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Abstract 
Energy-related occupant behavior is crucial to design and operation of energy and control 
systems in buildings. Occupant behaviors are often oversimplified as static schedules or settings 
in building performance simulation ignoring their stochastic nature. The continuous and dynamic 
interaction between occupants and building systems motivates their simultaneous simulation in 
an efficient manner. In the past, simultaneous simulation has relied on co-simulation approaches 
or customized source code changes to building simulation programs. This paper presents 
Buildings.Occupants, an open-source package implemented in Modelica, for the simulation of 
occupant behaviors of lighting, windows, blinds, heating and air conditioning systems in office 
and residential buildings. Examples were presented to illustrate how the models in the Occupants 
package are capable to simulate stochastic occupant behaviors. The major contribution of this 
work is to introduce the equation-based modelling approach to simulate occupant behaviors in 
buildings, and to develop an open-source Occupants package in the Modelica language.  

Keywords: Occupant behavior; Modelica; Modelica Buildings Library; Modelica Occupants 
Package; Occupant behavior modeling 
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1. Introduction 
1.1 Modeling occupant behaviors in building simulation 
Occupants are not passive participants in buildings. Rather, they actively respond to and interact 
with building systems [1]. Occupant’s energy-related behavior in buildings include their comfort 
(thermal, visual, aural and olfactory) preference, presence and movement, and interactions with 
building components and systems (lighting, HVAC, windows, blinds). Previous researches ([2], [3], 
[4], [5], [6]) have confirmed that occupant behaviors have significant impacts on building energy 
performance and occupant comfort. Different occupant behaviors, as simple as window opening, 
might lead to a significant variation in the building Energy Use Intensity (EUI), e.g., by a factor of 
four in commercial buildings in United States [7], and by a factor of three in identical apartments 
in Denmark [8]. Additionally, occupant behaviors are one of the key reasons of the performance 
gap between the design and operation stage of buildings [9], [10]. It is argued that the difference 
between the actual and designed energy use depends, to a large degree, on the different use 
patterns of energy systems between the designed and actual operation of buildings [11].  
 
Despite the significant influence of occupant behaviors on building energy consumption, 
occupant behaviors are often over-simplified in the building simulation for the design, 
commissioning and operation of buildings [12]. It is a common practice to treat occupant 
behaviors as static, deterministic schedules or settings in building performance simulation [13], 
ignoring the stochastic, diversity and dynamics of occupant behaviors in reality. A more realistic 
and robust representation and modelling of occupant behaviors could help to improve building 
simulation accuracy and to understand the building design-operation performance gap. 
 
Accurate modelling and prediction of occupant behavior could not only improve the accuracy of 
building simulation but also enhance the performance of building control systems. Mirakhorli 
and Dong (2016) concluded that incorporating the prediction and modelling of occupant behavior 
into HVAC system control could achieve three benefits: to decrease discomfort when the room 
is first being occupied, to improve energy efficiency of HVAC system through control optimization, 
and to save energy when a room is unoccupied [14]. Goyal et al. (2012) found that the errors in 
occupancy modelling have a stronger effect on the performance of model predictive control [15] 
compared with errors in predicting outdoor temperature or solar load. The stochastic nature of 
occupant behavior requires and facilitates the stochastic model predictive control [16], which 
could demonstrate an energy saving potential of 5% - 38.3% [17], [18].  
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1.2 Modelica & Buildings Library 
Currently, the field of building simulation is dominated by the imperative programming. 
Imperative programming languages assign values to functions and declare the sequence of 
execution of these functions, which tightly couples the numerical solution methods with model 
equations and input/output routines [19]. The imperative programing facilitates efficient 
computation in building energy simulation and performance assessment, in which cases all the 
inputs (for instance the physical parameter of), boundary conditions and initial conditions have 
been given. However, the tight coupling of numerical solutions with equations and input/output 
of imperative programming limits the applicability and extensibility of models in other uses, 
which becomes increasing important recently [20], such as models for control optimization, 
commissioning and operation [21], coupled models of thermal and electrical systems (systems 
combining large and small time constants, algebraic and differential equations [22], continuous 
time and discrete event dynamics [23]). 
 
