TY - JOUR T1 - Building Simulation: Ten Challenges JF - Building Simulation Y1 - 2018 A1 - Tianzhen Hong A1 - Jared Langevin A1 - Kaiyu Sun KW - building energy use KW - building life cycle KW - building performance simulation KW - energy efficiency KW - energy modeling KW - zero-net-energy buildings AB -

Buildings consume more than one-third of the world’s primary energy. Reducing energy use and greenhouse-gas emissions in the buildings sector through energy conservation and efficiency improvements constitutes a key strategy for achieving global energy and environmental goals. Building performance simulation has been increasingly used as a tool for designing, operating and retrofitting buildings to save energy and utility costs. However, opportunities remain for researchers, software developers, practitioners and policymakers to maximize the value of building performance simulation in the design and operation of low energy buildings and communities that leverage interdisciplinary approaches to integrate humans, buildings, and the power grid at a large scale. This paper presents ten challenges that highlight some of the most important issues in building performance simulation, covering the full building life cycle and a wide range of modeling scales. The formulation and discussion of each challenge aims to provide insights into the state-of-the-art and future research opportunities for each topic, and to inspire new questions from young researchers in this field.

VL - 11 ER - TY - JOUR T1 - A Novel Variable Refrigerant Flow (VRF) Heat Recovery System Model: Development and Validation JF - Energy and Buildings Y1 - 2018 A1 - Rongpeng Zhang A1 - Kaiyu Sun A1 - Tianzhen Hong A1 - Yoshinori Yura A1 - Ryohei Hinokuma KW - building performance simulation KW - controls KW - energy modeling KW - heat recovery KW - validation KW - Variable refrigerant flow AB -

As one of the latest emerging HVAC technologies, the Variable Refrigerant Flow (VRF) system with heat recovery (HR) configurations has obtained extensive attention from both the academia and industry. Compared with the conventional VRF systems with heat pump (HP) configurations, VRF-HR is capable of recovering heat from cooling zones to heating zones and providing simultaneous cooling and heating operations. This can further lead to substantial energy saving potential and more flexible zonal control. In this paper, a novel model is developed to simulate the energy performance of VRF-HR systems. It adheres to a more physics-based development with the ability to simulate the refrigerant loop performance and consider the dynamics of more operational parameters, which is essential for representing more advanced control logics. Another key feature of the model is the introduction of component-level curves for indoor units and outdoor units instead of overall performance curves for the entire system, and thus it requires much fewer user-specified performance curves as model inputs. The validation study shows good agreements between the simulated energy use from the new VRF-HR model and the laboratory measurement data across all operational modes at sub-hourly time steps. The model has been adopted in the official release of the EnergyPlus simulation program since Version 8.6, which enables more accurate and robust assessments of VRF-HR systems to support their applications in energy retrofit of existing buildings or design of zero-net-energy buildings.

VL - 168 ER - TY - JOUR T1 - Quantifying the benefits of a building retrofit using an integrated system approach: A case study JF - Energy and Buildings Y1 - 2018 A1 - Cynthia Regnier A1 - Kaiyu Sun A1 - Tianzhen Hong A1 - Mary Ann Piette KW - Building retrofit KW - building simulation KW - Energy conservation measures KW - energy savings KW - integrated design KW - integrated system AB -

Building retrofits provide a large opportunity to significantly reduce energy consumption in the buildings sector. Traditional building retrofits focus on equipment upgrades, often at the end of equipment life or failure, and result in replacement with marginally improved similar technology and limited energy savings. The Integrated System (IS) retrofit approach enables much greater energy savings by leveraging interactive effects between end use systems, enabling downsized or lower energy technologies. This paper presents a case study in Hawaii quantifying the benefits of an IS retrofit approach compared to two traditional retrofit approaches: a Standard Practice of upgrading equipment to meet minimum code requirements, and an Improved Practice of upgrading equipment to a higher efficiency. The IS approach showed an energy savings of 84% over existing building energy use, much higher than the traditional approaches of 13% and 33%. The IS retrofit also demonstrated the greatest energy cost savings potential. While the degree of savings realized from the IS approach will vary by building and climate, these findings indicate that savings on the order of 50% and greater are not possible without an IS approach. It is therefore recommended that the IS approach be universally adopted to achieve deep energy savings.

