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Abstract 
Energy conservation in residential buildings has gained increased attention due to its large portion of 
global energy use and potential of energy savings. Occupant behavior has been recognized as a key 
factor influencing the energy use and load diversity in buildings, therefore more realistic and accurate 
air-conditioning (AC) operating schedules are imperative for load estimation in equipment design and 
operation optimization. With the development of sensor technology, it became easier to access an 
increasing amount of heating/cooling data from thermal energy metering systems in residential 
buildings, which provides another possible way to understand building energy usage and occupant 
behaviors. However, except for cooling energy consumption benchmarking, there currently lacks 
effective and easy approaches to analyze AC usage and provide actionable insights for occupants. To 
fill this gap, this study proposes clustering analysis to identify AC use patterns of residential buildings, 
and develops new key performance indicators (KPIs) and data analytics to explore the AC operation 
characteristics using the long-term metered cooling energy use data, which is of great importance for 
inhabitants to understand their thermal energy use and save energy cost through adjustment of their AC 
use behavior. We demonstrate the proposed approaches in a residential district comprising 300 
apartments, located in Zhengzhou, China. Main outcomes include: Representative AC use patterns are 
developed for three room types of residential buildings in the cold climate zone of China, which can be 
used as more realistic AC schedules to improve accuracy of energy simulation; Distributions of KPIs 
on household cooling energy usage are established, which can be used for household AC use intensity 
benchmarking and performance diagnoses. 
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1. Introduction 

Energy consumption in residential buildings accounts for a large portion of global energy use, which 
drives many researchers and policy makers towards energy conservation of residential buildings. In 
2012, the U.S. residential sector accounted for 22.2% of the total primary energy consumption [1]. In 
the northern part of the European Union, residential buildings account for 30% of the total energy 
consumption [2]. In 2015, the total building energy consumption in China was 864 million tce (Mtce), 
accounting for approximately 20% of the total energy use, while the urban residential buildings 
(excluding northern urban heating) consumed 199 Mtce (including 430 TWh of electricity), accounting 
for 23% of the total building energy use. The total energy use of the subsector of urban residential 
buildings has tripled from 2001 to 2015. Domestic water heating, space cooling, and space heating, are 
smaller end-uses, but they have increased considerably and at a high rate from 14% to 31% in the last 
15 years [3,4].  
There is a wide variation in household cooling energy use. Li et al. [5] carried out a survey of the 
air-conditioning (AC) energy consumption in 25 residential apartments in Beijing in 2006, and found 
that the electricity consumption for cooling systems varied from 0 to 15 kWh/m2 among households in 
the same building. An et al. [6] studied the household cooling usage distribution in a community with 
approximately 400 households, and found that the highest consumed 8,000 kWh of cooling energy in 
two months, which is three times higher than the average cooling energy use. Brounen et al. [7] 
investigated 305,001 Dutch homes in 2008–2009 and also found a wide variation in household 
consumption. Parker et al. [8] verified the home energy saver suite for online simulation, by conducting 
a detailed year-long study. The homes studied exhibited a three-fold variation in measured energy use. 
Yoshino et al. [9] summarized the outcomes from IEA EBC Annex 53. They reported six key factors 
influencing real energy use in buildings: building envelope, building equipment (energy systems), 
building operation and maintenance, weather, indoor comfort criteria, and occupant behavior, and the 
latter three factors related to occupants have greater influence than the former three. The behavior of 
occupants is a key factor influencing the building life cycle and determining energy use in buildings 
[10,11]. Yun and Steemers [12] analyzed the relationship between the cooling energy and influencing 
factors, such as the climate, occupant behavior, and house type, in residential buildings in the USA, 
thus revealing that the occupant’s behavior was the most significant issue in determining how often, 
and where AC was used. Ren et al. [13] concluded that the AC usage in the summer is not only related 
to the weather and the characteristics of AC systems, but is also strongly influenced by the residents’ 
behavioral patterns. Zhou et al. [14] discussed the influence of AC use modes on the energy 
consumption in residential communities using simulations, and revealed that AC use modes can lead to 
more than ten times of variation in electricity use among households. Eguaras–Martinez et al. [15] 
showed that the inclusion or exclusion of occupant behavior in building simulations, could result in up 
to a 30% difference in predicted energy use. IEA EBC Annex 66 introduced new methods and tools to 
standardize the representation and simulation of occupant behavior [16]. Better consideration of 
occupant’s interaction with building equipment and system, including the adjustment of thermostats for 
comfort, switching lights, opening/closing windows, pulling up/down window blinds, and moving 
between spaces, can improve the prediction of thermal loads and energy use in buildings [17,18].  



