A nanofluid is a fluid containing suspended solid particles, with sizes on the order of nanometers. Normally, nanofluids have higher thermal conductivities than their base fluids. Therefore, it is of interest to predict the effective thermal conductivity of such a nanofluid under different conditions, especially since only limited experimental data are available. We have developed a technique to compute the effective thermal conductivity of a nanofluid using Brownian dynamics simulation, which has the advantage of being computationally less expensive than molecular dynamics, and have coupled that with the equilibrium Green-Kubo method. By comparing the results of our calculation with the available experimental data, we show that our technique predicts the thermal conductivity of nanofluids to a good level of accuracy.

VL - 95 IS - 11 ER - TY - Generic T1 - Numerical Tools For Particle- Fluid Interactions T2 - Pulmonary Research Forum: American Lung Association of Arizona & New Mexico Y1 - 2004 A1 - R. Calhoun A1 - Patrick E. Phelan A1 - Ajay K. Yadav A1 - Prajesh Bhattacharya JF - Pulmonary Research Forum: American Lung Association of Arizona & New Mexico ER - TY - CONF T1 - Determining the Effective Thermal Conductivity of a Nanofluid Using Brownian Dynamics Simulation T2 - National Heat Transfer Conference Y1 - 2003 A1 - Prajesh Bhattacharya A1 - Saha, S.K. A1 - Ajay K. Yadav A1 - Patrick E. Phelan A1 - Ravi S. Prasher JF - National Heat Transfer Conference CY - Las Vegas, NV ER -