To complement the current simulation tools and to efficiently simulate the important problems 
which could not be efficiently computed by imperative programming, the equation-based 
modelling emerges and becomes increasingly popular. An equation-based model specifies the 
mathematical equations, in contrast to specifying the sequence of computing assignments as in 
the imperative programming [19]. A major benefit of the equation-based modeling is in solving 
optimization problems, because equation-based modeling could 1) support automatic 
conversion of simulation models into optimization problems, 2) provide analytic expressions for 
gradients to facilitate gradient-based optimization methods, 3) allow automatic generation of 
the finite dimensional approximations defined by the collocation methods [19].  In paper [19], an 
example was presented to show that the equation-based language could speed up the solution 
of an optimization problem by a factor of 2200 compared with traditional imperative language 
modeling. 

As a representative of the current trend towards equation-based modelling, Modelica, an 
equation-based, object-oriented language [24], has been introduced and applied in building 
simulation [25], [26]. Currently, applications of Modelica are majorly from researchers rather 
than practitioners. One obstacle limiting the wide application of Modelica in building 
performance simulation is the lack of standardized library. To fill in the gap, Wetter et al. (2014) 
developed a free open-source building simulation library with Modelica [27]. The latest version, 
Modelica Buildings library 6.0.0, has been released on June, 14, 2018, which contains over 500 
models for:  

• HVAC systems, 
• controls, 
• heat transfer among rooms and the outside, 
• multi-zone airflow, including natural ventilation and contaminant transport, 
• single-zone computational fluid dynamics coupled to heat transfer and HVAC systems, 
• data-driven load prediction for demand response applications, and 
• electrical DC and AC systems with two- or three-phases that can be balanced and 

unbalanced. 
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The primary use of the library is for flexible and fast modeling of building energy and control 
systems to accelerate innovation leading to cost-effective low energy systems for new and 
existing buildings. The library is particularly suited for  

• rapid prototyping of new building systems, 
• analysis of the operation of existing building systems, 
• development, specification, verification and deployment of building controls within a 

model-based design process, and 
• reuse of models during operation for functional testing, verification of control sequences, 

energy-minimizing controls, fault detection and diagnostics.  

 
1.3 Objectives 
The major goal of the Buildings.Occupants package is to facilitate the occupant behavior 
simulation in Modelica language. One way to realize this goal is to utilize the standardized co-
simulation interface. For example, Plessis et al. (2014) [28] implemented a co-simulation 
between the SMACH platform for occupant behavior and the BuildSysPro library for the building 
and its energy system using the standardized Functional Mockup Interface (FMI) [29]. Hong et al. 
(2015) proposed and implemented a new occupant behavior ontology with the eXtensible 
Markup Language (XML) schema obXML [30], [31], and then developed obFMU for co-simulation 
[32] using FMI. Belafi et al. used the obXML to compile a library of occupant behavior models in 
2016 [33]. 
 
Although obFMU can be used with Modelica tools through co-simulation, there are challenges of 
computing performance due to the Modelica’s differentiability requirements. Occupant 
behaviors are often in the form of discrete event, and introduce abrupt changes into building 
environments. Differentiability requirements in Modelica are vital since they are necessary and 
sufficient conditions to establish existence and uniqueness of a solution to the differential 
equations. In addition, they are also needed to avoid computational problems. Contrarily, if the 
occupant behavior events are modeled directly within Modelica, the Modelica complier can study 
the structure of the problem a prior, and will instruct the integrator to simply integrate exactly 
up to the point where an abrupt change occurs and then restart when the event occurs. This 
completely addresses the computational difficulties resulting from the discontinuous change in 
system variables. Therefore, there is a need to develop a library of occupant behavior models in 
Modelica. Besides, a Modelica package of occupant behavior models could be more conveniently 
integrated into Modelica models compared with the co-simulation approach. This paper 
introduces an effort to develop such a package, the Buildings.Occupants, which is open source, 
and would be a package of the Modelica Buildings Library. 
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In Section 2, the subpackages and models of the Occupants package are introduced with more 
details. The model validation is presented in Section 3. Three models were selected as examples 
to illustrate how the Occupants package could be utilized to simulate complex occupant 
behaviors. The three selected models represent three model types implemented in the 
Occupants package, i.e. the state model, the transition model, and a combination of state and 
transition model. Section 4 addresses the key issue of occupant model selection. Conclusions are 
drawn in Section 5.  
 