Duo to the privacy concerns of residents, many researchers have analyzed occupants’ behavioral 
patterns in residential buildings based on questionnaire surveys and case studies [13,14,19,20]. 
However, these methods have some limitations: Questionnaire survey is more suitable for large-scale 
data collection, but the reliability of results highly depends on the questionnaire design, sampling 
method and qualify of response; Case study is a more specific but time-consuming method, which is 
often applied to detailed investigation and modeling of typical households instead of to obtain the 
behavior distribution of a large group of occupants. With the development of sensor technology, it 
became easier to access an increasing amount of data. Accompanied by various data analysis methods, 
large-scale metered data contributes to have a comprehensive understanding of building energy usage 
and occupant behaviors [21–26]. Pan et al. [24] extracted occupant-behavior related electricity load 
patterns using the K-means clustering approach from smart-metering data in two communities in China. 
Zhao et al. [27] proposed a data mining approach to understand the occupant behaviors and power 
consumption in an office building in the USA. Luo et al. [22] developed load shape parameters, and 
representative load shapes, based on electric load meter data for small- and medium-sized commercial 
buildings in California, USA, and applied these data to energy benchmarking and retrofit analyses. 
There are growing applications of district heating/cooling systems, and corresponding thermal energy 
metering systems in many countries. The thermal energy consumption systems can be used to record 
the cooling/heating consumption of each household, based on their real thermal energy usage, thereby 
providing incentives to inhabitants to save energy. In China, there is an increasing trend whereby 
thermal energy metering systems are installed in newly built residential districts with centralized 
heating, ventilation, and air-conditioning (HVAC) systems [28,29]. Therefore, many researchers 
utilized the metered data for better understanding of building energy use. For instance, Kiluk [30] took 
advantage of the large datasets obtained from district heating billing systems to detect system faults by 
applying the data mining method. Gadd and Werner [31] identified four typical load patterns based on 
yearly heating loads of the smart heat grids in two districts, which could be applied to define the 
customer categories. Shahrokni et al. [32] analyzed the energy consumption of different building 
vintages in Stockholm and estimated one-third of energy could be saved if the building stock is 
retrofitted to meet the current building energy codes. However, except for the thermal energy 
consumption benchmarking, current studies lack effective and easy approaches to analyze AC usage 
and provide actionable insights for inhabitants, which is of great importance for inhabitants to 
understand their thermal energy use and save energy cost through adjustment of their AC use behavior, 
as well as for engineers to obtain realistic AC use patterns for HVAC system design and performance 
simulation. Therefore, this information from thermal metering systems is of great importance, 
especially to developing countries, such as China, where residential occupant behavior is diverse and 
has significant influence on residential energy use. 
This study proposes a data-driven approach to analyze the AC use patterns of residential buildings, and 
develops new key performance indicators (KPIs) beyond the traditional total thermal energy to gain a 
deep understanding of the AC usage, based on the long-term metered data of cooling loads. These KPIs 
could be used to benchmark inhabitants’ AC cooling usage and to guide energy conservation effort. We 
use several KPIs to analyze the household cooling energy consumption in a residential district 
comprising approximately 300 households in Zhengzhou, China. The district installed a central cooling 
plant as well as a smart metering system to collect the long-term cooling loads of each air-conditioning 
equipment. The K-means clustering approach is applied to characterize the typical air-conditioning use 
patterns of various room types (i.e., bedroom, living room, dining room), which can be used in building 



performance simulation to improve the accuracy of simulated cooling energy use.  
The remaining parts of this article is organized as follows: Section 2 introduces the technical approach 
as well as the data, methods, and indicators; Section 3 shows the analysis results for a residential 
district including the cooling usage analyses and representative AC use patterns; Section 4 discusses 
the potential applications of the research outcomes; Section 5 presents the policy implications and 
limitations of this study; And finally, conclusions are summarized in Section 6. 

2. Data and methods 

2.1. Data source 

The residential district in this study was built in 2011 by one developer, and is located in the city of 
Zhengzhou in China. The district is in China’s cold climate zone with the average temperature of the 
coldest month from -10 to 0⁰C, and the warmest month from 18 to 28⁰C. The district has eight 
buildings, including three high-rise buildings (two are 16 floors and one is 18 floors) with pre-installed 
fan-coil units (FCUs) for cooling and heating in each room except from bathrooms and corridors. The 
FCUs are served by a centralized ground-source heat pump system. Therefore, these three buildings 
constitute the research objects of this study. The sketch map of the case district is shown in Figure 1. In 
Figure 1, the numbering refers to the building number, and the arrow lines refer to the flow direction of 
chilled water. Each room, except the bathrooms and corridors, has one FCU with individual control 
panel, which can be operated individually by the users (e.g., turn on/off, increase/decrease the speed of 
supply fan). The three buildings have 324 households with 1402 FCUs, and seven apartment types with 
different floor area (90–160 m2), and number of air-conditioned rooms with FCUs (3, 4, or 5 rooms). 
Figure 2 shows the sketch floor plan of one typical apartment unit. 

 
Figure 1 Sketch map of the case residential 

district 

 
Figure 2 Sketch floor plan of one typical 

apartment unit 
A thermal energy metering system is used to collect the cooling/heating data of each FCU for utility 
bills. The collected energy data is the accumulated cooling energy consumption from the time the meter 
was installed, which can be recorded at irregular intervals spanning from several minutes to multiple 
days, according to the needs of the operating staff. The difference between two adjacent data points 
represents the cooling energy consumed during that period. We obtained the metered data of each FCU 
for the three-month cooling season, spanning from June 21, 2016 to September 21, 2016, from the 
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Chuntsuan Energy-saving Technology Company of Zhengzhou, which is the installer and operator of 
the thermal energy metering system. We also obtained information on the type of rooms (e.g., bedroom, 
living room) served by each FCU, number of rooms and floor area of each apartment. 

