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Abstract 

This study presents a novel computing technique for data exchange and coupling 

between a high-resolution weather simulation model and a building energy model, 

with a goal of evaluating the impact of urban weather boundary conditions on 

energy performance of urban buildings. The Weather Research and Forecasting 

(WRF) model is initialized with the operational High-Resolution Rapid Refresh 

(HRRR) dataset to provide hourly weather conditions over the Chicago region. We 

utilize the building footprint, land use, and building stock datasets to generate 

building energy models using EnergyPlus. We mapped the building exterior 

surfaces to local air nodes to import simulated microclimate data and to export 

buildings’ heat emissions to their local environment. Preliminary experiments for 

a test area in Chicago show that predicted building cooling energy use differs by 

about 4.7% for the selected date when compared with simulations using TMY 

weather data and without considering the urban microclimate boundary conditions. 

Keywords: Urban climate modeling, energy modeling, coupling, WRF, 

EnergyPlus  
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Introduction 

Building energy (residential and commercial) constitutes around 40% of the total U.S. 

delivered energy according to the 2017 U.S. Energy Information Administration report 

(EIA 2018). Urbanized areas account for 67~76% of the global final energy consumption 

(Guneralp et al. 2017) and the growing urban density significantly impacts urban energy 

use. Urban scale building energy modeling is an emerging field that requires modeling 

the buildings’ interconnection with their surrounding urban micro-climate. Higher 

fidelity simulations with new enhancements to the building energy models are gaining 

more and more interest in the scientific community.  

Urban weather boundary conditions such as temperature, pressure, wind speed, solar 

radiation and humidity greatly influence the building energy simulation models and 

ultimately the understanding of final results and conclusions. Yet in traditional building 

energy simulation, weather data is obtained from measurements at nearby airports, local 

weather stations, or historical datasets, and compiled as a typical meteorological year 

(TMY) weather file (Wilcox and Marion,  2008). A TMY dataset provides hourly data 

for one year, composed of 12 typical calendar months selected from historic 

meteorological measurements in a specific region over a period of decades.  These TMY 

weather data tend to come from weather stations located at remote open areas (e.g., 

airports) that don’t represent the actual meso- or micro-climates of the city and are prone 

to produce erroneous results for focused studies of a few city blocks or a specific region. 

Yet individual buildings operate within these local regions, and the dynamic range of 

local-weather, topologies, building types, and building densities is significant across any 

major city, and thus city-wide averages cannot adequately forecast energy performance 

of specific buildings or districts. As more data related to local urban weather is collected 

and more accurate forecasting models are developed, traditional building energy 

modeling can be both improved and scaled up from individual buildings to districts or 

entire cities, considering the actual urban weather conditions. This will require that 

building energy simulation engines evolve to integrate this new information into 

calculations, and that the two types of models run in parallel, coupled by the exchange of 

data throughout the course of a simulation. 



Literature Review 

Many researchers have expressed concerns over the accuracy of the TMY methodology 

and selection. Sun et al. (2017) performed a sensitivity study involving three TMY dataset 

and four cities of China and report a 10% to 20% variation in building energy calculations. 

They also reported the finding that static metrics such as daylight factor are insensitive, 

whereas dynamic metrics such as daylight autonomy and useful daylight index are very 

sensitive to the TMY year used in the simulations. In another study of Hangzhou, China 

(a sub-tropical city with high humidity), Bourikas et al. (2016) demonstrate that micro-

climate plays an important role in computing building heating and cooling loads. They 

demonstrate the shortcomings of weather datasets such as the TMY, by using the actual 

measurement of air temperature and relative humidity at 26 sites within a 250-meter 

radius. Variations of up to 20% were observed in the final heating and cooling loads 

computed with/without micro-climate considerations. 

Research by Dorer et al. (2013) use a detailed building energy modeling (BEM) 

for a typical office building in an urban canyon, finding that local-weather can also have 

a significant impact on the heat exchange between buildings, and thus on their energy 

demand, with further variation based on the geometries and construction types of 

individual buildings. Pisello et al. (2017) used in-field monitoring campaigns and degree-

day or degree-hour methods to show the influence of local-weather boundary conditions 

on building heating and cooling requirements of urban, suburban and rural areas in central 

Italy. Takane et al. (2017) examined the impact of urban air temperature dynamics and 

electricity demand for Osaka, Japan,  using downscaled numerical weather prediction 

models at 2nd nest domain(d02) with 1 km resolution and 126 grid points to improve the 

accuracy of building energy consumption prediction. Their simulations fix the problem 

of under-estimation of surface air temperature (2oC in winter heating season) and over-

estimation of electricity demand, quantifying the significance of local weather models for 

building energy prediction. 