The major contribution of this study is to introduce the equation-based modelling approach to 
simulate occupant behaviors in buildings, and to develop an open-source Buildings.Occupants 
package in Modelica to share with the building simulation community as well as to encourage co-
development. The Buildings.Occupants could be downloaded from Github1 in the next official 
release of Modelica Buildings Library and is currently available at a custom branch on Github2. 

2. The Occupants Package 
2.1 Overview 
The Occupants package was developed as part of the Buildings.Library [27]. Therefore, the 
convention of annotations and variable names are consistent with the Buildings.Library. 
 
Many occupant behavior models have been developed and reported in the literature. We 
categorized and selected some models to be implemented in Modelica as a starting point of the 
initial release of the Occupants package. These models are selected because they are more 
commonly used and are better documented in terms of the data source, mathematical equation, 
independent variables, parameter values etc. We did not propose any new occupant behavior 
models in this work. Instead, we selected and implemented models proposed by other 
researchers. Table 1 lists occupant models included in the package. Summary of these selected 
models are available in [34] as well as full details in the original reference papers.  
 
To summarize and present the occupant behavior models in a consistent form, the Drivers-
Needs-Actions-Systems (DNAs) framework proposed by Hong et al. [28] were utilized, as 
illustrated in Figure 1.  

• Drivers refer to the environmental factors that stimulate occupants to take an action. In 
the Occupants Library, drivers are the model inputs, varying from indoor/outdoor air 
temperature, to solar intensity/altitude.  

• Needs represent occupants’ requirement, which has not been explicitly represented but 
would be implicitly reflected by the dynamic characteristics of the models. For instance, 
occupants need to remain thermal comfort in buildings. Therefore, the model dynamics 
would demonstrate a trend that it is more likely for occupants to turn on the air-
conditioning when the indoor temperature rises above the comfort limit.  

• Actions describe how the occupants interact with the building systems. In the Occupants 
library, actions are the model outputs. In the current version of Buildings Library, only the 

                                                      
1 https://github.com/lbl-srg/modelica-buildings 
2 https://github.com/lbl-srg/modelica-buildings/tree/issue1162_obModelica 



6 
 

binary-variable actions were included, i.e. turn on or turn off a specific equipment. In the 
future, models with actions to adjust the temperature set-point might be added to the 
library.  

• Systems refer to which building (residential, office, schools, etc.) and equipment (lighting, 
blinds, windows, heating, AC, etc.) the occupants are interacting with. 

 

 
Figure 1: Application of DNAs ontology to the Occupants Package 

 
The Version 1.0 of Occupants Package contains 34 models to simulate occupants’ interaction with 
windows, blinds, air conditioning, lighting, and space heating systems in two building types, 
residential and office buildings. The structure of the Occupants package is illustrated in Figure 2. 
 