2.2. Methodology 

Our study consists of four steps: data collection and preprocessing, analyses of the AC use intensity and 
patterns, discussion of potential applications, and conclusion (Figure 3). Firstly, we cleaned up the 
collected data for the residential district, such as removing erroneous or missing data from the original 
data, and converted them to appropriate format for analysis. Then, we developed several KPIs to 
represent the comprehensive characteristics of cooling energy consumption in all households. Cluster 
analysis was applied to generate the representative AC use patterns. Thirdly, we discussed the potential 
applications based on the research findings. Finally, we discussed the implication and limitations of this 
study, and draw the conclusion. The R language package was used for the statistical analyses [33]. 

 
Figure 3 Schematic of the overall technical approach  

2.2.1. Preprocessing of the collected data 

Since the collected metered data of thermal energy use are accumulated, we assumed that the thermal 
loads between two adjacent data points remained constant and thus generate the data of hourly cooling 
energy usage. The intervals of data collecting for each FCU were irregular, ranging from several 
minutes to several days, according to the needs of the operating staff. The cooling energy data of some 
FCUs were not collected for several days during the cooling season in 2016. Therefore, we eliminated 
those households (approximately 60 households) with the missing metered FCU energy data. 

2.2.2. Analysis of the household cooling energy usage 

To analyze the household cooling energy usage, we proposed a series of KPIs including four first-tier 
indicators and three second-tier indicators, as shown in Table 1. The four first-tier indicators are the 
total cooling consumption, aggregated operating hours of FCUs, daily cooling usage and the average 
cooling load per FCU. The common indicators, such as the total cooling consumption, and the daily 
cooling usage, are influenced by too many factors to identify the dominant one. We also used the 
aggregated operating hours of FCUs to evaluate the AC use intensity, which can be further explained 
by three second-tier KPIs: the ratio of AC-on days, the daily AC-on duration, and the coincident use 
factor of FCUs. Dividing the total cooling consumption by the aggregated operating hours of FCUs, we 
obtained the average cooling load per FCU, which is the average of hourly cooling loads for each FCU 
in a household. This indicator can reflect the influencing factors of energy usage except for those 
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related to the aggregated operating hours, such as the indoor air temperature, and windows operation 
(opening /closing). 
Table 1 Key performance indicators of the household cooling energy usage  
Number Key performance indicators Definition Influencing factor 

1 Total cooling consumption 
Total cooling consumption of 
each household in a cooling 
season 

Operating hours of each FCU, number of 
operating FCUs, number of AC-on days, 
temperature setpoint, indoor heat gains, 
window operation, etc. 

2 
Aggregated operating hours 
of FCUs 

Sum of total operating hours of 
all FCUs in a household (an 
apartment unit) 

Operating hours of each FCU, number of 
operating FCUs, number of AC-on days 

2.1 Ratio of AC-on days 
Ratio of number of AC-on days 
to the total number of days in a 
cooling season 

Number of AC-on days 

2.2 Daily AC-on duration 
Average daily number of AC-on 
hours in each household 

Operating hours of each FCU 

2.3 
Coincident use factor of 
FCUs 

Nondimensional average number 
of operating FCUs at the same 
time 

Number of operating FCUs 

3 Daily cooling usage 
Average daily household cooling 
consumption during AC-on days 

Operating hours of each FCU, number of 
operating FCUs, indoor temperature setpoint, 
indoor heat gains, window operation, etc. 

4 
Average cooling load per 
FCU 

Total cooling consumption 
divided by the aggregated 
operating hours of FCUs 

Indoor temperature setpoint, indoor heat 
gains, window operation, etc. 

2.2.3. Clustering analysis of representative AC use patterns 

Cluster analysis is a process of partitioning a set of observations into subsets in a way that objects 
belonging to the same cluster have high similarity, while objects belonging to different clusters have 
low similarity. This is achieved with the use of various cluster algorithms, such as K-means and fuzzy 
clustering [34,35]. In this study, K-means was chosen to categorize the typical daily AC use patterns 
during the AC-on days, since it is recognized as one of the most extensively used cluster analysis 
methods that is highly popular in load curve clustering [36]. 
The K-means clustering method groups a dataset of N input vectors to C clusters using an iterative 
procedure. Initially the weights of the C clusters are determined, and a random selection among the N 
input vectors is made for the cluster centroids. The estimated centroids are then used to classify objects 
into clusters through Euclidean distances, expressed by 

d(x, y) = �(𝑥𝑥1 − 𝑦𝑦1)2 + (𝑥𝑥2 − 𝑦𝑦2)2 + ⋯+ (𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)2                (1) 
where 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2 , … ,𝑦𝑦𝑛𝑛) are two objects in a Euclidean n-space. 
Next, the Euclidean distances of each object of the centroid are recalculated in such a way that each 
object of the centroid is the average of the object of the load patterns within the cluster. The procedure 
is repeated until the stabilization of the cluster centroids is achieved. 