Conry et al. (2015) demonstrated a coupling study using Weather Research and 

Forecasting Model (WRF) (Skamarock et al. 2008) and a simple building energy model, 

looking at the present and potential future climate conditions in Chicago. Despite 

forecasts of stronger winds and lake-breeze effect, they indicated about 26% increase in 

daytime building energy use by the end of the century (about 2080) assuming the climate 

change scenario of a 4.7oC increase in average temperature.  In a more recent study, 



Sharma et al. (2017) explored the sensitivity of high-resolution mesoscale simulations of 

urban heat island (UHI) in the Chicago metropolitan area and its environs to urban 

physical parameterizations, with emphasis on the role of a lake-breeze. Their results show 

the WRF model, with appropriate selection of urban parameter values, was able to 

reproduce the measured near-surface temperature and wind speed reasonably well. 

Many researchers have incorporated more dynamic local-weather conditions in 

building energy simulations with the use of Urban Weather Generator (UWG) software 

detailed by Nakano et al. (2015). In an interesting research by Hammerburg et al. (2017), 

a study comparing the climactic output from WRF and UWG is presented, they find that 

UWG is slightly more accurate and cite the high computational costs associated with 

running WRF. Both WRF and UWG require tuning of several parameters for accurate 

simulations. The main underlying initialization data for UWG are TMY files, whereas, 

for WRF it is the weather data files. The initialization conditions for weather models are 

as critical for their performance of WRF simulations. The publically available North 

American Mesoscale Forecast System (NAM), the High Resolution Rapid Refresh 

(HRRR 2018) or outputs from other weather models can be utilized to initialize WRF 

boundary conditions. HRRR is a relatively new hourly 3-km resolution data, while NAM 

is 6-hourly 12-km resolution dataset. Both HRRR and NAM cover the contiguous United 

States. Recently, Blaylock et al. (2017) made past archives (July 2016-present, 

HRRRDATA 2018) of HRRR dataset available to the public. Although a recent update 

of the NAM model includes 5-km resolution forecasts over the continental United States, 

the HRRR model is the highest-resolution weather model that can provide forecasts up to 

18 hours. One of the major advantages of the high-resolution HRRR dataset is the ability 

to explicitly resolve convection, leading to better forecasting of precipitation events and 

thus moist flow evolution, which are important atmospheric processes for the Chicago 

lake areas. 

In all the literature indicated above, as well as the work outlined in this paper, we 

find that high-fidelity coupling between building energy models with atmosphere models 

is important to understand the impacts of urban weather conditions on cities at the 

building or city-block level resolutions. Our work presents a coupling methodology and 

results of one-way coupling where WRF provides local weather data to the EnergyPlus 

building energy model for a test area within the city of Chicago.  



Modeling Tools 

EnergyPlus (USDOE 2018) is the U.S. Department of Energy’s flagship building energy 

software for simulating the dynamic energy and environmental performance of buildings. 

An EnergyPlus model performs a period (typically from one day to a full year) of 

calculations on a sub-hourly basis, reporting energy use results monthly, hourly or as 

frequent as one minute per time step. Applied to urban energy modeling, EnergyPlus 

simulations calculate the overall thermal conditions of the building in terms of the exterior 

surface temperatures and the emitted heat from the building, which can be used as the 

boundary conditions of the urban atmosphere models. New features in EnergyPlus 

version 8.8 allow input and output from urban weather boundary conditions (Hong and 

Luo, 2018), including variables such as outdoor air temperature, humidity, wind speed 

and direction. This enables the use of local outdoor air conditions for the calculations of 

heat and mass balances at the exterior building surface and building zone level 

resolutions. The implementation allows EnergyPlus to leverage this information to either 

simulate a single building using a pre-simulated micro-climate or to co-simulate a group 

of buildings.  

