%0 Report %D 2017 %T Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance %A Ying Cui %A Da Yan %A Tianzhen Hong %A Jingjin Ma %K beijing %K building design %K Microclimate %K Temporal and spatial characteristics %K urban heat island %X

With the increased urbanization in most countries worldwide, the urban heat island (UHI) effect, referring to the phenomenon that an urban area has higher ambient temperature than the surrounding rural area, has gained much attention in recent years. Given that Beijing is developing rapidly both in urban population and economically, the UHI effect can be significant. A long-term measured weather dataset from 1961 to 2014 for ten rural stations and seven urban stations in Beijing, was analyzed in this study, to understand the detailed temporal and spatial characteristics of the UHI in Beijing. The UHI effect in Beijing is significant, with an urban-to-rural temperature difference of up to 8℃ during the winter nighttime. Furthermore, the impacts of UHIs on building design and energy performance were also investigated. The UHI in Beijing led to an approximately 11% increase in cooling load and 16% decrease in heating load in the urban area compared with the rural area, whereas the urban heating peak load decreased 9% and the cooling peak load increased 7% because of the UHI effect. This study provides insights into the UHI in Beijing and recommendations to improve building design and decision-making while considering the urban microclimate.

%G eng %0 Journal Article %J Building and Environment %D 2017 %T Ten Questions Concerning Occupant Behavior in Buildings: The Big Picture %A Tianzhen Hong %A Da Yan %A Simona D'Oca %A Chien-Fei Chen %K Behavior Modeling %K building performance %K building simulation %K energy use %K interdisciplinary %K occupant behavior %X

Occupant behavior has significant impacts on building energy performance and occupant comfort. However, occupant behavior is not well understood and is often oversimplified in the building life cycle, due to its stochastic, diverse, complex, and interdisciplinary nature. The use of simplified methods or tools to quantify the impacts of occupant behavior in building performance simulations significantly contributes to performance gaps between simulated models and actual building energy consumption. Therefore, it is crucial to understand occupant behavior in a comprehensive way, integrating qualitative approaches and data- and model-driven quantitative approaches, and employing appropriate tools to guide the design and operation of low-energy residential and commercial buildings that integrate technological and human dimensions. This paper presents ten questions, highlighting some of the most important issues regarding concepts, applications, and methodologies in occupant behavior research. The proposed questions and answers aim to provide insights into occupant behavior for current and future researchers, designers, and policy makers, and most importantly, to inspire innovative research and applications to increase energy efficiency and reduce energy use in buildings.

 

%B Building and Environment %G eng %0 Journal Article %J Energy and Buildings %D 2017 %T A Thorough Assessment of China’s Standard for Energy Consumption of Buildings %A Da Yan %A Tianzhen Hong %A Cheng Li %A Qi Zhang %A Jingjing An %A shan Hu %K China %K code and standard %K energy consumption %K energy efficiency %K Energy Use Intensity %K outcome-based code %X

China’s Design Standard for Energy Efficiency of Public Buildings (the Design Standard) is widely used in the design phase to regulate the energy efficiency of physical assets (envelope, lighting, HVAC) in buildings. However, the standard does not consider many important factors that influence the actual energy use in buildings, and this can lead to gaps between the design estimates and actual energy consumption. To achieve the national energy savings targets defined in the strategic 12th Five-Year Plan, China developed the first standard for energy consumption of buildings GB/T51161-2016 (the Consumption Standard). This study provides an overview of the Consumption Standard, identifies its strengths and weaknesses, and recommends future improvements. The analysis and discussion of the constraint value and the leading value, two key indicators of the energy use intensity, provide insight into the intent and effectiveness of the Consumption Standard. The results indicated that consistency between China’s Design Standard GB 50189-2015 and the Consumption Standard GB/T51161-2016 could be achieved if the Design Standard used the actual building operations and occupant behavior in calculating the energy use in Chinese buildings. The development of an outcome-based code in the U.S. was discussed in comparison with China’s Consumption Standard, and this revealed the strengths and challenges associated with implementing a new compliance method based on actual energy use in buildings in the U.S. Overall, this study provides important insights into the latest developments of actual consumption-based building energy standards, and this information should be valuable to building designers and energy policy makers in China and the U.S.

%B Energy and Buildings %8 03/2017 %G eng %R 10.1016/j.enbuild.2017.03.019