3. Analyses of AC use intensity and patterns 

3.1. Distribution of total cooling consumption 

The distribution of total cooling consumption during the cooling season (July 21–September 21) in the 
case district is shown in Figure 4. The red dashed line indicates the median level of all households, and 
the orange shadow shows the range from the first to the third quartiles, marked as the interquartile 
range (IQR). This indicates that the inhabitants living in this district tend to use less cooling. In the 
entire cooling period, 49% of them used less than 10 kWh/m2 for cooling. Except for the “always-off 
users” (approximately 19%), there are still 30% of users who used less than 10 kWh/m2. Moreover, 75% 
of them used less than 22.4 kWh/m2 for cooling, and the median cooling consumption was 10.4 
kWh/m2, which accords with the AC use habit of the majority of Chinese citizens (i.e., intermittent and 
short-term operation of AC) for saving money [37]. It can be seen that there is a large variation in total 
cooling consumption among the households, with the highest one reaching up to 140 kWh/m2, which is 
equal to 13.5 times of the median level. Owing to this diversity, the group formed by the households at 
the bottom half of the total cooling consumption only occupied 5% of the aggregated cooling 
consumption of the district, while the most energy-intensive quarter of households consumed 66%. 
This finding is in agreement with the measurement results carried out by Li et al. [5] in Beijing in 2007. 

 

Figure 4 Distribution of total cooling consumption of each household in the case district 
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Figure 5 The variation range of total cooling consumption of seven apartment types 

Since all households located in the same district, the effects of climate, building characteristics (e.g., 
envelope performance, HVAC system piping network) on the cooling loads were similar. In addition, 
we analyzed the variation range of total cooling consumption of seven apartment types as shown in 
Figure 5, which shows significant load diversity even in the same apartment types. Thus, it can be 
inferred that occupant behavior constitutes the main reason for the diverse household cooling 
consumption. Therefore, it is important to understand and identify AC use patterns in the case of 
residential buildings. 

3.2. AC use patterns  

Clustering analysis is used to identify typical AC use patterns during AC-on days, which can represent 
the diverse occupant behavior on AC operations. The attributions used are the AC on-off states from 
0:00 am to 11:00 pm, which can be generated by the hourly cooling loads of each FCU during AC-on 
days, as introduced in Section 2. Different room types (e.g., bedroom, living room) have varying AC 
operation schedules owing to their different occupancies. Therefore, taking the room types into 
consideration, we built three groups of attributions to describe how occupants operated ACs in 
bedrooms, living rooms, and dining rooms. The hourly cooling loads of every FCU installed in specific 
room types for all AC-on days, and all residential apartment units, were grouped together to build a 
matrix for the room type with the size of (∑ (𝐴𝐴𝐴𝐴 − 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑖𝑖𝑖𝑖=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ) × 24 for clustering analyses. 
The number of clusters was predefined before the clustering analyses. The Davies Bouldin Index (DBI) 
[38], which represents the performance of the clustering, was evaluated, with lower DBI values 
demonstrating better clustering performance. Figure 6 shows the results of the clustering performance 
using the DBI when the experiment was conducted using 3–10 clusters. Comparing the performance of 
the clustering solutions, we chose to group the AC use patterns of bedrooms and dining rooms into four 
clusters, and the living rooms into three, as suggested by the optimal number of clusters for different 
room types. 



 
Figure 6 Clustering performance of different number of clusters 

The line charts in Figures 7–9 summarize the AC-on probability curve of each cluster for the three 
room types during AC-on days. In addition, the pie chart refers to the number of each cluster, and the 
boxplot refers to the daily AC-on duration of each cluster. For bedrooms, Cluster 1, the most common 
pattern of AC use (accounting for up 36%), represents an infrequently use pattern with a few 
possibilities of turning on the AC at noon, or before sleep. A total of 28% prefer AC to be on during the 
entire night, which lasted 10 h approximately. Clusters 3 and 4 accounted for similar proportions. The 
pattern of AC use in Cluster 3 is turning on AC from noon until the sleep time, which indicates that 
occupants stay home in the afternoon. Furthermore, Cluster 4 corresponds to the energy-intensive 
families owing to the continuous AC use. Living rooms were associated with three clusters: seldom use 
of ACs (42%), AC intermittently on in the afternoons (32%), and AC always on (26%). Occupants 
usually did not use the ACs during the sleep time except for Cluster 3, which agrees with our 
understanding of living room use. In the case of dining rooms, Clusters 1 and 2 turned on the ACs at 
lunch time or dinner time separately. This accounted for a total usage of 55%. Cluster 3 represents the 
“afternoon-on user”, and Cluster 4 the “always-on user”. Overall, more than half of the households 
used AC intermittently, based on their different requirements of room usage, such as sleeping and 
eating meals. There were some families, who spent more time at home, preferring ACs to be on in all 
rooms during the afternoons. Some energy-intensive households always turned on ACs in all rooms. 