The WRF model is one of the most commonly used numerical weather forecasting 

tools in the atmospheric and climate science community. It includes a rich suite of physics 

packages such as microphysics, radiation, cumulus, and planetary boundary layer 

parametrization. Its nesting capability enables the model to capture atmospheric motions 

on scales ranging from continents to near buildings. Powers et al. (2017) surveys a wide 

range of WRF applications, such as short-long term synoptic to mesoscale weather 

prediction, large-eddy simulations, cyclone modeling, air pollution studies, solar-energy 

impact, hydrology study, fire modeling, and urban meteorology.  

WRF can perform simulations using statistically modeled meteorological data or 

actual measurements in which case a pre-processing stage interpolates land-use, 

topography and meteorological data into the model domain. Higher-resolution 

measurements, data assimilation technologies, and parameterizations have yielded 

significant improvements simulating urban weather and climate. With these new 

approaches, WRF simulations can capture the passage of dry and precipitating frontal 

systems in summer and winter seasons as well as the land-breeze formations which might 

be a factor to erode urban heat island effect. Despite these developments, WRF does not 

have mechanisms to incorporate data from building energy models. 



WRF is originally developed for mesoscale (~1-2 km) resolutions and above, 

whereas urban models operate below 100 m, and even finer scales if turbulence is to be 

incorporated.  The integrated WRF-urban modeling system was introduced by Chen et al. 

(2011) to bridge the gap between mesoscale and microscale modeling. The model 

integrates urban canopy models with localized city morphology datasets and provides 

lumped building/structure effect parametrization, and includes procedures to 

incorporate/couple high-resolution land, atmosphere, and other urban data. These 

changes provide accurate modeling of winds, temperature and humidity for urban areas—

as these have impacts on the urban atmospheric boundary layer which in turn may 

influence the mesoscale motions.  

In this work, we use WRF simulation results initialized with HRRR data on over 

3 km to 120 m resolution range to feed EnergyPlus simulations with weather data. 

Previous versions of EnergyPlus used building level resolution with one weather data 

point per building. Here the resolution is surface level (window or a wall), about 5m to 

10m for EnergyPlus. As noted earlier, the computational costs of higher resolution models 

drive trade-offs such as omitting building geometry details and turbulence effects.  The 

work described here is part of a larger effort within the USDOE Exascale Computing 

Program (USDOE 2018) to explore the extent to which factors influence building energy 

demand, and thus what are the optimal spatial and temporal resolutions for such coupled 

models. 

 The rest of this manuscript is organized as follows: we first present the 

methodology, the overall workflow, WRF and EnergyPlus simulations setup, next we 

detail the results and findings, and finally we discuss the results followed by conclusions.  

Methodology 

In this section, the details of model preparation, setup of the numerical weather prediction 

and building energy codes along with a scheme to couple the two models are presented. 

The focus of this work has been on utilizing the High Performance Computing (HPC) 

platforms to perform high-fidelity calculations and develop a data-exchange mechanism 

for small and larger target models.  

Model Preparation 

The City of Chicago open data portal (CHI-DATA 2018), provides the building 



footprint, location, building ID, and other useful data for simulations. Our chosen initial 

target area is a small subset of this database; we filter this entire city data using the 

QGIS software. An initial file in geojson (Butler et al. 2016) format providing a 

footprint for each building in the target area is obtained from QGIS (QGIS 2018); 

associated building height, vintage and usage data are added to create the input data 

files (IDF) for running building energy simulations with EnergyPlus. Our focus area for 

this work is a subset of the area surrounding the Goose Island on the north branch of the 

Chicago River, part of a planned 600-acre redevelopment project called North Branch 

Framework (NBIC 2018). Figure 1 shows the target area used in this paper. 

Figure 1. Left: Footprint (city of Chicago). Center: Goose Island Region with ~20,000 

buildings. Right: a small subset of Goose Island with 20 buildings (target area). 

Overall Workflow 

Figure 2 shows the initialization data and output dumps for both WRF and EnergyPlus. 

It also shows the coupler, which is the central data translation engine from one simulation 

to another. The workflow involves preprocessing WRF initialization data, followed by 

running WRF simulations and generating time-series of state variables for temperature, 

wind-speed, radiation and other output variables, which are used by the coupler to query 

and interpolate the WRF results onto EnergyPlus simulations. The coupler coordinates 

simulations and performs an hourly file-based transfer of values from WRF to EnergyPlus 

simulation EnergyPlus outputs the final energy use and exhaust heat produced by the 

buildings. 