 
Figure 2: Overview of the Occupants package 

 
Table 1: List of occupant behavior models included in the Occupants package 

 
 Building 

System 
Reference Survey 

Region 
Drivers 
(inputs) 

Actions Remarks 

Model 
Inputs

Drivers

Model 
Outputs

Actions

Blinds

Systems

Window

Lighting

Heating

AC

Residential

Office
Model parameters 

and dynamics

Needs

Occupants Package

DNAs Ontology

Buildings.Occupants BaseClasses

Residential Office

WindowsAC Heating WindowsBlinds Lighting Occupancy
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Office Occupancy Wang et al. 
2005 [35] 

California, 
US 

N/A Occupied 
/not 

For single 
person office 
only 

Blinds Newsham 
1994 [36] 

Japan Solar 
Intensity  

On/off  

Inkarojrit 
2008 [37] 

California, 
US 

Solar 
Intensity, 
Self-
reported 
sensitivity 
to 
brightness 

On/off  

Haldi and 
Robinson 
2008 [38] 

Swiss Indoor 
Temp. 

On/off  

Haldi and 
Robinson 
2008 [38] 

Swiss Outdoor 
Temp. 

On/off  

Zhang  and 
Barrett 
2012 [39] 

Sheffield, 
UK 

Solar 
Intensity 

On/off  

Zhang  and 
Barrett 
2012 [39] 

Sheffield, 
UK 

Solar 
Altitude 

On/off  

Window Rijal et al. 
2007 [40] 

UK Indoor 
Temp., 
Outdoor 
Temp., 
Comfort 
Temp. 

On/off  

Haldi and 
Robinson 
2008 [38] 

Swiss Indoor 
Temp. 

On/off  

Haldi and 
Robinson 
2008 [38] 

Swiss Outdoor 
Temp. 

On/off  

Herkel et 
al., 2008 
[41] 

Freiburg, 
Germany 

Outdoor 
Temp. 

On/off 3 models, for 
different 
window 
types 

Yun and 
Steemers 
[42] 

Cambridge, 
UK 

Indoor 
Temp. 

On/off  
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Yun and 
Steemers 
[42] 

Cambridge, 
UK 

Outdoor 
Temp. 

On/off  

Haldi and 
Robinson 
2009 [43] 

Lausanne, 
Switzerland 

Indoor 
Temp., 
Outdoor 
Temp. 

On/off  

Zhang  and 
Barrett 
2012 [39] 

Sheffield, 
UK 

Outdoor 
Temp. 

On/off 5 models, for 
different 
window 
orientations 

Lighting Hunt 1980 
[44] 

Germany Illuminance On/off  

Love 1998 
[45] 

Calgary, 
Canada 

Illuminance On/off 2 models 
generated 
from 
different 
occupants 

Reinhart 
and Voss 
2003 [46] 

Germany Illuminance On/off  

Gunay et 
al. 2016 
[47] 

NA Illuminance On/off  

Residential AC Ren et al. 
2014 [48] 

China Indoor 
Temp. 

On/off 2 models, for 
bedroom 
and living 
room 

Heating Nichol 
2001 [49] 

UK Outdoor 
Temp. 

On/off  

Nichol 
2001 [49] 

Europe Outdoor 
Temp. 

On/off  

Nichol 
2001 [49] 

Pakistan Outdoor 
Temp. 

On/off  

Windows Nichol 
2001 [49] 

UK Outdoor 
Temp. 

On/off  

Nichol 
2001 [49] 

Europe Outdoor 
Temp. 

On/off  

Nichol 
2001 [49] 

Pakistan Outdoor 
Temp. 

On/off  
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2.2 BaseClasses 
This package contains models in the generic form, used for instantiating specific occupant 
behavior models for windows, blinds, air-conditioning, lighting and heating. In general, the 
behavior models implemented in the Occupants package are categorized into two types: the 
state model and the transition model. The state model, also called the Bernoulli model, 
characterizes the probability of occupant behavior at different states. For instance, ON and OFF 
are two states for lighting behavior; opening and closing are two states for blind behavior. In the 
state model, occupant behavior state at different time steps is treated as independent and 
identically distributed (i.i.d.) random variables. The distribution of random variables is modeled 
as a function of indoor and outdoor environmental parameters/variables, as illustrated in the 
Inputs column of Table 1. The models in the package falling into this category include: 

- Linear regression, which models the probability as a linear function of predictors; 
- Logistic regression with one or two predictors, where the probability that occupant 

behavior state is modeled as a logistic/sigmoid function of linear combinations of 
predictors; 

- Weibull model, where the behavior state is represented as i.i.d. Weibull random 
variables.  