 
Figure 7 Clustering results for the bedrooms 

 
Figure 8 Clustering results for the living rooms 



 
Figure 9 Clustering results for the dining rooms 

The clusters of each room type are categorized by the daily 24-hour cooling loads during all AC-on 
days, and account for all apartments. Previous studies and observational data have revealed the 
significant relationships between the frequency or probability of AC operation and indoor climate or 
outdoor condition [17]. Different daily climates may impact the clustering results, so we also carried 
out correlation analyses between the proportion of each of the clusters at different time periods, as 
shown in Tables 2 and 3. It is noted that the number of AC operating hours increased as the cluster 
number increased from one to four, indicating that Cluster 1 represents the infrequent AC users, Cluster 
3 of the living room and Cluster 4 of the bedroom and dining room always-on users. 
Table 2 shows the distribution of clusters in weekdays and weekends. Since there was no prolonged 
Chinese holiday during the cooling season, we only distinguished the days of the week in accordance to 
the weekday and weekend classifications. The results indicate that there are small discrepancies of the 
distribution of clusters between weekdays and weekends, which can be due to the Chinese culture of 
retired parents who live with their children to help take care of grandchildren. This leads to lack of 
differences in the living conditions between weekdays and weekends. However, there is still a trend, 
whereby occupants tend to use the AC less frequently, especially in dining rooms during weekends. 
One possible reason is that occupants will likely go out for fun during the weekends, leading to less 
frequent AC use.  

Table 2 Distributions of clusters during weekdays and weekends 

Room type Bedroom Living room Dining room 

Cluster 1 2 3 4 1 2 3 1 2 3 4 
Weekday (%) 35 27 20 18 41 32 27 34 18 23 25 
Weekend (%) 40 28 16 16 45 30 24 44 20 16 19 

We also analyzed the distribution of clusters in different months. Zhengzhou city is located in China’s 
cold climate zone with July and August being the two hottest months. We can infer that more occupants 
tend to use ACs more in July and August than June and September. Table 3 lists results with trends that 
are opposite to the expected results in accordance to our common sense. This is because these clusters 



are generated by hourly cooling load profiles during AC-on days. There are fewer households using 
ACs in June and September, so the remaining AC users are energy-intensive users with increased use of 
AC. 

Table 3 Distributions of clusters in the four summer months 

Room type Bedroom Living room Dining room 

Cluster 1 2 3 4 1 2 3 1 2 3 4 
June (%) 27 34 19 21 40 30 29 36 15 31 18 
July (%) 39 27 19 15 44 37 19 40 25 22 13 

August (%) 37 27 20 17 41 30 29 38 13 19 29 
September (%) 31 27 16 27 38 19 44 23 14 16 46 

 

3.3. KPIs of household cooling energy usage 

Based on the long-term metered data of cooling loads of each FCU, we can use more indicators beyond 
the total cooling loads, enabling a deeper understanding of the cooling energy usage of the district. 
Therefore, we carried out further analyses on cooling usage, based on three additional perspectives as 
explained below. 

3.3.1. Household AC use intensity 

Various AC operating hours and number of FCUs of each household can reflect their AC use intensity 
directly, such as long-time user and short-time user. Therefore, we introduced another indicator known 
as “aggregated operating hours of FCUs” to represent the cooling use intensity of each household, 
whose definition has been introduced in Section 2.2. Figure 10 shows the distribution of this indicator 
for all households in this district. The blue dashed lines indicate the first and third quarter levels. It can 
be seen that 40% of households used ACs for less than 500 FCU⋅h, while approximately 46% of the 
households used AC between 1000–3000 FCU⋅h. 

 

Figure 10 Distribution of the aggregated operating hours of FCUs in the cooling season 
The aggregated operating hours of FCUs are influenced by three factors: the ratio of AC-on days 
during the cooling season, the daily AC-on duration during AC-on days, and the coincident use factor 
of FCUs (calculated as the ratio of number of operating FCUs to the number of installed FCUs), which 
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are explained individually as follows. 
Some household occupants did not stay at home every day for a number of reasons (e.g., job-related 
reasons), so they used the ACs less frequently than other households. Furthermore, some households 
used ACs less frequently owing to their habits. Therefore, each household has different number of 
AC-on days, which can influence its total cooling energy consumption. Figure 11 shows such a 
variation. The ratios of AC-on days to the total number of days during the cooling season for different 
households exhibit polarization. Approximately 40% of households seldom used AC during the entire 
cooling season, while approximately 40% of them used AC frequently.  

 

Figure 11 Ratio of household AC-on days during the cooling season 
Figure 12 shows the distribution of daily AC-on duration of each household during the AC-on days 
(excluding the “always-off users”). The daily AC-on duration is the average AC-use duration of the 
entire apartment instead of a single room, meaning that the AC of an apartment is on if any room in the 
apartment has an AC that is turned on. The duration of operation hours varied from household to 
household with a median “on” duration of approximately 12.5 h, and with half the households 
operating the ACs between 10 and 15 h during the AC-on days. 

