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Abstract 

Urban building energy modeling (UBEM) is becoming a proven tool to support energy 

efficiency programs for buildings in cities. Development of a city-scale dataset of the 

existing building stock is a critical step of UBEM to automatically generate energy models 

of urban buildings and simulate their performance. This study introduces data needs, data 

standards, and data sources to develop city building datasets for UBEM. First, a literature 

review of data needs for UBEM was conducted. Then, the capabilities of the current data 

standards for city building datasets were reviewed. Moreover, the existing public data 

sources from several pioneer cites were studied to evaluate whether they are adequate to 

support UBEM. The results show that most cities have adequate public data to support 

UBEM; however, the data are represented in different formats without standardization, and 

there is a lack of common keys to make the data mapping easier. Finally, a case study is 

presented to integrate the diverse data sources from multiple city departments of San 

Francisco. The data mapping process is introduced and discussed. It is recommended to 

use the unique building identifiers as the common keys in the data sources to simplify the 

data mapping process. The integration methods and workflow are applied to other U.S. 

cities for developing the city-scale datasets of their existing building stock, including San 

Jose, Los Angeles, and Boston.   

Keywords  
City building dataset, CityGML, Urban building energy modeling, data standards, data 

mapping 
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1. Introduction 

Buildings in cities of the United States consume up to 70% of primary energy. Reducing 

energy use of building stock in cities becomes a critical strategy to achieving cities’ energy 

and environmental goals. The City of San Francisco has established some of the most 

competitive climate and sustainability targets in the world, covering a broad range of 

sectors, including energy efficiency, renewable energy, transportation, water, green 

infrastructure, and waste. With robust goals to measure progress, San Francisco aims to 

reduce greenhouse gas (GHG) emissions by 25% below 1990 levels by 2017, 40% by 2025, 

and 80% by 2050 [1]. San Francisco has been making great progress towards its ambitious 

GHG emission reduction goal. By 2015, San Francisco’s GHG emission was 28.4% below 

1990 levels, equivalent to 1.8 million metric tons of carbon dioxide equivalent (CO2e) 

emission (mtCO2e) reduction. San Francisco has approximately 180,000 buildings, which 

contribute to 52% of the city’s total GHG emissions [2]. The building sector holds great 

potential to reduce energy use and GHG emissions through the proliferation of new, energy 

efficient buildings and by retrofitting existing buildings. The building sector’s 2015 GHG 

emissions were reduced by 38%, or 1.3 million mtCO2e compared to the 1990 level, which 

contributed to 73% of San Francisco’s total GHG emission reduction. 

San Francisco provides various incentive and financing programs to help residents and 

building owners save investment and operating costs, minimize energy waste, and lower 

their property’s environmental impact [3].  San Francisco’s Energy Watch program [4], 

supported by local utility company Pacific Gas and Electric, offers incentives to 

commercial and multifamily buildings for energy efficiency upgrades to lighting, 

refrigeration equipment and controls, network-level computer power management 
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software and so on. San Francisco’s Property Assessed Clean Energy (PACE) financing 

program [5] helps homeowners finance energy-saving, renewable energy and water-saving 

home upgrades. GoSolarSF [6], managed by the San Francisco Public Utilities 

Commission, provides cash incentives for installing eligible solar electric systems. The 

Energy Upgrade California Multifamily Program [7] in San Francisco offers $750 per unit 

in rebates to help multifamily property owners (5+ units) lower the cost of energy 

efficiency upgrades. Those incentive and financing programs contribute significantly to 

GHG reductions in San Francisco’s buildings sector; however, they are mainly 

implemented at the individual building level, which limits their broad adoption and requires 

a significant amount of staff effort to manage the programs. The incentive and financing 

programs should be analyzed and implemented on a larger scale to boost the energy 

renovation rate of the building stock. Future programs should consider not only the 

technologies for individual buildings but also the opportunities of district-scale 

technologies, such as district heating and cooling systems, combined heat and power 

systems, and community-scale photovoltaic (PV) systems.  

Urban building energy modeling (UBEM) refers to the application of bottom-up physics-

based building energy models to predict operational energy use, as well as indoor and 

outdoor environmental conditions, for groups of buildings in the urban context [8]. UBEM 

is an excellent tool to explore opportunities for energy conservation measures (ECMs) 

when applying to a large group of buildings in the urban context. Delmastro et al. [9] 

leveraged UBEM to aid decision-makers in the planning process by simulating and 

analyzing the evolution of the building stock from an energetic, economic, and social 

perspective over long-term horizons. In particular, their approach: (1) identified the cost-
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optimal mix of successful renovation packages; (2) identified buildings that need to be 

prioritized; and (3) considered the impact of socioeconomic factors on policies 

implementation. Chen et al. [10] presented a case study using UBEM to analyze the 

potential energy and cost savings of five individual ECMs and two measure packages for 

940 office and retail buildings in San Francisco. UBEM can also be used to evaluate the 

district-scale technologies. Yamaguchi et al. [11] presented a simulation model based on 

the bottom-up UBEM approach to evaluating different technology implementation 

scenarios, including distributed electricity generators and district heating and cooling 

systems.  