VL - 159 ER - TY - JOUR T1 - Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California JF - Applied Energy Y1 - 2018 A1 - Brian Tarroja A1 - Felicia Chiang A1 - Amir AghaKouchak A1 - Scott Samuelsen A1 - Shuba V. Raghavan A1 - Max Wei A1 - Kaiyu Sun A1 - Tianzhen Hong KW - Building Energy Demand KW - Climate Change Impacts KW - electric grid KW - Heating Electrification Effects AB -

Climate change and increased electrification of space and water heating in buildings can significantly affect future electricity demand and hourly demand profiles, which has implications for electric grid greenhouse gas emissions and capacity requirements. We use EnergyPlus to quantify building energy demand under historical and under several climate change projections of 32 kinds of building prototypes in 16 different climate zones of California and imposed these impacts on a year 2050 electric grid configuration by simulation in the Holistic Grid Resource Integration and Deployment (HIGRID) model. We find that climate change only prompted modest increases in grid resource capacity and negligible difference in greenhouse gas emissions since the additional electric load generally occurred during times with available renewable generation. Heating electrification, however, prompted a 30–40% reduction in greenhouse gas emissions but required significant grid resource capacity increases, due to the higher magnitude of load increases and lack of readily available renewable generation during the times when electrified heating loads occurred. Overall, this study translates climate change and electrification impacts to system-wide endpoint impacts on future electric grid configurations and highlights the complexities associated with translating building-level impacts to electric system-wide impacts.

VL - 225 UR - https://linkinghub.elsevier.com/retrieve/pii/S0306261918306962https://api.elsevier.com/content/article/PII:S0306261918306962?httpAccept=text/xmlhttps://api.elsevier.com/content/article/PII:S0306261918306962?httpAccept=text/plain JO - Applied Energy ER - TY - RPRT T1 - A Framework for Quantifying the Impact of Occupant Behavior on Energy Savings of Energy Conservation Measures Y1 - 2017 A1 - Kaiyu Sun A1 - Tianzhen Hong AB -

To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energy performance of buildings.

This study presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior (the relative savings differ by up to 20%). The study framework provides a novel, holistic approach to assessing the uncertainty of ECM energy savings related to occupant behavior, enabling stakeholders to understand and assess the risk of adopting energy efficiency technologies for new and existing buildings.

ER - TY - RPRT T1 - A Novel Stochastic Modeling Method to Simulate Cooling Loads in Residential Districts Y1 - 2017 A1 - Jingjing An A1 - Da Yan A1 - Tianzhen Hong A1 - Kaiyu Sun AB -

District cooling systems are widely used in urban residential communities in China. Most district cooling systems are oversized;this leads to wasted investment and low operational efficiency and thus energy wastage. The accurate prediction of district cooling loads that supports rightsizing cooling plant equipment remains a challenge. This study developed a new stochastic modeling method that includes (1) six prototype house models representing a majority of apartments in the district, (2)occupant behavior models in residential buildings reflecting the temporal and spatial diversity and complexity based on a large-scale residential survey in China, and (3) a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was employed in a case study using the DeST simulation engine to simulate the cooling loads of a real residential district in Wuhan, China. The simulation results agree well with the actual measurement data based on five performance metrics representing the aggregated cooling loads, the peak cooling loads as well as the spatial load distribution,and the load profiles. Two currently used simulation methods were also employed to simulate the district cooling loads. The simulation results showed that oversimplified occupant behavior assumptions lead to significant overestimations of the peak cooling load and total district cooling loads. Future work will aim to simplify the workflow and data requirements of the stochastic method to enable its practical application as well as explore its application in predicting district heating loads and in commercial or mixed-use districts.

ER - TY - RPRT T1 - Small and Medium Building Efficiency Toolkit and Community Demonstration Program Y1 - 2017 A1 - Mary Ann Piette A1 - Tianzhen Hong A1 - William J. Fisk A1 - Norman Bourassa A1 - Wanyu R. Chan A1 - Yixing Chen A1 - H.Y. Iris Cheung A1 - Toshifumi Hotchi A1 - Margarita Kloss A1 - Sang Hoon Lee A1 - Phillip N. Price A1 - Oren Schetrit A1 - Kaiyu Sun A1 - Sarah C. Taylor-Lange A1 - Rongpeng Zhang KW - CBES KW - commercial buildings KW - energy efficiency KW - energy modeling KW - energy savings KW - indoor air quality KW - indoor environmental quality KW - outdoor air measurement technology KW - outdoor airflow intake rate KW - retrofit KW - ventilation rate AB -