  

Figure 2. Data flow from WRF to EnergyPlus 

WRF Simulation Setup 

The WRF model (version 3.9) is used to simulate the weather and airflow of a 2-day 

summer case over Chicago. We initialize the model for 16th to 18th August 2017 with 

HRRR input data at every 3 hours. The USGS 30 arc seconds (~ 1 km) topography dataset 

is utilized. Three domain configurations are setup to capture weather evolution over parts 

of Illinois, Michigan, Indiana and Lake Michigan as shown in Figure 3 (left panel). 

Although the figure shows the fourth domain (d04) which is configured to run at 24-

meters resolution, we omitted this domain for the current study due to its large 

computational requirements. The first domain (d01) covers a region of 600x450 km, the 

second domain (d02) 240x180 km, and the third domain (d03) 96x72 km. These one-way 

nested domains have a horizontal resolution of 3 km, 600 m, and 120 m, respectively. All 

three domains have 42 vertical layers with fine spaced layers being close to the surface. 

The time step of integration is 15, 3 and 0.6 seconds for the three regions, scaled down 

with the same ratio 5:1 as in the horizontal resolutions. 

In addition to the common dynamics options, we employed various physics 

schemes, namely, Mellor-Yamada-Janjic boundary layer parameterization scheme (Janjic 

1994) and Goddard scheme (Tao et al. 1989) to explicitly resolve microphysics of clouds 

and precipitation. Long and shortwave radiation is resolved using the RRTMG based 

schemes (Iacono et al. 2008) which is an essential component of real-case simulations to 

capture atmospheric heating and cooling effects. The surface physics is treated with the 



unified Noah land-surface model (Chen and Dudhia, 2001). No urban canopy model 

parameterization is enabled, therefore impacts of trees, buildings, and other 

anthropogenic sources are not taken into consideration. 

We configured the model to output basic atmospheric variables at every hour for 

two days’ simulation. A horizontal map view of surface winds and temperature at August 

16th 21 UTC forecast time is shown in the right panel of Figure 3. The model produces 

about uncompressed 2.5 GB per output which totals a dataset over 100 GB per simulation. 

It takes about two days to simulate the two-day case on eight nodes (36 cores per node) 

Intel Broadwell processors. Including the finest scale d04 domain, it would require 

approximately one month of computing time on the same platform, and can easily 

produce a TB dataset. Expanding the simulations to cover longer periods necessitates 

careful planning of model setup which addresses both large data volume and 

computational challenges.  

 
 

Figure 3. Domain configurations in WRF simulation which are centered over Chicago 

downtown: d01-dx/dy=3000m; d02-dx/dy=600m; d03-dx/dy=120m (leftd01 covers a 

region of 600x450 km, d02 240x180 km, and d03 96x72 km. Note that although d04-

dx/dy=24m is shown, this domain was not activated in simulations. Horizontal map view 

of surface winds and temperature profile at forecast time 21 UTC (right). 

EnergyPlus Simulation Setup 

As introduced previously, EnergyPlus version 8.8 adapts the local weather conditions in 

building energy modeling at the surface and zone resolution. EnergyPlus uses the urban 

climate related data in simulations for exterior surface heat balance calculation, air 



infiltration and ventilation in zone heat balance calculation, and building system air flow 

network calculation. As Figure 4 shows, the buildings’ exterior surfaces simulated in 

EnergyPlus models serve as the boundary between the buildings’ thermal zones and the 

exterior urban atmosphere. The building exchanges mass and heat with the surrounding 

environment through the thermal boundaries by conduction, convection, infiltration and 

ventilation. The buildings also exhaust heat and mass from building systems to the local 

environment, including exhaust air from fans, DX condensing units, cooling towers, 

boilers, etc.  

 

Figure 4. EnergyPlus data exchange with the urban atmosphere model 

To import local outdoor air condition from urban atmosphere model, we set up a 

series of local Air Nodes in the simulation domain and modeled them at external air nodes 

in EnergyPlus models. As Figure 5 shows, an Air Node can contain environmental data 

including temperature, humidity, wind velocity and direction. The exterior surfaces in a 

building model are linked to an external local Air Node. A surface object gets it local 

weather condition from the linked Air Node as the input to run the energy simulation. At 

each time step, the surface objects in each building model provide mass and heat flux rate 

to the Air Node for the urban weather model.  