UBEM is becoming a proven tool to support energy efficiency programs for buildings in 

cities. Development of a city-scale dataset of the existing building stock is a critical step 

of UBEM to automatically generate energy models of urban buildings and simulate their 

performance. Monteiro et al. [12] presented the process of collecting, mapping, cleaning, 

and integrating data to create an urban building dataset for 3,259 buildings with 18,484 

residential dwellings and 33,659 inhabitants to support an information system for smart 

cities. Davila et al. [13] collaborated with the Boston Redevelopment Authority to develop 

a citywide UBEM based on official GIS datasets and a custom building archetype library 

for 83,541 buildings.  

More and more cities in the world are moving to provide open data via web portals to 

empower their use to support cities’ energy and environmental goals. For example, San 

Francisco’s open data portal [12] provides geographic information system (GIS) building 

geometry information, including the footprint and height of each building in San Francisco. 

It also includes building characteristics, such as year built, number of stories, and building 
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type. Similar building data can be found in other cities, such as Chicago [13] and New 

York City [14].  

Cities are the main sources to provide the input data for UBEM and the major adopters of 

UBEM tools in the future. Cities spend lots of effort to collect the data and make them 

publicly available. However, those data are not collected specifically for UBEM and some 

important information for UBEM may be ignored. For example, San Francisco provides 

the permit database to record the changing history of buildings; however, that information 

is presented in “text” format without standardized description, which makes them less 

useful to support UBEM. It is very important to make sure that cities are collecting enough 

data in a standardized format to support UBEM in the future.  

This study first conducts a literature review to understand the data needs for current UBEM 

studies and the current data standards to represent those city building datasets. It then 

studies the status of the public building data sources from several pioneer cities in the 

United States to answer three questions: (1) Are the existing public data from cities 

adequate to support UBEM? (2) Are there easy ways to integrate those diverse data 

sources? (3) How to standardize the data for interoperability? Finally, a case study is 

presented to develop a standardized city building dataset for San Francisco by integrating 

publically available buildings datasets from multiple city departments.  

2. Data Needs for UBEM 

Reinhart and Davila [8] reviewed emerging simulation methods and implementation 

workflows for UBEM. The data inputs for UBEM were also discussed, which included the 

climate data and the building data. The climate datasets in the typical meteorological year 

(TMY) format for building performance simulation are widely available for more than 
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2100 cities worldwide [15]. This study focuses on the building data for UBEM, including 

the geometry data and the non-geometric properties. A literature review was conducted to 

understand the building data used to model the energy performance of building stocks. 

Table 1 provides a summary of the building data organized into three categories: geometry, 

segmentation parameters, and energy use data. For the geometry data, cases 1 to 8 used the 

GIS-based building footprint, building height and the number of stories to create the 

building geometry for each building. Case 8 derived the number of stories based on the 

building height. Case 9 used the total floor area to scale the rectangular box geometry. 

Cases 10 to 17 used the total floor area to scale the energy performance results.  

None of the studies has the detailed information about the building systems and their 

efficiencies. Instead, the information is assumed based on the archetype. Several 

segmentation parameters are used to identify the archetypes, including the age (year built), 

use type, and heating type. The shape/size of the building derived from the geometry is 

also used in several studies as segmentation parameters.  

Energy data was available for several studies, typically at the annual resolution. In 

additional, several studies require more information of the segmentation parameters. Cases 

2, 3, and 9 require the number of stories above ground as well as the number of stories 

below ground (basement). Cases 2, 9, and 16 use the heated floor area while the other cases 

use the total floor area. Cases 1 and 2 need both the year of construction and the year of 

refurbishment.  

In summary, the building data needs for UBEM typically include the GIS footprint, 

building height, number of stories above ground, number of stories below ground, total 

floor area, heated floor area, number of dwellings, year of construction, year of 
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refurbishment, use type (building type), heating system type, annual electricity use, and 

annual natural gas use.  

Table 1. Summary of data needs for UBEM 

C
ase ID

 

E
ach B

uilding?* 

B
uilding sector** 

Geometry Segmentation Energy Use 

O
ther data 

R
eference 

Footprint 

B
uilding H

eight 

N
o. of Stories 

Floor area 

N
o. of dw

ellings 

A
ge (year built) 

U
se type 

H
eating type 

A
nnual 

M
onthly 

T
im

e series 

1 Y R √ √ √ √   √ √ √   √     [16] 
2 Y R √ √ √ √   √ √ √ √     *** [17] 
3 Y A √ √ √   √ √ √ √       **** [18] 
4 Y C √ √ √     √ √   √       [19] 
5 Y C √ √ √     √ √           [10] 
6 Y A √ √ √      √ √           [20] 
7 Y A √ √ √     √ √           [21] 
8 Y A √ √       √ √ √ √     ***** [22] 
9 Y R     √ √   √ √ √     √   [23] 
10 N R     √ √ √ √   √         [24] 
11 N R   √ √ √   √ √           [25] 
12 N R       √   √ √          [26] 
13 N A       √   √ √ √ √      [27] 
14 N R       √ √ √ √           [28] 
15 N A       √   √ √           [29] 
16 N A       √   √ √ √         [30] 
17 N A √ √   √   √ √           [31] 

Note:  
* Model each building or not: Y – Yes, N – No 
** R – Residential, C – Commercial, A – All (Residential & Commercial) 
*** Number of staircases, attachment to other buildings 
**** Number of persons per building, volume, type of hot water supply 
***** Measured heat demand at the substations  

 

3. Data standards for city building datasets  

More and more cities in the world are moving to provide open data via web portals to 

empower their use to support cities’ energy and environmental goals. However, there is a 
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lack of consistency, semantics, and standards among the shared data to enable 

interoperability for various types of urban applications. For San Francisco, the building 

GIS-based footprint data are provided in the Shapefile format, while the building 

characteristics are stored in multiple files with Shapefile, fixed-width text, or comma-

separated values (CSV) format. Moreover, different terms are used to represent the same 

data elements among different datasets. Table 2 lists some of the terms used for the same 

data elements in the building datasets from San Francisco, Chicago, and Portland. In 

addition, the same data element in different datasets may represent slightly different things. 