The state model needs to generate random variables at each simulation step. To avoid the 
frequent change of states, the default simulation time step is set to 120 seconds, which is 
adjustable for users by tuning the parameter of samplePeriod to make sure the time step is 
suitable for their simulation purpose. 
 
The second type of occupant behavior model is the transition model, which calculates how 
frequently the occupant behavior changes and characterizes the duration of certain occupant 
behavior as a random variable. An example of a transition model is the so-called survival model. 
The survival model only needs to draw a random number when there is a change in the occupant 
behavior, and is therefore more computationally efficient. The Wang2005Occupancy model 
belongs to the survival model. We incorporate two types of survival models in the BaseClasses 
package for extensibility: one is to model the duration as an exponentially distributed random 
variable while the other model as a Weibull distribution. 
 
2.3 Occupant behavior models 
These packages include models for occupants’ interaction with windows, blinds, air conditioning, 
lighting, and space heating systems. All models in these packages call functions defined in the 
BaseClasses. The occupant behavior models are grouped into two packages based on the building 
types they are applied to: one package for residential buildings, and the other for office buildings. 
 
Residential buildings 
Currently, there are eight occupant behavior models in the residential package to simulate 
occupants’ interaction with air-conditioning, heating and windows. The Weibull distribution was 
utilized to characterize how the probability of occupants to turn on/off the air-conditioning varies 
with indoor air temperature, different parameter values were chosen for the AC behaviors in the 
bedroom and living-room [48]. The logistic regression was used to describe how the outdoor 
temperature influence the probability of occupants to turn on/off the window and heating [49]. 
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Office buildings 
There are four sub-packages to simulate occupant behavior in office buildings.  

• There are six models in the Blinds sub-package. Simple threshold method [36] and logistic 
regression model [37], [38], [39] were chosen to fit occupants’ blinds behavior. The 
drivers (model inputs) include solar intensity ([36], [37], [39]), solar altitude [39], indoor 
air temperature [38], and outdoor air temperature [38]. 

• There are 14 models in the Windows sub-package. The threshold method [40], one-
dimensional logistic regression ([38], [39], [41], [42]), and two-dimensional logistic 
regression ([40], [43]) were chosen as the model equation forms. The indoor air 
temperature ([40], [38], [43], [42]), outdoor air temperature ([40], [38], [43], [41], [42], 
[39]), and occupants’ comfort temperature ([40]) serve as the model inputs. Different 
parameter values were chosen for different window types ([41]) and different window 
orientations ([39]). 

• There are five models in the Lighting sub-package. Probit curve ([44], [46]) and logistic 
regression ([45], [47]) were chosen to build up the lighting behavior models. The model 
input is illuminance level on the working plane/desk ([45], [46], [47]). Since occupants are 
more likely to turn on and off the lighting when they enter or leave the space compared 
with when they stay in the space, different parameter values were chosen to specify this 
difference ([46], [47]) and are subscripted as Arriv and Inter, separately.  

• There is one model in the Occupancy sub-package. The survival model was utilized to 
simulate whether the office is occupied or not in office settings based on a field study in 
California with 35 single-person offices at a large office building [35]. No model input is 
needed for this model. 

Previous researches pointed out the distinction between individual occupant behavior models 
and aggregate models for occupant behavior simulation [50], [51]. Individual models are derived 
based on data obtained from each occupant while aggregate models are derived from an 
aggregated group of people. To estimate the peak load, the individual models might outperform 
aggregate models, while to estimate the aggregated energy consumption, aggregate or individual 
models have similar performance [50]. We do not distinguish individual models from aggregate 
models, and have included both of them in the Buildings.Occupants package. For instance, the 
Love1998Light1 and Love1998Light2 are individual models while Reinhart2003Light is the 
aggregate model. The users could tell the model type according to the models’ information page. 
For advanced users, they could define either individual or aggregate models by inheriting from 
BaseClasses and tuning the model parameters.    
 