    

Figure 5. Left: External inputs for a building model from a local Air Node. Right: 

Snippet of the hourly JSON data for an air-node from WRF to EnergyPlus. 

Figure 6 shows the simulation components (Building Surface, Building Zone and 

Canopy Cell) and data exchange units (Zone Node, Surface Node and Building Node) of 

the simulation scenario allowing each EnergyPlus model with external input from WRF 

data. Each Surface and Zone object allows inputs from an Air Node object to consider 

local climate conditions simulated by the urban atmosphere model. 

 
Figure 6. Local outdoor air conditions at the zone and surface levels 

 As WRF also provides local solar radiation data, we modify the EnergyPlus IDF 

model to allow overwriting the Direct Normal Solar Radiation (W/m2) and Diffuse Solar 

Radiation (W/m2) at the building level. Specifically, we added two Energy Management 

System actuators, namely EnergyManagementSystem: Environment, Weather Data, 

Diffuse Solar [W/m2], and EnergyManagementSystem: Environment, Weather Data, 

Direct Solar [W/m2] to import the external schedules of solar radiation at each time step. 



The long wave radiation between building surfaces to the sky and ground are considered. 

However, as the modeled block consists only of low-rise buildings, the long wave 

radiation between building surfaces are neglected in this simulation case. 

To evaluate the impact of heat exchange between buildings and urban weather 

condition, we also script the model to output hourly energy meters and building heat 

emission to the urban boundary. The heat emissions contain: 

• Convection heat from exterior surfaces (walls, roofs, windows) to the 

ambient air 

• Heat emission from exhaust air and exfiltration of zones to ambient 

• Heat emission from HVAC exhaust/relief air 

• Condenser exhaust heat by fans of DX systems 

• Heat emission from the exhaust air of cooling towers 

As demonstrated in the previous section, we choose the city block in the Chicago 

Goose Island Region along the Michigan River to conduct the simulation case study, as 

shown in Figure 7. The block contains 20 buildings, of which 14 are office buildings and 

six are retail buildings. We use City Building Energy Saver (CityBES) (Hong et al. 2016, 

Chen et al. 2017) to generate the EnergyPlus IDF models based on the building footprint 

and number of floors, visualized as the aqua extruded polygons. For thermal zoning, each 

floor is divided by core and perimeter thermal zones matching the building footprint 

according to the requirements of ASHRAE 90.1-2013 Appendix G Table G3.1-8 

(ASHRAE Standard 90.1, 2013). In modeling, we adopted the occupancy, lighting, 

equipment, heating and cooling setpoint schedules used by the DOE reference buildings for 

office and retail buildings. For building systems, small offices are equipped with gas 

furnaces providing hot air for space heating, and packaged single zone roof top air 

conditioners for cooling. For medium office and medium retail buildings, gas boilers are 

used for space heating, and packaged rooftop variable air volume (VAV) with reheat 

systems are used for cooling. CityBES also models the neighborhood buildings as shading 

surfaces in EnergyPlus to consider the solar overshadowing effect between buildings. 



 
Figure 7. Building models in the city block of the Goose Island Region 

Figure 7 also maps out the locations of the 15 local Air Nodes used as ambient air 

conditions from the WRF simulated data. Each Air Node has an absolute physical 

coordinate with a latitude, longitude and height in meters (x, y, z). The 15 nodes are 

selected based on the layout of streets and the flow of the river using a single Z layer at 

3.0 m. For each building exterior surface and exterior zone, we calculate its absolute 

physical coordinates and mapped it to its nearest air node out of the 15 pre-defined ones 

by distance. For example, during simulation, all surfaces at the east façade of Buildings 

1 and 2, and the west façades of Buildings 5 and 6 use the local-weather condition at Air 

Node 4. The environmental data stored at each Air Node is generated from the WRF 

model and extracted by its physical coordinate.  