For example, in Table 2, the building height in San Francisco dataset is the median value 

of the building height; while the building height in Portland dataset is the average value of 

the building height.  

Table 2. Different terms used for the same data elements among different buildings 

datasets in three U.S. cities: San Francisco, Chicago, and Portland 

Terms  San Francisco Chicago Portland 
Building Type LANDUSE Property 

classification 
BLDG_USE 

Year Built YRBUILT Year_built YEAR_BUILT 
Number of Floors STOREYNO Stories NUM_STORY 
Building Height gnd1st_delta_m N/A AVG_HEIGHT 

 
It is essential to gather building asset data at the city scale from a wide range of sources 

(e.g., surveys, city projects, city datasets, and public records) and assemble them into a 

single open database with standardized formats and terms. The primary data formats to 

support UBEM include Shapefile/FileGDB, GeoJSON, and CityGML. The ESRI Shapefile 

[32] and FileGDB [33] formats are popular geospatial vector data format used by GIS 

software tools. They typically include two-dimensional (2D) GIS-based building footprint 
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information and a table of building properties or attributes. GeoJSON [34] is a data format 

based on JSON (JavaScript Object Notation) for encoding a variety of 2D GIS data 

structures, which is friendly to web applications built upon JavaScript. However, the 

Shapefile/FileGDB and GeoJSON formats do not provide a schema to define the building 

properties, leading to inconsistency among different datasets.  

Building Energy Data Exchange Specification (BEDES) [35], developed by the U.S. 

Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL), is a 

dictionary of terms and definitions commonly used in tools and activities that help 

stakeholders make energy investment decisions, track building performance, and 

implement energy efficiency policies and programs. BEDES provides common terms and 

definitions for building energy data, which different tools, databases, and data formats can 

share. More than 50 projects, programs, and applications are involved in the development 

of BEDES.  Table 3 shows the BEDES terms for the terms used in the literature for UBEM. 

For city building data in FileGDB or GeoJSON format, BEDES can be used to provide 

more standardized terms. 

Table 3. BEDES terms for the terms used in the literature 

Terms used in the literature BEDES terms 
Building height Building Height 
Number of stories above ground Above Grade Floor Quantity 
Number of stories below ground Below Grade Floor Quantity 
Total floor area Gross Floor Area 
Heated floor area Heated Gross Floor Area 
Number of dwellings Apartment Unit Quantity 
Year of construction Completed Construction Status Date 
Year of refurbishment Completed Major Remodel Date 
Use type (building type) Occupancy Classification 
Heating system type Heating Type 
Annual electricity use Annual Electricity Resource Value 
Annual natural gas use Annual Natural Gas Resource Value 
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Annual site energy use Annual Site Energy Resource Value 
Annual source energy use Annual Source Energy Source Value 

 

CityGML is an international Open Geospatial Consortium (OGC) standard that provides 

an open data model to represent and exchange digital three-dimensional (3D) models of 

cities and landscapes [36,37]. Many UBEM projects selected CityGML as the data model 

to represent and exchange 3D city models, especially for European research projects. 

CityGML was used to represent the semantic 3D city for predicting the photovoltaic 

potential and heating energy demand of urban districts [38] and analyzing strategies for 

improving building standards [39]. TEASER, an open framework for urban energy 

modeling of building stocks, includes a ready-to-use interface for CityGML [40]. The Open 

Source City Database (CityDB) is a flexible framework to create and run city-scale 

building energy simulations with the building datasets in CityGML or GeoJSON formats 

[41]. City Building Energy Saver (CityBES) [42,43], developed by LBNL, is a web-based 

data and computing platform, focusing on energy modeling and analysis of the building 

stock of a city to support district or city-scale building energy efficiency programs. 

CityBES accepts building stock data in both CityGML and GeoJSON formats. 

CityGML defines the 3-D geometry, topology, semantics, and appearance of urban objects, 

including buildings and their components, bodies of water, city furniture (street lighting, 

traffic lights), transportation infrastructure (streets, roads, bridges, tunnels), and vegetation. 

Figure 1 shows some examples of CityGML objects. For many of these attributes 

describing 3-D city models, CityGML provides its standard external code list enumerating 

the values for each attribute type, such as standard lists of land use type 

(LandUseClassType) and building usage type (BuildingUsageType).  
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Figure 1. Examples of CityGML objects [44] 

CityGML enables flexible representation of objects at various levels of detail, which is 

critical as data availability varies widely for a large number of buildings and other urban 

infrastructure. Figure 2 shows a building can be represented at five levels of details: a 

simple 2-D footprint, a box shape, adding slope roofs, adding exterior shades and windows 

and doors, and full details of interior layout and zoning. CityGML version 1.0 was released 

in 2008, and an extended version 2.0 was adopted in March 2012. 