2.4 Implementation of stochastic behavior 
A key feature of occupants’ interaction with buildings lies on its stochastic behavior. Given the 
same physical environment, even the same person might respond differently. It is a common 
practice to use a probability function to characterize occupant behaviors. However, in building 
simulation, an explicit state is needed to describe the state of a specific building equipment. For 
instance, given an indoor temperature, occupant might have a probability to turn on the AC. But 
in a specific simulation, we need to know exactly whether the AC is on or off.  
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To generate a random binary variable from the value of probability, a seed is usually needed. By 
fixing the seed value, simulators could replicate and verify the result in a later simulation. In the 
Occupants package, we need to repetitively call the binary variable generation function every 
samplePeriod. If the seed is fixed as the implementation shown in Equation 1, the same number 
would be generated each time when calling the function, which could not reflect the stochastic 
behavior as we wish. To solve this problem, we multiplied the parameter seed with the time to 
generate a series of time-dependent seeds, and input this series of seeds into the random 
variable generator as shown in Equation 2. Through this way, we could generate the same results 
in two simulations once the seed is fixed, and meanwhile we could randomly generate different 
values in two time steps within the same simulation due to the time- dependent input globalSeed.  
 
on = Buildings.Occupants.BaseClasses.binaryVariableGeneration(p=
p, globalSeed=seed)                                                             Equation 1 
 
on = Buildings.Occupants.BaseClasses.binaryVariableGeneration(p=
p, globalSeed=integer(seed*time))                        Equation 2 
 

3. Validation and Examples 
A validation model has been created for each model included in the Occupants package for two 
purposes, first for debugging, and second to serve as an illustration to users on how the models 
could be used. In this section, three models were selected as the representatives of three model 
types implemented in the Occupants package, i.e. the state model, the transition model, and a 
combination of state and transition model. 
 
3.1 Ren2014ACBedroom: a state model example 

 
(a) Photographic modeling interface 
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(b) Modeling results 

Figure 3: Validation of the Ren2014ACBedroom model 
 

The Ren2014ACBedroom model simulates occupants’ AC behavior in the bedroom of residential 
buildings, which was originally fitted from the field study in China in 2014 and documented in 
[48]. Weibull distribution was utilized to characterize how the probability to turn on or turn off 
the air-conditioning is influenced by the indoor air temperature. Two inputs are needed in this 
model: occupancy and indoor air temperature. In real practice, users could plug in the scheduled 
or simulated occupancy as the first input, and plug in the simulated indoor air temperature as 
the second input. The output state of AC, rather than a pre-defined fixed schedule, could serve 
as an input for the building energy/thermal environment simulation, which could be a more 
realistic representation of occupant behavior and accordingly help to improve simulation 
accuracy. 
 
In this demonstration, the Modelica built-in Step function was utilized to simulate occupancy, 
and the Modelica built-in Sine function was utilized to simulate the variation of indoor air 
temperature, as illustrated in Figure 3(a). Two indoor-temperature-dependent probability 
functions (turn on probability and turn off probability, respectively) need to be calculated to 
determine the state of AC. 
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Figure 3(b) shows the input, intermediate and output variables for a 3600-second-period 
simulation. When the space is unoccupied, the AC is always off. When the space is occupied, the 
state of AC is determined by the indoor air temperature. Higher indoor air temperature, higher 
chance to turn on the AC and lower chance to turn off the AC. Then a binary random variable will 
be generated every 120 seconds based on the calculated pon and poff to determine the state of 
AC. The frequency of random variable generation could be tuned by the user by adjusting the 
parameter samplePeriod. To save computation power, pon and poff could be calculated at the 
interval of samplePeriod. In this case, a more frequent calculation of pon and poff is requested 
for a better demonstration of how the probability is influenced by the indoor air temperature. 
  