 

Figure 12 Distribution of the daily AC-on duration of all households 
Figure 13 plots the probability distribution of the coincident use factor of FCUs of each household 
except for the “always-off users”. There are three to five FCUs in each apartment. Some households 
operated all FCUs at the same time, while others preferred turning only one or two units on when 
cooling was needed. The coincident use factor of FCUs is an indicator that is used to present this habit 
for each household. Similarly, this indicator has different values among all households with a median 
value of 0.33. It also indicates that the households in this district usually operated one or two FCUs 
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simultaneously. 

 

Figure 13 Distribution of the coincident use factor of FCUs in all households 

3.3.2. Daily cooling energy usage 

Daily cooling energy usage during AC-on days is another important indicator to analyze household 
cooling usage (Figure 14), which is influenced by the same factors as the total cooling energy 
consumption of each household except for the ratio of AC-on days. This distribution does not include 
the “always-off users,” which take up approximately 19% of all households. The daily cooling usage 
during AC-on days for the majority of households (i.e., 75%) is less than 0.3 kWh/m2. The daily 
cooling usage varies considerably and can be as high as 1.4 kWh/m2. 

 

Figure 14 Distribution of daily cooling energy usage of all households during AC-on days 

3.3.3. Average cooling load per FCU 

Dividing the household cooling consumption by the aggregated operating hours of FCUs, we can 
obtain the average cooling load per FCU for each household. To make sure this indicator is not 
influenced by the number of operating hours, we conducted a correlation analysis between this 
indicator and the aggregated operating hours of FCUs. The results are plotted in Figure 15 showing no 
obvious relationship between them. Therefore, we can consider that the average cooling load per FCU 
is an independent indicator. 
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Figure 15 Correlation of the aggregated operating hours of FCUs with the average cooling loads per 
FCU for all studied households 

The average cooling loads per FCU was influenced by many other factors, such as the indoor comfort 
temperature setpoint, the fan speed of FCU (i.e., high, middle, and low speeds), and indoor heat gains. 
Owing to the lack of other data (e.g., indoor temperature), we could not explain the variation of the 
average cooling loads, which should be enhanced in future work. In this study, we only used the 
average cooling load per FCU of each household to represent this feature, as shown in Figure 16. The 
median cooling load per FCU was 9.3 W/m2. 

 

Figure 16 Distribution of the average cooling load per FCU for each household 

3.3.4. Summary 

We used four first-tier indicators and three second-tier indicators to study the household cooling energy 
usage in the case district. The four first-tier indicators represent different characteristics of the 
household cooling usage. The total cooling consumption is a combined result of many factors, such as 
operating hours, number of FCUs, and internal heat gains. We used the aggregated operating hours of 
FCUs to represent the AC use intensity, and three second-tier indicators to explain the AC use intensity 
for the ratio of AC-on days, daily AC-on duration, and the coincident use factor of FCUs. The daily 
cooling usage during AC-on days is affected by the same influencing factors as the total cooling 
consumption except for the ratio of AC-on days. The average cooling load per FCU excludes factors 
related to operating hours and number of FCUs. Therefore, we can infer some information on the 
temperature setpoint, indoor heat gains, and fan speed of FCU, which has three levels (i.e., high, 
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middle, and low speeds) through the adjustment of the fan’s motor frequency. 
In the case district, the four first-tier indicators have different distributions (Figure 17). The 
distributions of the total cooling consumption and the daily cooling usage are presented as exponential 
distributions. However, the distribution of the total cooling consumption exhibits a more abrupt drop, 
because it is associated with more percentage of smaller values, while the daily cooling usage has 
eliminated the AC-off days. The distribution of the aggregated operating hours of FCUs yields two 
peaks, namely, one larger peak between 0 and 500 h, and the other at approximately 2000 h. All the 
total cooling consumption values are normally distributed except those around zero (0–200 h). The 
distribution of the average cooling load per FCU is similar to a skewed normal distribution with a 
different median value compared to the average value, and a longer right tail. 