 

Figure 2. Five levels of details (LODs) to represent a building in CityGML [36] 

CityGML has the concept of Application Domain Extension (ADE) to model user-defined 

objects and attributes. The CityGML Energy ADE extends the CityGML Standard by 

features and properties, which are necessary to perform an energy simulation and to store 

the corresponding results [45]. Table 4 listed the mapping of the terms to the standardized 
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CityGML and Energy ADE elements. Several terms are straightforward, including building 

height, number of stories above ground, number of stories below ground, total floor area, 

heated floor area, year of construction, and use type (building type). Some terms are not 

available in CityGML or Energy ADE, as it requires the detailed systems information, 

including number of dwellings, year of refurbishment, and heating system type. The 

EnergyDemand element in the Energy ADE is designed for time series data. Although the 

EnergyDemand element can be used to represent the annual electricity and natural gas use, 

it is too tedious. Moreover, the EnergyDemand element cannot cover the annual site and 

source energy use.  

Table 4. CityGML elements for the terms used in the literature 
Terms used in the literature CityGML and Energy ADE examples 
Building height <bldg:measuredHeight uom="m">6.52</… > 
Number of stories above ground <bldg:storeysAboveGround>2</…> 
Number of stories below ground <bldg:storeysBelowGround>0</…> 
Total floor area <energy:FloorArea> 

  <energy:type>grossFloorArea</…> 
  <energy:value uom="m2">240</…> 
</energy:FloorArea> 

Heated floor area <energy:FloorArea> 
  <energy:type>energyReferenceArea</…> 
  <energy:value uom="m2">240<…> 
</energy:FloorArea> 
Note: energyReferenceArea is referred as heated or cooled 
area in some European reports. 

Number of dwellings Not available, need to specify each unit/dwelling 
Year of construction <bldg:yearOfConstruction>2010</…> 
Year of refurbishment Not available, need to specify the energy conservation 

measures 
Use type (building type) <bldg:usage>1000</…> 

Note: code 1000 is for “residential building”. The codes are 
defined in the BuildingUsageType.xml, according to the 
dictionary concept of GML3. 

Heating system type Not available, need to specify the heating system 
Annual electricity use <energy:EnergyDemand gml:id="…"> 

  <energy:energyAmount> 
    <energy:RegularTimeSeries> 
      <energy:variableProperties> 
        <energy:TimeValuesProperties> 
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          <energy:acquisitionMethod>measurement</…> 
          <energy:interpolationType>succeedingTotal</…> 
        </energy:TimeValuesProperties> 
      </energy:variableProperties> 
      <energy:temporalExtent> 
        <gml:TimePeriod> 
          <gml:beginPosition>2017-01-01T00:00:00</… > 
          <gml:endPosition>2017-12-31T23:00:00</…> 
        </gml:TimePeriod> 
      </energy:temporalExtent> 
      <energy:timeInterval unit="year">1</…> 
      <energy:values uom="kWh">24000</…> 
    </energy:RegularTimeSeries> 
  </energy:energyAmount> 
  <energy:endUse>otherOrCombination</…> 
  <energy:energyCarrierType>electricity</…> 
</energy:EnergyDemand> 

Annual natural gas use Similar to Annual electricity use. Change the “electricity” to 
“naturalGas” in the energy:energyCarrierType element. 

Annual site energy use Not available 
Annual source energy use Not available 

4. City Building Data Sources 

Many cities in the United States provide public building data to support building 

energy efficiency programs and research. This section reviews the public data sources 

provided by six cities to check whether those data are adequate to support UBEM. 

Table 5 shows several public building data sources for the six cities, including San 

Francisco (SF), Chicago (CHI), Los Angeles (LA), Boston (BOS), San Jose (SJ), and 

Portland in Oregon (PDX).  The public building data are typically provided in Shapefile 

or GeoJSON format when the building or parcel footprint data are available. The 

building characteristic data are typically stored in CSV format. The detailed data 

mapping among different data sources is introduced in Section 5.  

Table 5. Public building data sources for six U.S. cities 
City Data source name  File format Records Primary key for mapping 
San 
Francisco
, CA (SF) 

Building Footprints 
(BF) Shapefile 177023 Building footprint 
Land Use (LU)  Shapefile 155468 Parcel ID, parcel footprint 
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Assessor Record (AR)  Fix-width text 207850 Parcel ID 
Energy Benchmarking 
(EB)  CSV 1630 Parcel ID 

Chicago, 
IL (CHI) 

Building Footprints  GeoJSON 820606 Building ID, building footprint 
Energy Benchmarking CSV 2718 Building ID 
Assessor Record Website 165752 Parcel footprint 

Los 
Angeles, 
CA (LA) 

Building Footprints Shapefile 1122422 
Building ID,  
Assessor ID 

Assessor Record CSV 2397615 Assessor ID 
Energy Benchmarking CSV 6489 Building ID 

Boston, 
MA (BOS) 

Building Footprints Shapefile 129370 Building footprint, building ID 
Property Assessment 
(PA)  CSV 172841 Parcel ID 
Energy Benchmarking CSV 1800 Building ID 