3.2 Wang2005Occupancy: a transition model example 
The Wang2005Occupancy model simulates the occupancy state of a single-person office, which 
was originally documented in [35]. As a transition model, the duration of each occupancy state is 
characterized and calculated as a Weibull random variable. For instance, at the point the space 
starts to be occupied, the duration of this occupancy, or in another words, when the occupant 
will leave the room, will be calculated from the Weibull distribution. No model inputs are needed. 
The model parameters were fitted from a field study in California with 35 single-person offices at 
a large office building lasting for almost one year starting from 1998.  

 

 
(a) simulation result with seed = 5 

 
(b) simulation result with seed = 10 



14 
 

 
(c) simulation result with seed = 30 

Figure 4: Validation of the Wang2005Occupancy model 
 

Figure 4 presents the simulation results with three different seeds. Though sharing exactly the 
same mathematical models and parameter values, each run with different seeds produce 
markedly different behaviors. However, the occupied/unoccupied time ratios almost keep the 
same, and are close to the ratio of two key parameters of the model, i.e. one_mu (mean of 
occupancy duration) to zero_mu (mean of vacancy duration) in all the three cases simulated. 
 
3.3 Rijal2007WindowsTInTOutTComf: a combination of state and transition model 
As the last example in this section, a more complicated model was chosen to show how the 
models of the Occupants package are capable to simulate relatively complex occupant behaviors.   
 
The Rijal2007WindowsTInTOutTComf model simulates occupants’ window behavior in the office 
buildings. The model was fitted from the field studies in 15 office buildings in Oxford and 
Aberdeen, UK, and was originally documented in [40]. The window state is determined by four 
inputs: occupancy, indoor air temperature, outdoor air temperature and occupants’ comfort 
temperature. In this demo, the Wang2005Occupancy model was utilized to simulate occupancy 
state, and three Modelica built-in Sine functions were utilized to simulate the variation of indoor, 
outdoor and comfort temperatures, as illustrated in Figure 5(a).  
 
The dynamics of the Rijal2007WindowsTInTOutTComf model is shown in Figure 5(b): 

• Case 1: When the space is unoccupied, the window is always closed, for instance during 
the period 3.85 h and 5.00 h  

• Case 2: When the indoor temperature is within the comfort temperature plus and minus 
2 oC, the window state will not be changed, for instance during the period between 1.05 
h and 1.25 h  

• Case 3: When the indoor temperature is above the comfort temperature plus 2 oC: 
o Case 3.1: If the window is open, it would be kept open, for instance during the 

period between 2.45 h and 2.60 h  
o Case 3.2: If the window is closed, the probability to open the window is 

determined by the indoor and outdoor temperature through a two-dimensional 
logistic regression 

• Case 4: When the indoor temperature is below the comfort temperature minus 2 oC 
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o Case 4.1: If the window is closed, it would be kept closed, for instance during the 
period between 1.30 h and 2.10 h  

o Case 4.2: If the window is open, the probability to close the window is determined 
by the indoor and outdoor temperature through a two-dimensional logistic 
regression. 

 
In the released Version 1.0, to speed up the computation, the probability of window opening 
would only be calculated in Case 3.2 and Case 4.2, and set to the default value of 0 in other cases. 
In this example, in order to demonstrate and highlight different cases, the probability of window 
opening has been manually set to non-zero values: -0.1 for case 2, -0.3 for case 3.1 and -0.5 for 
case 4.1. 
 