Small commercial buildings in the United States consume 47 percent of all primary energy consumed in the building sector. Retrofitting small and medium commercial buildings may pose a steep challenge for owners, as many lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. To address this problem, this project developed the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit that calculates the energy use of a building, identifies and evaluates retrofit measures based on energy savings, energy cost savings, and payback. The CBES Toolkit includes a web app for end users and the CBES Application Programming Interface for integrating CBES with other energy software tools. The toolkit provides a rich feature set, including the following:

  1. Energy Benchmarking providing an Energy Star score
  2. Load Shape Analysis to identify potential building operation improvements
  3. Preliminary Retrofit Analysis which uses a custom developed pre-simulated database
  4. Detailed Retrofit Analysis which utilizes real time EnergyPlus simulations

In a parallel effort the project team developed technologies to measure outdoor airflow rate; commercialization and use would avoid both excess energy use from over ventilation and poor indoor air quality resulting from under ventilation.

If CBES is adopted by California’s statewide small office and retail buildings, by 2030 the state can anticipate 1,587 gigawatt hours of electricity savings, 356 megawatts of non-coincident peak demand savings, 30.2 megatherms of natural gas savings, $227 million of energy-related cost savings, and reduction of emissions by 757,866 metric tons of carbon dioxide equivalent. In addition, consultant costs will be reduced in the retrofit analysis process.

CBES contributes to the energy savings retrofit field by enabling a straightforward and uncomplicated decision-making process for small and medium business owners and leveraging different levels of assessment to match user background, preference, and data availability.

U2 - LBNL-2001054 ER - TY - JOUR T1 - Spatial Distribution of Internal Heat Gains: A Probabilistic Representation and Evaluation of Its Influence on Cooling Equipment Sizing in Large Office Buildings JF - Energy and Buildings Y1 - 2017 A1 - Qi Zhang A1 - Da Yan A1 - Jingjing An A1 - Tianzhen Hong A1 - Wei Tian A1 - Kaiyu Sun KW - air handling unit KW - chiller plant KW - equipment sizing KW - internal heat gain KW - spatial distribution KW - spatial diversity KW - stochastic AB -

Internal heat gains from occupants, lighting, and plug loads are significant components of the space cooling load in an office building. Internal heat gains vary with time and space. The spatial diversity is significant, even for spaces with the same function in the same building. The stochastic nature of internal heat gains makes determining the peak cooling load to size air-conditioning systems a challenge. The traditional conservative practice of considering the largest internal heat gain among spaces and applying safety factors overestimates the space cooling load, which leads to oversized air-conditioning equipment and chiller plants. In this study, a field investigation of several large office buildings in China led to the development of a new probabilistic approach that represents the spatial diversity of the design internal heat gain of each tenant as a probability distribution function. In a large office building, a central chiller plant serves all air handling units (AHUs), with each AHU serving one or more floors of the building. Therefore, the spatial diversity should be considered differently when the peak cooling loads to size the AHUs and chillers are calculated. The proposed approach considers two different levels of internal heat gains to calculate the peak cooling loads and size the AHUs and chillers in order to avoid oversizing, improve the overall operating efficiency, and thus reduce energy use.

ER - TY - JOUR T1 - A Comparative Study on Energy Performance of Variable Refrigerant Flow Systems and Variable Air Volume Systems in Office Buildings JF - Applied Energy Y1 - 2016 A1 - Xinqiao Yu A1 - Da Yan A1 - Kaiyu Sun A1 - Tianzhen Hong A1 - Dandan Zhu KW - building simulation KW - comparative analysis KW - energy performance KW - field measurement KW - Variable Air Volume (VAV) Systems KW - Variable Refrigerant Flow (VRF) Systems AB -

Variable air volume (VAV) systems and variable refrigerant flow (VRF) systems are popularly used in office buildings. This study investigated VAV and VRF systems in five typical office buildings in China, and compared their air conditioning energy use. Site survey and field measurements were conducted to collect data of building characteristics and operation. Measured cooling electricity use was collected from sub-metering in the five buildings. The sub-metering data, normalized by climate and operating hours, show that VRF systems consumed much less air conditioning energy by up to 70% than VAV systems. This is mainly due to the different operation modes of both system types leading to much fewer operating hours of the VRF systems. Building simulation was used to quantify the impact of operation modes of VRF and VAV systems on cooling loads using a prototype office building in China. Simulated results show the VRF operation mode leads to much less cooling loads than the VAV operation mode, by 42% in Hong Kong and 53% in Qingdao. The VRF systems operated in the part-time-part-space mode enabling occupants to turn on air-conditioning only when needed and when spaces were occupied, while the VAV systems operated in the full-time-full-space mode limiting occupants’ control of operation. The findings provide insights into VRF systems operation and controls as well as its energy performance, which can inform HVAC designers on system selection and building operators or facility managers on improving VRF system operations.    