San Jose, 
CA (SJ) 

Building Footprints Shapefile 324217 Building footprint, parcel ID 
Zoning (ZO) Shapefile 12295 Zoning district footprint 
Annexations (AN) Shapefile 2370 Annexation footprint 
Assessor Record CSV 106452 Parcel ID 

Portland, 
OR (PDX) 

Building Footprints Shapefile 712334 Building ID 
Energy Benchmarking CSV 410 Building ID 

 

Table 6 shows the data availability to support UBEM of the six cities. All the cities have 

the data of building footprint, gross floor area, number of dwellings, year of 

construction, and building type. The Chicago datasets do not include the building 

height, while the number of stories information is missing in San Jose datasets. For 

UBEM, users can assume the floor-to-floor height to derive the building height or the 

number of stories from each other. The number of stories above ground, the number 

of stories below ground, and the heated floor area are missing in all the datasets. Most 

of the cities have energy benchmarking data for a small portion of the buildings. The 

results show that most cities have adequate public data to support UBEM; however, the 

data are represented in different formats without standardization and there is a lack of 

common keys to map the data between datasets. 
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Table 6. Public building data sources to support UBEM 

 

City 

Building Footprint 

Building Height 

N
o. of Stories (total) 

G
ross floor area 

N
o. of dw

ellings 

Year of Construction 

Year of Refurbishm
ent 

U
se type (building type) 

Heating system
 type 

Annual electricity use 

Annual natural gas use 

Annual site energy use 

Annual source energy use 

SF BF BF AR LU, 
AR, EB 

LU, 
AR LU, AR AR 

LU, 
AR, 
EB 

   EB EB 

CHI BF  BF, 
AR 

BF, EB, 
AR 

BF, 
AR 

BF, EB, 
AR 

 EB, 
AR 

 EB EB EB EB 

LA BF BF  BF, AR, 
EB AR AR AR AR, 

EB 
 EB EB EB EB 

BOS BF BF PA BF, PA, 
EB PA PA, EB PA PA, 

EB 
PA, 
EB EB EB EB  

SJ BF BF  BF ZO, 
AR AN, AR AR ZO, 

AR 
     

PDX BF BF BF BF, EB BF BF, EB  BF, 
EB 

   EB EB 

 
Note: There are no data for the three fields: number of stories above ground, number 
of stories below ground, and heated floor area.  
 

5. Case Study: Development of City Buildings Dataset for San 
Francisco 

This section presents a case study to integrate the city building datasets from multiple city 

departments of San Francisco.  A master dataset was created to include all the original data, 

while a simplification and standardization process was performed to produce the building 

dataset in various formats, including CityGML, GeoJSON, and FileGDB/Shapefile. 
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5.1. Data Sources 

The city of San Francisco provides many public building datasets from multiple city 

departments, including Building Footprint data from the Department of Technology, Land 

Use data from the Department of Planning, Assessor Records from San Francisco County, 

and Energy Disclosure data from the Department of Environment.  

5.1.1. Building footprint dataset 

The Building Footprint dataset is available at the San Francisco’s open data portal [12]. It 

includes the footprints of 177,023 buildings in San Francisco. Figure 3a shows a sample of 

the footprint data in gray.  There are 43 attributes associated with each footprint polygon. 

The dataset includes multiple statistical attributes (the minimum, maximum, range, 

standard deviation, variety, minority, majority, and median) related to the altitude of 

ground and roof and the distances between the ground and the roof. The median value of 

the distance between the roof and the ground can be used as the building height.  

   

           (a) Building footprint                                                (b) Parcel polygon 

Figure 3. A sample of building footprint and parcel polygon data in San Francisco 
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5.1.2. Land use dataset 

The Land Use dataset is also available at the San Francisco’s open data portal [12]. There 

are 15 land use attributes associated with each parcel. The land use data records the address, 

the land use category, the building gross floor area, and the year built. However, those 

attributes are associated with the parcel information (Figure 3b) rather than the building 

footprint (Figure 3a).  

5.1.3. Assessor recorder dataset 

The Assessor Records dataset is maintained by the Office of the Assessor-Recorder [46]. 

The data can be viewed at the San Francisco’s property information map portal [47]. There 

are 57 attributes associated with each assessor record, including the land value, personal 

property value, prior sales price, property usage type, number of stories, number of rooms 

(for residential), year built, and so on. As with the land use dataset, those attributes are 

associated with the parcel information rather than the building footprint (Figure 3).  

5.1.4. Energy disclosure dataset 

Passed in 2011, the San Francisco’s Existing Commercial Buildings Energy 

Performance Ordinance, referred to as the energy disclosure dataset, requires annual 

energy benchmarking, periodic energy efficiency assessment, and public disclosure 

of benchmarking information for commercial buildings with 10,000 square feet (929 

m2) or more of heated and cooled space [48]. The energy disclosure data for 2010 to 

2016 are available at San Francisco’s open data portal [12]. It currently includes 1652 

buildings. The address and parcel number of the energy ordinance results are 

available. The energy ordinance results for each building include the data from 2011 
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to 2016. Each ordinance result includes benchmark status, the reason for exemption, 

ENERGY STAR score, site and source energy use intensities (EUIs), percentage better 

than the national median site and source EUI, total GHG emissions, total GHG emission 

intensity, and weather-normalized site and source EUIs. 