 
(a) Photographic modeling interface 
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(b) Rijal2007WindowsTInTOutTComf 

Figure 5: Validation of the Rijal2007WindowsTInTOutTComf model 
 

4. Model selection 
It should be acknowledged that the mathematical forms, the choice of input variables (indoor air 
temp. vs. outdoor air temp.), and the parameter values of each model were derived from field 
studies conducted in a limited number of buildings in a specific climate zone on a certain group 
of occupants with specific cultural background and behavior preference, which should not be 
considered as universal. As the result, given the same environment conditions, the occupancy 
behaviors simulated from different models might vary significantly. Figure 6 selected and plotted 
the window behaviors of 13 models included in the Occupants package, which all use the outdoor 
air temperature as the model inputs. Though sharing similar trends, these 13 models produced 
markedly different results.   
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(a) Office buildings 

 
(b) Residential buildings 

Figure 6: Comparison on window behavior models 
 
The significant behavioral differences predicted by different occupant behavior models are 
understandable due to the marked inter-occupant diversity. Different subject might respond 
differently to the same ambient environment [50],[52]. However, because of the significant 
behavioral differences, careful selection of proper models for a specific simulation purpose is of 
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high importance. It is also possible that neither of the models included in the package suits your 
simulation case. The model selection and parameter tuning relies on users’ expertise and prior 
knowledge. What we could offer in the package are: first, necessary information about the 
reference which we think might be of value for your decision, as shown in Figure 7(a). Second, an 
interface to easily adjust the parameters, as shown in Figure 7(b).  
 

 
(a) Information session  

 

 
(b) Parameter tuning interface 

Figure 7: Information session and parameter tuning of each occupant behavior model 
 
To select the proper model for your simulation cases, we would recommend you to review the 
original paper to see if the assumptions and the data sources documented in the paper fit well 
with your simulation purpose. For instance, the window behavior models derived from European 
residents might not be suitable to simulate residential buildings in China or in the U.S. Based on 
our experience in implementing the models, we would suggest you to carefully consider the 
following three factors when choosing occupant behavior models: 

• Model inputs: for instance, whether you are going to use the indoor temperature, 
outdoor temperature, solar intensity or solar altitude to predict the occupants’ blinds 
behavior. 

Information 
about the 
reference

Interface to 
adjust the 
parameters
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• Data source: where the field study was conducted. For instance, the model 
Zhang2012WindowsAll regressed the probability to open the window with outdoor 
temperature: the higher the outdoor temperature, the higher the chance to open the 
window. This could be the case in the UK, where the climate is mild and the outdoor 
temperature would seldom be too high. But this dynamic would not be the case in tropical 
areas, where occupants would choose to close the window and turn on the AC when the 
outdoor temperature is too high. 

• Range of input variables: almost all the models included in the Occupants package are 
data-driven models and derived from field studies. Therefore, the models might only be 
valid in a limited range and could not be extrapolated outside the range. For example, the 
Haldi2008WindowsTOut model was derived from data with the outdoor temperature 
range of 5 to 35oC. Accordingly, the Haldi2008WindowsTOut model might not be 
applicable when the outdoor temperature is either below 5 or above 35 oC. 

 
More diversified while well documented occupant behavior models will be added to the 
Occupants package in future releases. Contributions from the simulation community is warmly 
welcome. 

5. Conclusion 
This study presents the Buildings.Occupants, a new package of occupant behavior models 
implemented in Modelica, an emerging equation-based object-oriented modelling language, as 
part of the Modelica Buildings Library. The Occupants package contains commonly used occupant 
behavior models covered in the literature, including six Blinds, fourteen Windows, five Lighting, 
and one Occupancy models for office buildings; and two AC, three space Heating, and three 
Windows models for residential buildings. Validation examples showed that the models in the 
Occupants package are capable to simulate stochastic occupant behaviors in buildings. 
 
Considering that different occupant behavior models might produce markedly different results, 
library users should be careful in model selection. Additionally, a BaseClasses package has been 
developed and included in the library, so that users could easily define their own occupant 
behavior models by tuning the model parameters or inheriting from BaseClasses. The 
BaseClasses package defines Logistic, Weibull and random-variable-generation functions which 
are commonly used in occupant behavior modeling.  
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