most effective attributes to reduce the number of model 

inputs. Those limitations inspire future work of attribute selection during the modeling of 

multi-building energy use regardless of statistical and engineering methods. Finally, 

further research is needed to determine whether the proposed SNA-ANN model can be 

adopted for energy prediction of larger building groups, e.g., city-scale buildings. For 

this, the modeling to identify all the reference buildings at the city scale can be intensive 

and thus requiring cloud computing or high-performance computing to handle large-scale 

problems.  

6. Conclusions 

This study proposed a multi-building energy use prediction model by integrating 

social network analysis based building network modeling and machine learning 

techniques. social network analysis method was used to identify the reference buildings 

and establish correlations between the reference buildings and (1) the total building 

energy use and (2) non-reference buildings. Important building property information, like 

the building height, number of stories, year built, roof type, and construction type were 

considered in the model. To validate the proposed SNA-ANN method, this study selected 

Southeast University as a case study, with four building groups tested including office, 

educational, laboratory, and residential groups. To test the performance of the proposed 

SNA-ANN model, we selected the ground truth energy use data and the ANN-based 

predicted energy use as two baselines. The results show the proposed SNA-ANN and 



ANN models can achieve the prediction MAPE accuracies of 9.3% and 32.6%, 

respectively for office buildings; 9.2% and 3.6%, respectively for the educational 

buildings; 7.7% and 12.1%, respectively for the laboratory buildings; and 16.7% and 

27.5%, respectively for the residential buildings. Considering the robustness of the 

RMSE results, the proposed SNA-ANN and ANN models can achieve the prediction 

accuracies of 9.1% and 36.1%, respectively for the office buildings; 9.6% and 3.6%, 

respectively for the educational buildings; 9.0% and 12.2%, respectively for the 

laboratory buildings; and 23.5% and 24.2%, respectively for the residential buildings. 

Also, observed in the overall results, the SNA-ANN model can predict the multi-building 

energy use with an accuracy of MAPE and RMSE of about 10.72% and 14.52%, 

respectively, demonstrating that the proposed model can efficiently and accurately predict 

the multi-building energy use.  

Findings indicate that the SNA-ANN model is more suitable for buildings, where 

the networks between reference buildings’ EUI and the total buildings’ EUI are weak and 

the standard deviation of building groups’ EUI is relatively high. While for the other 

building groups, where all the three networks are strong, the ANN model proved to be 

accurate enough to predict the total building EUI. The proposed interdisciplinary SNA-

ANN model, presented in this study, provides a new, attractive empirical approach to 

urban building energy use prediction. Further practical applications can help identify 

reference buildings, which have a more similar pattern to the total district building energy 

use intensity. With the wider adoption of smart meters and micro-grid at the campus 

level, such method proposed in this study might help facility managers quickly estimate 

total energy use with less data and formulate optimal energy-saving strategies. In future 

work, the SNA-ANN model could be applied to predict the energy use of the whole 

campus or a larger group of buildings in city districts or an entire city depending on more 

energy use data.  
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