Results 

WRF Simulations 

 The WRF model typically outputs vertical profiles from land surface height to ~4km 
above sea-level. The vertical grid is staggered to capture the variations close to the land. 
There are a total of 42 vertical grid points with 29 points in the first one kilometer. Figure 
8 shows a clear 2.5-degree difference in the HRRR and NAM initialized simulations of 
vertical profiles of temperature for ~300m above the surface. A sharp increase in 
temperature is seen from 50m to 100m height in the HRRR simulation. Without observed 
temperature profiles for the selected area, it is difficult to speculate which model has a 
better prediction. It must be noted that comparison of results for only node 5 are shown, 



as other nodes show a very similar pattern. This can be attributed to the fact that the target 
area does not have any tall urban buildings and that the total area simulated is less than 
400 × 400 m2, which does not yield high meteorological variability, hence, the difference 
observed in vertical temperature profiles of nodes is minimal. The higher-resolution 
HRRR simulations may be performing better in terms of capturing thermally and 
mechanically driven boundary layer profile which is obtained at 4 PM local time.     

 
Figure 8. For node 5, as shown in Figure. 7, the plot shows a vertical profile 

temperature (oC) obtained by HRRR and NAM initialized simulations for 16th Aug 2017 

at 21 UTC (4 PM local time). 

Figure 9 shows the locations of three measurement stations used for hourly 

measurements of wind speed, temperature, and relative humidity obtained for August 

16th, 2017. The first observation is at the O’Hare international airport (Obs-ORD); this is 

typically used in EnergyPlus TMY weather profile creation for the entire Chicago region. 

The second observation, which is the closest station to our target region (Obs-city2, 

Goose Island) is obtained from the website - http://mesowest.utah.edu, this the closest to 

our target region and the third observation is along Foster Ave., which is located right by 

the lake shore drive in Chicago. In Figure 10, we compare the WRF simulated time-series 

of temperatures at ORD (d03-ORD) and lat:41.91, lon:-87.66 (d03-city) with the data 

measured by sensors. The d03 values cover the time range of 0Z on August 16th to 20Z 

on August 17th, 2017 (Chicago local time: 19:00 on August 15th to 15:00 August 17th). 

Due to numerical instabilities the last 3 hours of the simulation was disregarded, therefore 

only 45 simulated hours is used throughout the study. Obs-ORD and d03-ORD closely 

match at all times except the first ten hours, which might be due to model spin-up time to 

http://mesowest.utah.edu/


adjust to the initialization data, a bias in the init data, or the model is not able to represent 

physical processes reasonably. 

 

 

Figure 9. Red square shows the target area, along with the three observation locations: 

(1) Chicago O’Hare airport, (2) Observation location close to Goose Island, and (3) 

Lakeshore drive that are used for the plot in Figure 10. 

In general, we observe that the city is slightly warmer during the night hours due 

to the westerly advection of warm moist air over the lake effect. Between morning to 

late evening hours, WRF reasonably captures the warming at ORD which is caused by 

southerly winds. The city is cooler compared to ORD at these times, because of the 

strong lake breeze. We note that d03-city and Obs-city values are located a few 

kilometers apart and the temperature difference is significant. Also, Obs-ORD, Obs-city 

and Obs-city2 show variation around hours 10 to 25 which are corresponding to the 

local afternoon and night period. This result is a good motivation for a dense instrument 

deployment in the Goose Island region to perform better fidelity high-resolution 

simulations and validations. Obs-city and Obs-city2 and d03-city show a difference of 

2-3 degrees around 18 hours, while at this time ORD measurements show 4-5 degrees 

higher temperatures. The cooler measured and simulated city temperatures are resulted 

by the strong lake breeze which dominates most the lower west coast of the Lake 



Michigan. The later part of simulations (25-45) shows a good agreement and the model 

has good skill when local weather is synoptically driven. Under these conditions, the 

location of temperature measurements is not very important, as local effects like the 

lake breeze or urban heat island effects are relatively weaker.  The variations in 

temperature as a result of mesoscale weather processes and mechanical and thermal 

building effects in a city block show that high-resolution simulations and observations 

are necessary to capture local weather variability. In the next sections, we will highlight 

how these simulations and measurements impact the building energy simulations and 

overall energy requirement calculations. 

Figure 10. Comparison of WRF simulated temperature results with observations for 

three stations shown in Figure 9 for 0Z August 16th to 20Z August 17th (Chicago local 

time: 19:00 on August 15th to 15:00 August 17th). 

