%0 Journal Article %J Joule %D 2019 %T Assessing the Potential to Reduce U.S. Building CO2 Emissions 80% by 2050 %A Jared Langevin %A Chioke B. Harris %A Janet L. Reyna %K Building energy efficiency %K decarbonization %K electrification %K emissions %K energy models %K energy policy analysis %K national climate goals %K pathways building stock %X

Buildings are responsible for 36% of CO2 emissions in the United States and will thus be integral to climate change mitigation; yet, no studies have comprehensively assessed the potential long-term CO2 emissions reductions from the U.S. buildings sector against national goals in a way that can be regularly updated in the future. We use Scout, a reproducible and granular model of U.S. building energy use, to investigate the potential for the U.S. buildings sector to reduce CO2 emissions 80% by 2050, consistent with the U.S. Mid-Century Strategy. We find that a combination of aggressive efficiency measures, electrification, and high renewable energy penetration can reduce CO2 emissions by 72%–78% relative to 2005 levels, just short of the target. Results are sufficiently disaggregated by technology and end use to inform targeted building energy policy approaches and establish a foundation for continual reassessment of technology development pathways that drive significant long-term emissions reductions.

%B Joule %8 08/2019 %G eng %R 10.1016/j.joule.2019.07.013 %0 Journal Article %J Building Simulation %D 2018 %T Building Simulation: Ten Challenges %A Tianzhen Hong %A Jared Langevin %A Kaiyu Sun %K building energy use %K building life cycle %K building performance simulation %K energy efficiency %K energy modeling %K zero-net-energy buildings %X

Buildings consume more than one-third of the world’s primary energy. Reducing energy use and greenhouse-gas emissions in the buildings sector through energy conservation and efficiency improvements constitutes a key strategy for achieving global energy and environmental goals. Building performance simulation has been increasingly used as a tool for designing, operating and retrofitting buildings to save energy and utility costs. However, opportunities remain for researchers, software developers, practitioners and policymakers to maximize the value of building performance simulation in the design and operation of low energy buildings and communities that leverage interdisciplinary approaches to integrate humans, buildings, and the power grid at a large scale. This paper presents ten challenges that highlight some of the most important issues in building performance simulation, covering the full building life cycle and a wide range of modeling scales. The formulation and discussion of each challenge aims to provide insights into the state-of-the-art and future research opportunities for each topic, and to inspire new questions from young researchers in this field.

%B Building Simulation %V 11 %G eng %R 10.1007/s12273-018-0444-x %0 Report %D 2017 %T The Human Dimensions of Energy Use in Buildings: A Review %A Simona D'Oca %A Tianzhen Hong %A Jared Langevin %X

The "human dimensions" of energy use in buildings refer to the energy-related behaviors of key stakeholders that affect energy use over the building life cycle. Stakeholders include building designers, operators, managers, engineers, occupants, industry, vendors, and policymakers, who directly or indirectly influence the acts of designing, constructing, living, operating, managing, and regulating the built environments, from individual building up to the urban scale. Among factors driving high-performance buildings, human dimensions play a role that is as significant as that of technological advances. However, this factor is not well understood, and, as a result, human dimensions are often ignored or simplified by stakeholders. This paper presents a review of the literature on human dimensions of building energy use to assess the state-of-the-art in this topic area. The paper highlights research needs for fully integrating human dimensions into the building design and operation processes with the goal of reducing energy use in buildings while enhancing occupant comfort and productivity. This research focuses on identifying key needs for each stakeholder involved in a building's lifecycle and takes an interdisciplinary focus that spans the fields of architecture and engineering design, sociology, data science, energy policy, codes, and standards to provide targeted insights. Greater understanding of the human dimensions of energy use has several potential benefits including reductions in operating cost for building owners;enhanced comfort conditions and productivity for building occupants;more effective building energy management and automation systems for building operators and energy managers; and the integration of more accurate control logic into the next generation of human-in-the-loop technologies. The review concludes by summarizing recommendations for policy makers and industry stakeholders for developing codes, standards, and technologies that can leverage the human dimensions of energy use to reliably predict and achieve energy use reductions in the residential and commercial buildings sectors.

%G eng