5.2. Data Mapping  

The land use, assessor records, and energy disclosure databases use the Assessor Parcel 

Number (APN) as parcel identifiers to store the building data. We first consolidated the 

parcel-related data and mapped them with the building footprint data to create a master 

building dataset with all the fields/attributes from each dataset. Next, the master dataset 

was simplified and standardized to create 3-D city models for all the San Francisco 

buildings. BEDES was then used to standardize the terms in the building dataset. The final 

dataset products were produced in CityGML, GeoJSON, and FileGDB formats that can be 

used by various urban modeling and analysis tools. 

5.2.1. Consolidating the parcel-related datasets 

The three parcel-related datasets were stored in three different formats with separated 

metadata files in text or Microsoft Word documents. The parcel identifier appeared in each 

row of the three datasets as the key to mapping them. Figure 4 shows the workflow of the 

parcel-related dataset consolidation. The land use dataset was provided in the Shapefile 

format, which includes both the parcel geometry and the related attributes. The land use 

dataset was first split using QGIS to create parcel geometry only and the land use-related 

attributes. QGIS [49] is a free and open source GIS tool. A script written in Ruby [50] was 

developed to merge the land use attributes in the CSV format, the energy disclosure in the 
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CSV format, and the assessor records in a fixed-width text format. Finally, the merged 

attributes and the parcel geometry were joined together using QGIS to create the parcel-

related dataset in the Shapefile format. 

 

Figure 4. Workflow of parcel-related dataset consolidation 

5.2.2. Mapping the building footprint with parcel polygon 

There is no existing unique building identifier for different city departments to use to link 

their data directly with the buildings. The Pacific Northwest National Laboratory is 

currently working on a project to create unique building identifiers for all the buildings in 

the United States. Among the available data sources, most of the building-related 

information is associated with the parcel number. Therefore, it is necessary to map the 

building footprint with the parcel polygon to link the building datasets. One building 

footprint may overlap with multiple parcel polygons, while one parcel polygon may also 
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overlap with multiple building footprints. It makes the mapping procedure complicated. 

There are 177,023 buildings in the San Francisco building footprint dataset. Figure 5 shows 

the distribution of their height and footprint area. We eliminated buildings with a lower 

than 2.5 m height and a floor area of less than 30 m2, which resulted in 171,474 remaining 

buildings.  

 

(a) Building Height 

 

(b) Building Footprint Area 

Figure 5. Building height and footprint area distributions of all San Francisco 

buildings 

Two methods were used to map the building footprint with the parcel polygon. The first 

method is straightforward and uses the central point of a building to find the corresponding 
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parcel polygon, which contains the building’s central point. Using this method, we 

successfully found one parcel for each building. However, it may not be accurate when the 

building is overlapped with multiple parcels.   

The second method is to do polygon clipping and find the overlap areas of the building 

with each parcel.  We set the minimum overlap percentage to 10% of the building footprint 

area to eliminate those overlaps with small area due to the slight shifting in the data layer. 

Figure 6 shows the number of parcels per building using the polygon clipping method. It 

shows that 87.4% of the buildings belong to only one parcel, while 12.4% of the buildings 

are mapped with two parcels. Only 0.2% of the buildings are overlapped with more than 

two parcels. For the buildings overlapped with multiple parcels, we chose the parcel with 

the most significant overlap area. 

 

Figure 6. Number of parcels per building using the polygon clipping method 

The results generated by both methods are very close. The same 154,813 buildings (94.4%) 

were found using either method. The second method provides more detailed information 

than the first one; however, it is much more challenging to implement.  

Max: 6
87.4%

12.4%
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As a starting point, the first method was adopted by the San Francisco Department of 

Technology to assign the parcel for each building. For the following steps, we used the first 

method to generate the mapping between building footprints and the parcel polygons and 

created the master dataset with all the properties of each building.  

5.3. Data Standardization 

5.3.1. Simplifying and standardizing the dataset 

There are 183 attributes for each building in the master dataset. To make the dataset more 

concise, we exclude 77 attributes in the final product (Table 7). There are six reasons for 

the exclusion of those attributes:  

(1) There are too many geometry statistics in the building footprint dataset. For the 

final products, the building height, building perimeter, and footprint floor area are 

included, and the rest of 36 geometry statistics are excluded;  

(2) There are several fields from different data sources for the same data. The data 

fields with more detailed information are kept, while the others are excluded;  

(3) There are 12 fields without data. Those empty fields are excluded;  

(4) We excluded 12 fields related to the assessor’s closed roll (property tax);  

(5) We excluded nine fields related to the property values as they change every year 

and do not directly relate to energy modeling; and  

(6) One field is used to link the energy disclosure data with the San Francisco property 

information map but could not be used for other applications. We excluded this 

field.  