  
(a) Distribution of the total cooling 

consumption of each household 
(b) Distribution of the aggregated operating 

hours of FCUs 

  
(c) Distribution of daily cooling usage of each 

household during AC-on days 
(d) Distribution of average cooling loads per 

FCU of each household 
Figure 17 Distributions of the four first-tier indicators 

4. Potential applications of outcomes 

4.1. Application of AC operation schedules for simulation of cooling energy in buildings  

Building energy modeling (BEM) programs are commonly used to simulate cooling energy 
consumption and the peak cooling loads for equipment sizing (e.g., chillers, air-handling units) [39]. 
Currently, the most commonly used inputs related to occupancy, equipment state, climate, and other 
parameters in the BEM programs, are known as the schedules [40,41]. The AC schedule is the most 
important and direct factor influencing the cooling loads in building simulations. There are several 
methods to define the AC schedules. The so-called full-time full-space method assumes that AC is 
always on in every room of a building, which is still used in the design standards in China, and 
extensively used as the input schedule in BEM for HVAC system design [42]. In addition, some default 
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schedules are provided by various simulation tools. Compared with the full-time full-space method, or 
default schedules, realistic AC schedules are more accurate for simulation. Several researchers have 
attempted to determine AC schedules to simulate the energy consumption of buildings based on 
questionnaire surveys or measurements [43]. 
This study clustered representative AC use patterns for three main room types (i.e., bedrooms, living 
rooms, and dining rooms) from the metered cooling energy use data. To apply the clustering results to 
real projects, we need to generate representative AC operation schedules for use in building energy 
simulation, which usually assumes the same AC use schedules for all rooms in all apartments. As the 
AC use has two states: on and off, we should convert the possibility of turning on AC into on/off state 
to generate the AC operation schedules. We assumed that AC was on when the probability of turning on 
AC was greater than half, otherwise it was off. The results generated from the above clusters are listed 
in Table 4, which represent the same features as the aforementioned probability curves. The percentage 
of each cluster is marked inside the diagrams in Table 4. It is noted that the AC operation schedule of 
Cluster 1 for living rooms represents the always off state, supporting the scenario of no use of ACs in 
living rooms. 
These clustered AC use patterns can be used for the residential buildings with installed HVAC systems 
of adjustable air supply terminals such as FCU and split AC, and in the cities in the cold climate zone. 
Although FCU system has different system efficiency and energy consumption from the split type 
system, the studied FCU system can be controlled individually by the users, and their utility bills were 
charged based on actual cooling energy usage. From the perspective of AC use patterns, these two 
systems are similar so that the clustered patterns can also be used in split type systems. Besides, the 
studied system is located in Zhengzhou city in China, which is a typical city in China’s cold climate 
zone. As climate is one of the most important factors driving occupant behavior, it is feasible to apply 
the clustered AC use patterns and schedules in the cities in the cold climate zone. These more practical 
AC schedules for residential buildings in the cold climate zone of China can be used to improve the 
accuracy of simulated cooling energy.  
 
Table 4 Representative AC operation schedules for three residential room types 
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(b)Typical 
AC 

operation 
schedules 
for living 

rooms 

  

 

 

(c)Typical 
AC 

operation 
schedules 
for dining 

rooms 

  

   
 
 

4.2. Application of KPIs for household cooling use benchmarking  

We generated several distributions on household cooling energy usage in the district case, which have 
potential applications, such as cooling energy benchmarking, and cooling energy performance 
diagnosis. The group of KPIs proposed in this study present the household AC usage beyond the total 
cooling consumption. We presented this possible application of household cooling use benchmarking 
for a case household as an example in Table 5. 
It is noted that the green dashed lines indicate value of the case household. Its total cooling 
consumption was higher than 98% of all households, which can be a good candidate to explore energy 
conservation measures to decrease the total cooling consumption. Compared to its total cooling loads, 
the aggregated operating hours of FCUs are not as considerable. However, attentions should be paid to 
the daily AC-on duration as well as to the number of simultaneously operating FCUs. The daily cooling 
usage during AC-on days was greater than 96% of all the households, which is caused by the longer 
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daily AC-on durations, the greater coincident use factors of FCUs, as well as the larger average cooling 
loads per FCU (higher than 95% of all the households). Larger average cooling loads per FCU indicate 
that the specific household might have some unusual habits, such as the setting of a lower indoor 
comfort temperature, or having increased internal heat gains. This ought to be double checked by the 
occupants, and certain actions ought to be taken to conserve energy, e.g., reducing the daily AC use 
hours, or operating the FCUs only as needed in an energy efficient, part-time part-space mode, rather 
than using the full-time full-space mode.  

Table 5 Results of the cooling energy benchmarking for a case household 
First-tier indicators Second-tier indicators 
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Based on the benchmarking results, we found that the Chinese like to use AC part-time and part-space, 
and the AC operating hour can influence the cooling consumption significantly. The KPIs related to AC 
operating hour can help inhabitants understand the temporal and spatial characteristics of AC use. If 
there are any unreasonable behaviors, they can adjust their behaviors to decrease their AC energy 
consumption. Therefore, the KPIs proposed in this study are useful and applicable for general Chinese 
household cooling benchmarking. 

5. Discussion 

5.1. Policy implications 

There are significant differences in occupant behaviors in residential buildings between China and the 
USA [44,45]. The predominant Chinese lifestyle and behavior is the part-time, part-space use of 
building services (and thus energy consumption), which is regarded as an effective energy-saving 
measure. Many researchers advocate that Chinese should maintain this green lifestyle and economical 
part-time, part-space use, and avoid the full-time full-space use mode in the future, thereby meeting the 
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requirements of energy conservation in urban residential buildings in China [3,46]. While in the USA, 
full-time and full-space use mode is typical due to most existing houses use a single-zone central 
cooling and heating system without individual room-level AC control. We analyzed the correlation 
between the daily cooling energy usage and the AC operating hours, and showed the correlations for 
two typical apartment types in Figure 18. The x-axis is the daily AC-on duration, the y-axis is the 
average number of simultaneous operating FCUs, and the area of the circle represents the daily cooling 
energy usage during AC-on days. We found that an obvious positive correlation exists between the two 
factors in the case of the residential district in Zhengzhou, China; and the degree of correlation varies 
with different cases, for instance, the correlations in the right figure is not as significant as the left one. 
The daily cooling usage is influenced by many other factors such as outdoor temperature, indoor 
temperature setpoint except for operating hours of AC, which were not shown directly in this figure. 
Taking the blue circle shown in the bottom left of the right figure as an example, its coordinate is (8.33, 
1.48); this household only used AC twice during the whole summer, and the thermal mass effect during 
the long AC-off hours (more heat is stored in the building thermal mass) could lead to higher cooling 
load when AC was switched on; thus its daily cooling consumption during AC-on days was higher than 
other households with similar AC operating hours. In general, the daily cooling consumption is highly 
related to AC operating hours. Therefore, we can infer that under the current situation, the part-time, 
part-space use mode is a worthwhile measure to adopt to save energy in China. 