Building Energy Simulation 

We first compare the climate condition difference among (1) TMY data: the TMY3 

weather data from the weather station of Chicago O’Hare, which is traditionally used in 

EnergyPlus simulations (2) WRF data: the average local weather data of the 15 nodes at 

the day of 2017-08-16 simulated by the WRF model, and (3) OBS data: the local climate 

data observed at the nearby weather station (River West Station, Elev. 600ft, 41.89 °N, 

87.65 °W). The TMY3s are data sets of hourly values of solar radiation and 

meteorological elements for a 1-year period, representing only typical conditions. The 



simulation day we choose, however, is a special boundary condition case. The weather 

was mostly fair during the morning, but mostly overcast and cloudy after 14:00 in the 

afternoon and evening. Figure 11 and Figure 12 show the daily dry bulb temperature and 

relative humidity, comparing the TMY, WRF, and OBS data. Throughout the day, the 

observed dry-bulb temperature is generally higher than the typical condition by two to 

five degrees, and the WRF simulation captures the trend. The simulation result of the 

relative humidity agrees with both the observed and the typical condition on this day. The 

difference is expected to affect the energy consumption and heat emission of buildings to 

the urban environment. 

 

Figure 11. The daily dry-bulb temperature TMY, WRF and OBS data 

 

Figure 12. The daily relative humidity of the TMY, WRF and OBS data 

Besides, as Figure 13 (wind speed) and Figure 14 (hourly solar radiation rate) 

show, the WRF simulated values agree with the observed local data, but the TMY data 



deviates from the local conditions. The air flow condition would affect the heat 

convection and infiltration from the surrounding environment to the buildings.  

  

Figure 13. The daily wind speed of the TMY, WRF and OBS data 

 

Figure 14. The daily short wave solar radiation rate of the TMY, WRF and OBS data 

In August, cooling load is dominated in Chicago, among all energy demand. In order to 

evaluate the sensitivity of the energy use to the local environmental data, Figure 15 

compares the hourly building energy use intensity in watt-hour simulated with TMY 

and WRF data. In general, the WRF simulated local temperature on this day is higher 

than the TMY data, the solar radiation is higher during the noon time, and the wind 

speed is lower. Consequently, the cooling energy demand is higher. On average, the 

total energy usage of these 20 buildings simulated using the WRF data is 4.7% higher 

than the results simulated using the TMY data. In this experiment, the buildings with 

larger surface-to-volume ratios are more sensitive to local-weather conditions, such as 

Building 2 in Figure 7 with a 9.11% higher total energy use and a 32.0% higher cooling 



consumption. 

 

Figure 15. The average building energy use intensity of the 20 buildings for two 

simulation scenarios 

To evaluate the impact of buildings in the urban context on the local-weather, for 

all exterior walls, windows, and roofs of each building, we calculated the building heat 

emission as described in the previous sections. Figure 16 shows the heat emission curves 

averaging the 20 buildings on the simulation day using the TMY weather station data and 

WRF simulated data. The positive values indicate the heat transfer from the surrounding 

environment to the outside face, while the negative values indicate the opposite. In this 

study, the building heat emission consists of heat convection through building surfaces, 

building HVAC system heat rejection, heat transfer through zone exhaust air and building 

mechanical system relief to the local climate. Simulated with the WRF data, the 

difference between building indoor and outdoor temperature is higher, and the cooling 

demand is higher, driving the heat emission to be higher throughout the day. For the 

simulated day, the average aggerated heat emission to the environment simulated with 

WRF data is 40.4% higher than that simulated with TMY data. 



 

Figure 16. Average building heat emission intensity of the 20 buildings to the urban 

atmosphere for two simulation scenarios 

Discussion 

Our study shows the potential and need for higher fidelity simulations and coupled 

calculations for more accurate building energy modeling in the urban context, with which 

deeper insights and conclusions can be drawn to aid the city planners and architects. We 

specifically find out that this can be achieved with the use of high performance 

computing. First, our methodology for simulation data flow shown in Figure 2 is based 

on data transfer using an intermediate json file. For longer duration simulations and 

superior performance, the in-memory data-exchange capability will be required. Second, 

in our models, we use National Urban Database with Access Portal Tool (NUDAPT) for 

urban land characteristics, and further improvements to this can be made with the addition 

of true-resolution topography leading to more accurate weather and airflow prediction. 