Table 7. Reasons and examples of fields to be excluded 
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Reason for 
exclusion 

No. of 
fields 

Example fields Description Data 
source 

Exclude geometry 
statistics 36 

gnd_MINcm Minimum ground 
elevation 

Building 
Footprint 

STDcm_1st Standard deviation of 
first return (roof 
altitude) 

Building 
Footprint 

hgt_MAXcm Maximum height Building 
Footprint 

More detailed data 
available from 
other sources 

7 

Building 
Address 

 Energy 
Disclosure 

YRBLT Year Built Assessor 
Recorder 

No data and/or no 
field description 12 

REPRIPRVAL Prior Sales Price Assessor 
Recorder 

LEASEHOLD Leasehold Notation Flag Assessor 
Recorder 

WORKFVLAND  Assessor 
Recorder 

Exclude assessor’s 
closed roll 
(property tax) 

12 

ROLLYEAR  Closed Roll Year Assessor 
Recorder 

RP1LNDVAL Closed Roll Assessed 
Land Value 

Assessor 
Recorder 

Exclude property 
sale information 9 

RECURRPRIC Current Sales Price Assessor 
Recorder 

RECURRSALD Current Sales Date 
(YYMMDD) 

Assessor 
Recorder 

Specific for certain 
application 1 

PIM Link Link to San Francisco 
Property Information 
Map 

Energy 
Disclosure 

 

After the simplification, there are 106 attributes left in the final dataset, including seven 

from the building footprint dataset, 17 from the land use dataset, 21 from the assessor 

recorder dataset, and 61 from the energy disclosure dataset. One BEDES term is used for 

each attribute. Table 8 shows a list of example attributes in the final master dataset. The 

results are stored in FileGDB and GeoJSON formats.  

Table 8. Example attributes in the final master dataset 

Original filed BEDES term 
sf_MBLR Assessor parcel number 
gnd1st_delta_m Building Height 
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STREET Street Name 
RESUNITS Residential Units 
BLDGSQFT Gross Floor Area 
YRBUILT Completed Construction Status Date 
RP1CLACDE Property Class Code 
CONSTTYPE Construction Type 
ZONE Zoning Code 
FBA Basement Floor Area 
STOREYNO Number of Floors 
UNITS Number of Units 
ROOMS Number of Rooms 
BEDS Number of Bedrooms 
BATHS Number of Bathrooms 
RP1LSTMOD Last Modified Date 
Benchmark 2015 Status 2015 Benchmark Compliance Status 
2015 Reason for Exemption 2015 Benchmark Reason for Exemption 
2015 ENERGY STAR Score 2015 ENERGY STAR Assessment Value 
2015 Site EUI (kBtu/ft2) 2015 Annual Site Energy Resource Intensity 
2015 Source EUI (kBtu/ft2) 2015 Annual Source Energy Resource Intensity 
2015 Total GHG Emissions Intensity 
(kgCO2e/ft2) 2015 Direct Annual CO2e Emissions Intensity 

 

5.3.2. Creating the CityGML with Energy ADE datasets 

The Shapefile/FileGDB and GeoJSON formats can standardize the 2D building 

footprint data; however, there are not schemas for the building attributes. Although 

the BEDES terms can make the terms more readable, a standardized and machine-

readable dataset is still necessary. Table 4 shows the CityGML and Energy ADE 

elements of the data needs for the UBEM. As not every attribute can be mapped to a 

standard CityGML or Energy ADE element, many attributes were named as CityGML 

generic types (gen::_GenericsAttribute) to keep the records of the collected information. 

For example, the annual site energy use intensity (EUI) of buildings in the year of 2015, 

available from the disclosure dataset named “SiteEUI_15”, is represented using a generic 

attribute defined in the generic schema with an element as <gen::doubleAttribute name = 

“SiteEUI_15”>. 
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As a single CityGML file for San Francisco is too large (2.75 GB) to view or edit in general 

GIS or city building data visualization and analysis tools, the master buildings dataset was 

transformed into 16 CityGML files (at various sizes from 20 MB to 368 MB) according to 

the partition of the 16 planning districts of San Francisco, considering the efficient 

management of the CityGML files. When compressed, the total size of these 16 files was 

116 MB. These planning districts are groups of census tracts and are used in various areas 

of the planning process, including analysis, management, and some parts of the general 

plan. Figure 7 shows the geographical locations and names of these districts and provides 

an example of the 2-D visualization of three CityGML files partitioned by planning 

districts: namely, Downtown, South of Market, and Mission.  

 

 

Figure 7. Partitioning of the CityGML files according to the 16 planning districts in  

San Francisco 

Since the CityGML files were generated and validated by the standard CityGML 2.0 and 

Energy ADE schemas, the transformed 16 files for San Francisco can generally be used by 

urban visualization, analysis, modeling, and data management software. 
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5.4. Final products 

The final products are the San Francisco buildings dataset covering the entire existing 

building stock, represented in multiple formats, including CityGML with Energy ADE, 

GeoJSON, and Shapefile/FileGDB. The final products are freely available to the public. 

In the future, the datasets could be enriched to include data from other building-

related sources (e.g., changes/retrofits of buildings based on the building permits) 

and from other sectors (e.g., transportation, city water body, and city furniture such 

as light poles and plant pots). The methods and process used to develop the buildings 

dataset for San Francisco are generic and can be adopted by other cities.  

6. Discussion 

6.1. Applications of the city building dataset 

The developed city buildings dataset can be used by multiple applications in multiple 

ways. Two examples are illustrated as follows. 

6.1.1. Urban scale energy modeling 

Chen et al. [10] presented a case study using LBNL’s CityBES1 to analyze the potential 

retrofit energy use and energy cost savings of five individual ECMs and two measure 

packages for 940 office and retail buildings in six city districts in northeast San 

Francisco, California. A subset of the final products (the San Francisco building 

dataset) was used in CityBES to perform the UBEM to evaluate building retrofits.  