  
Figure 18 Correlation between the daily cooling energy usage and the number of operating hours (The 

areas of circles represent the daily cooling usage in AC-on days (kWh/m2)) 

5.2. Limitations of the current work 

In the case district, we had access to the metered cooling energy usage data of each FCU, and the 
number of rooms and floor area of each household. However, it would be valuable to have other data, 
e.g., number of occupants per household, income level, family demographics, and indoor air 
temperature, to improve the analyses. Specifically, 
(1) For the representative AC use schedules of each room type generated by this study, we could not 

analyze the actual reasons behind different clusters, due to the lack of socio-economic user 
information mentioned above. Therefore, we considered the apartment type and location (i.e., 
ground floor, low level (2-7), high level (8-15/17), the top level (16/18)) as two proxies for these 
parameters, and carried out a simple correlation analysis to examine the relationship between AC 
use pattern and apartment type, and between AC use pattern and apartment location by using 
Spearman’s rank correlation coefficient. The results show that the apartment location is related to 
the clustered AC use patterns, which means users lived at higher levels tend to use AC for a longer 

Apartment with 
floor area of 91 m2

Apartment with 
floor area of 127 m2



time. Whereas the relationship between clusters and apartment type is not obvious, implying the 
apartment type might not represent the user’s information, which needs further study in future. 

(2) For the household cooling energy usage, we could not identify reasons behind different 
distributions of performance indicators. Particularly, the average cooling load per FCU for each 
household was influenced by various factors, such as the indoor comfort temperature setpoint, and 
the internal heat gains, which could not be explained without the support of other data, such as 
indoor temperatures. Therefore, the KPIs proposed in this study can only point out the direction of 
reasons leading to unreasonable cooling usage, while the exact causes need to be double checked 
by users. 

(3) We had not taken advantage of the load shapes, which should be an important indicator to 
benchmark the cooling energy usage for households. For instance, if we could access the 
information on household composition (e.g., double (couple) occupancy versus a single residency 
occupancy) and their jobs, we could assume the time they spent at home according to their 
professions, and we could then determine whether their AC use patterns were reasonable or not. 
 

In the future, we will try to collect more information in addition to the metered cooling energy data to 
fully understand the phenomena discovered in this study, and fully utilize the load shape for residential 
cooling energy benchmarking. 

6. Conclusions 

In this study, data-driven approaches comprising clustering, KPIs and statistical analysis were 
employed to analyze the AC use patterns, benchmark and interpret inhabitants’ AC use in residential 
buildings, using the long-term metered cooling energy consumption data. This study demonstrated the 
use of the approaches for a residential district in Zhengzhou, China. There are four main outcomes 
from the study that provide insights to the research and industry for improving building energy 
efficiency especially reducing air-conditioning energy use. 
(1) There were large variations in the total cooling energy consumption among all households in the 

same district with same climate conditions and envelope performance, with the highest amounting 
to 140 kWh/m2, which is 13.5 times of the median level. This load diversity was mainly caused by 
occupant behavior based on the analyses of real data. 

(2) The generated representative AC use patterns and their corresponding proportions (four schedules 
for bedrooms and dining rooms, three schedules for living rooms) can provide more realistic AC 
use schedules for building simulation to improve the accuracy of the estimated cooling energy and 
peak cooling loads for HVAC equipment sizing. 

(3) Four first-tier and three second-tier performance indicators were introduced to analyze the cooling 
energy usage distributions of a residential district. More in-depth understanding of the AC use 
habits (such as operating ACs for longer time periods) is obtained, beyond the household cooling 
energy consumption levels. Based on the proposed set of performance indicators, the household 
cooling energy usage can be benchmarked more comprehensively as demonstrated in Section 4.2. 

(4) There is a significant positive correlation between the cooling energy usage and operating hours 
that supports the part-time, part-space, AC use mode. Therefore, this is a highly useful measure for 
energy savings in Chinese residential buildings. 



Future work should study the relationship between clustered AC use patterns and user’s information 
such as profession, family demographics, and apply the representative load curves in the household 
cooling benchmarking. Furthermore, new research is expected to obtain not only the household 
information but also the indoor parameters such as temperature and CO2 concentration to improve the 
analytics and provide more effective energy conservation recommendations for inhabitants in the 
contemporary energy-conscious environment. 
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