TY - JOUR T1 - Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings JF - Automation in Construction Y1 - 2018 A1 - Wei Wang A1 - Jiayu Chen A1 - Tianzhen Hong KW - data fusion KW - environmental sensing KW - Machine learning KW - occupancy prediction KW - Wi-Fi sensing AB -

Occupancy information is crucial to building facility design, operation, and energy efficiency. Many studies propose the use of environmental sensors (such as carbon dioxide, air temperature, and relative humidity sensors) and radio-frequency sensors (Wi-Fi networks) to monitor, assess, and predict occupancy information for buildings. As many methods have been developed and a variety of sensory data sources are available, establishing a proper selection of model and data source is critical to the successful implementation of occupancy prediction systems. This study compared three popular machine learning algorithms, including k-nearest neighbors (kNN), support vector machine (SVM), and artificial neural network (ANN), combined with three data sources, including environmental data, Wi-Fi data, and fused data, to optimize the occupancy models' performance in various scenarios. Three error measurement metrics, the mean average error (MAE), mean average percentage error (MAPE), and root mean squared error (RMSE), have been employed to compare the models' accuracies. Examined with an on-site experiment, the results suggest that the ANN-based model with fused data has the best performance, while the SVM model is more suitable with Wi-Fi data. The results also indicate that, comparing with independent data sources, the fused data set does not necessarily improve model accuracy but shows a better robustness for occupancy prediction.

VL - 94 UR - https://linkinghub.elsevier.com/retrieve/pii/S0926580518302656https://api.elsevier.com/content/article/PII:S0926580518302656?httpAccept=text/xmlhttps://api.elsevier.com/content/article/PII:S0926580518302656?httpAccept=text/plain JO - Automation in Construction ER - TY - JOUR T1 - Occupancy prediction through Markov based feedback recurrent neural network (M-FRNN) algorithm with WiFi probe technology JF - Building and Environment Y1 - 2018 A1 - Wei Wang A1 - Jiayu Chen A1 - Tianzhen Hong A1 - Na Zhu AB -

Accurate occupancy prediction can improve facility control and energy efficiency of buildings. In recent years, buildings' exiting WiFi infrastructures have been widely studied in the research of occupancy and energy conservation. However, using WiFi to assess occupancy is challenging due to that occupancy information is often characterized stochastically and varies with time and easily disturbed by building components. To overcome such limitations, this study utilizes WiFi probe technology to actively scan WiFi connection requests and responses between access points and network devices of building occupants. With captured signals, this study proposed a Markov based feedback recurrent neural network (M-FRNN) algorithm to model and predict the occupancy profiles. One on-site experiment was conducted to collect ground truth data using camera-based video analysis and the results were used to validate the M-FRNN occupancy prediction model over a 9-day measurement period. From the results, the M-FRNN based occupancy model using WiFi probes shows best accuracies can reach 80.9%, 89.6%, and 93.9% with a tolerance of 2, 3, and 4 occupants respectively. This study demonstrated that WiFi data coupled with stochastic machine learning system can provide a viable alternative to determine a building's occupancy profile.

VL - 138 UR - https://linkinghub.elsevier.com/retrieve/pii/S0360132318302464https://api.elsevier.com/content/article/PII:S0360132318302464?httpAccept=text/xmlhttps://api.elsevier.com/content/article/PII:S0360132318302464?httpAccept=text/plain JO - Building and Environment ER -