                                                        

1 https://citybes.lbl.gov  

https://citybes.lbl.gov/
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6.1.2. Visualization of energy disclosure dataset 

Figure 8 shows the visualization feature using the San Francisco’s energy disclosure 

dataset. The original energy disclosure dataset is presented in CSV/Excel format. Through 

the data consolidation procedure, each record of the energy disclosure dataset was linked 

to the associated building. The energy disclosure dataset thus can be visualized in a better 

way with the color-coded 3-D building geometry and map.  Figure 8 (a) shows the 

benchmark status of each building in 2015, including Complied, Exempt, Pending, and 

Violation; while Figure 8 (b) and (c) present the ENERGY STAR score and site energy 

use intensity of each building in 2015.  

 
(a) Benchmark Status 
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        (b) ENERGY STAR Score                                              (c) Site EUI 

Figure 8. Visualization of San Francisco’s energy disclosure dataset 

6.2. Data quality 

The quality of the building dataset needs to be improved over time. For example, some of 

the building footprints include the yard and garden area, which makes the median building 

height smaller than the real median building height. The source datasets have common data 

issues, such as missing or invalid data. 

For urban building energy modeling, some critical data are not available in the dataset, e.g., 

window-to-wall ratio, construction type, and energy system type (e.g., HVAC, lighting). 

Advanced urban sensing technologies need to be developed and applied to obtain such 

information at the city scale. For example, we can use drones (unmanned aerial vehicles) 

and cars to take photos and videos, use infrared images, and apply machine learning to 

extract those detailed building data.  
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6.3. CityGML and Energy ADE data model 

CityGML is an effective way to represent 3-D geometry information. It covers several 

high-level building characteristics, but it does not have the detailed information necessary 

for building energy modeling. The Energy ADE for CityGML is currently under 

development, to integrate the building spatial and physics properties for urban energy 

simulation [51,52]. When representing the same amount of information for a 3-D model, 

the size of a CityGML file is typically larger than the GeoJSON or FileGDB format. 

Therefore, powerful computing resources are necessary to process CityGML files. Splitting 

a city into multiple CityGML files can be more feasible.  

6.4. Data sources and ownership 

The current building data are static characteristics or historical data. With the increasing 

adoption of the Internet of Things, more and more real-time dynamic sensing data are 

becoming available, which are a rich data source for urban applications.  

The case study integrates the data from public sources. However, lots of private building 

data, e.g., Google Map, OpenStreetMap, CoStar, are available with a different licensing 

policy. Developing a system to handle the public and private data is necessary for long-

term data management.  

6.5. Limitations 

Although datasets of multiple U.S. cities have been developed using the presented data 

sources, methods and workflow, their application to cities in other countries still needs to 

be investigated. Part of the authors’ on-going research is looking at other data sources, such 
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as building permits which can provide good information on changes to buildings. 

Integrating these additional existing and new sources can create new data challenges.  

7. Conclusions 

The building data needs for UBEM typically include the GIS building footprint, building 

height, total number of stories, number of stories above ground, number of stories below 

ground, total floor area, heated floor area, number of dwellings, year of construction, year 

of refurbishment, use type (building type), heating system type, annual electricity use, 

annual natural gas use, annual site energy sue, and annual source energy use.  

The data standards/formats used in UBEM mainly include the Shapefile/FileGDB, 

GeoJSON, and CityGML. The current data standards can provide a standardized 

representation of the 2D or 3D building geometry information. However, the 

Shapefile/FileGDB and GeoJSON files do not provide schemas for the building attributes. 

The CityGML and Energy ADE provide the standardized presentation for several 

necessary data fields and future enhancements are necessary to cover more high-level 

building information.   

The existing public data sources from several pioneer cites are adequate to support UBEM. 

However, the data are represented in different formats without standardization and there 

lack common keys to map the data from diverse sources. The mapping of building footprint 

and parcel polygons to link multiple datasets is the most complicated and challenging step 

for the data integration. In future, city’s buildings datasets can use the standardized unique 

building identifiers for indexing which makes the mapping and linking of diverse building 

datasets straightforward.  
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A city-scale building dataset is a key to urban building energy modeling. Today, cities put 

an enormous amount of effort into collecting and sharing building data via open web-based 

data portals. When this is done, it is essential to provide the data in a standardized way, to 

enable interoperability and adoption by various types of urban applications. CityGML, an 

international standard for 3-D city models, is an excellent tool for representing and 

exchanging city data among different users and different tools. This paper presented 

methods and tools that can be used to integrate city-scale building data from multiple city 

departments. The data are represented in the CityGML format, as well as in the GeoJSON 

and Shapefile/FileGDB formats, to support existing urban modeling and analysis tools, as 

well as future developments.   

The buildings dataset is open access and can be used by a variety of urban/city applications, 

including retrofit analysis of existing buildings, urban planning, and visualizing the energy 

performance and code compliance status of building stock. The developed scripts, tools, 

and tutorials, although based on the city of San Francisco, have been applied to datasets in 

other U.S. cities including San Jose, Los Angeles, Chicago, New York City, and Boston, 

enabling researchers and city consultants to create standardized buildings datasets for their 

urban applications.  
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