This methodology can be further extended to include other models and enable the two-

way feedback.  

The recent advances in HRRR initialized WRF, when compared to NAM, are 

showing a promise of improved and more detailed variation in urban boundary layer 

regions. One-way data coupling between EnergyPlus and WRF and the methodology 

developed here is scalable and is found to be more realistic in comparison to traditional 

standalone simulations. However, we note that a finer-scale computational fluid 



dynamics (CFD) model resolving the turbulence around the buildings could be more 

accurate than this work.  CFD models offer a more exhaustive investigation of urban areas 

providing insights into pollutant concentration distribution, temperature distribution, and 

various other mixing and air quality impacts. More importantly, due to the heavy 

computing burden of the urban atmosphere simulation, the study is performed at a small 

spatial scope of a sampled district using one-day WRF data during the cooling season. 

Simulation scenarios should be considered in the future combining various cases of local 

weather conditions of difference seasons. Other building types and typologies, such as 

high-rise buildings in a dense urban area, or residential districts, are highly potential to 

show different results from the specific building block modeled in the study. We note that 

feedback from live sensor data, such as continuous temperature, humidity, and wind 

speed can be used to further make the coupled simulation more accurate. This is 

established by results in Figure 11-14, which highlight the substantial difference in 

observations from sensor data at three different locations in the city.  

For the test case in this study, we use measurements at z=3.0m, because the target 

area has low-rise buildings that are approximately that height. In future studies, we intend 

to use the World Meteorological Organization (WMO) indicated heights of z = 1.5-2.0 m 

for our simulations and coupling. For generating the input models, we manually fix the 

building footprint data according to the satellite map data. This process of fixing the 

buildings in GIS platforms is tedious and intractable for city-scale models, thus we are 

investigating reasonable alternatives to address this issue by automatically generating 

accurate 3D models with other data sources such as LIDAR data for the city. Currently, 

the limited data resource allows us to model the building only at the limited level of details 

(extruding polygons). When more accurate building geometry, configuration and system 

related data are obtained, the building energy modeling can be considerably improved. 

Conclusions 

This work develops a high-fidelity coupling methodology involving building 

energy and urban atmospheric models. A one-day coupled simulation for a chosen area 

in the city of Chicago, along with challenges and benefits involved in developing such 

coupled models are presented. Our results for a small test area in Chicago clearly show 

that utilizing WRF provides more accurate urban weather boundary conditions such as 

temperature, wind-speeds, humidity and radiation, when compared to traditional TMY 



datasets typically used as inputs to EnergyPlus. Although the computational cost is high, 

the resolution and accuracy of the predictive total energy consumed by the building are 

improved. For August 16th, 2017, a typical summer day, we find out that on average, the 

total building energy use differs by about 4.7% and the average aggregated heat emission 

to the environment simulated with WRF data is 40.4% higher than the EnergyPlus 

simulated results using the TMY weather data. We predict that for days with severe 

weather events our methodology will produce more accurate results and the variation in 

computed energy differences will be large. In the future, we plan to cover more area and 

time duration to further validate our tools and findings. Also, trees and other green 

vegetated sources cover only a small fraction of the studied urban area. Given the selected 

days of the simulation is dominated by strong background flow, the neglect of such 

sources may have a few percent variability in the results. We expect this variability to 

become larger with quiescent weather conditions. Three major conclusions for this work 

are: (1) Three kilometers to 120 meters’ domain configurations which are initialized with 

the HRRR dataset, allow the WRF model to drive building energy models with a 

reasonable accuracy, (2) The representation and resolution of the urban weather boundary 

conditions used in building energy simulation have a significant impact on the space 

cooling loads and energy consumption, and (3) The building’s heat exhaust to the 

surrounding environment is influenced by the local climate conditions, and vice-versa has 

an impact on the urban boundary conditions. 

The methodology developed here is capable of using measured data. Also such 

high-fidelity analysis will aid the design of IoT systems for controlling the climate of the 

building to help policy makers and electricity suppliers in order to better optimize the 

urban systems for the city. For better evaluation of the performance of the coupling 

approach, longer-term datasets (ranging from days to months) should be used to analyze 

and reduce the weather-related local variations.  
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