 

 

ER - TY - JOUR T1 - A Simulation Approach to Estimate Energy Savings Potential of Occupant Behavior Measures JF - Energy and Buildings Y1 - 2016 A1 - Kaiyu Sun A1 - Tianzhen Hong KW - behavior measure KW - Behavior Modeling KW - building performance simulation KW - energy savings KW - energyplus KW - occupant behavior AB -

Occupant behavior in buildings is a leading factor influencing energy use in buildings. Low-cost behavioral solutions have demonstrated significant potential energy savings. Estimating the behavioral savings potential is important for a more effective design of behavior change interventions, which in turn will support more effective energy-efficiency policies. This study introduces a simulation approach to estimate the energy savings potential of occupant behavior measures. First it defines five typical occupant behavior measures in office buildings, then simulates and analyzes their individual and integrated impact on energy use in buildings. The energy performance of the five behavior measures was evaluated using EnergyPlus simulation for a real office building across four typical U.S. climates and two vintages. The Occupancy Simulator was used to simulate the occupant movement in each zone with inputs from the site survey of the case building. Based on the simulation results, the occupant behavior measures can achieve overall site energy savings as high as 22.9% for individual measures and up to 41.0% for integrated measures. Although energy savings of behavior measures would vary depending upon many factors, the presented simulation approach is robust and can be adopted for other studies aiming to quantify occupant behavior impact on building performance.

ER - TY - JOUR T1 - Commercial Building Energy Saver: An energy retrofit analysis toolkit JF - Applied Energy Y1 - 2015 A1 - Tianzhen Hong A1 - Mary Ann Piette A1 - Yixing Chen A1 - Sang Hoon Lee A1 - Sarah C. Taylor-Lange A1 - Rongpeng Zhang A1 - Kaiyu Sun A1 - Phillip N. Price KW - Building Technologies Department KW - Building Technology and Urban Systems Division KW - buildings KW - buildings energy efficiency KW - Commercial Building Systems KW - conservation measures KW - energy efficiency KW - energy use KW - energyplus KW - External KW - Retrofit Energy KW - simulation research AB -

Small commercial buildings in the United States consume 47% of the total primary energy of the buildings sector. Retrofitting small and medium commercial buildings poses a huge challenge for owners because they usually lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. This paper presents the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit, which calculates the energy use of a building, identifies and evaluates retrofit measures in terms of energy savings, energy cost savings and payback. The CBES Toolkit includes a web app (APP) for end users and the CBES Application Programming Interface (API) for integrating CBES with other energy software tools. The toolkit provides a rich set of features including: (1) Energy Benchmarking providing an Energy Star score, (2) Load Shape Analysis to identify potential building operation improvements, (3) Preliminary Retrofit Analysis which uses a custom developed pre-simulated database and, (4) Detailed Retrofit Analysis which utilizes real-time EnergyPlus simulations. CBES includes 100 configurable energy conservation measures (ECMs) that encompass IAQ, technical performance and cost data, for assessing 7 different prototype buildings in 16 climate zones in California and 6 vintages. A case study of a small office building demonstrates the use of the toolkit for retrofit analysis. The development of CBES provides a new contribution to the field by providing a straightforward and uncomplicated decision making process for small and medium business owners, leveraging different levels of assessment dependent upon user background, preference and data availability.

VL - 159 U2 - LBNL-1004502 ER - TY - JOUR T1 - Development and validation of a new variable refrigerant flow systemmodel in EnergyPlus JF - Energy and Buildings Y1 - 2015 A1 - Tianzhen Hong A1 - Kaiyu Sun A1 - Rongpeng Zhang A1 - Ryohei Hinokuma A1 - Shinichi Kasahara A1 - Yoshinori Yura KW - building simulation KW - energy modeling KW - energyplus KW - Heat pump KW - model validation KW - Variable refrigerant flow AB -

Variable refrigerant flow (VRF) systems vary the refrigerant flow to meet the dynamic zone thermalloads, leading to more efficient operations than other system types. This paper introduces a new modelthat simulates the energy performance of VRF systems in the heat pump (HP) operation mode. Com-pared with the current VRF-HP models implemented in EnergyPlus, the new VRF system model has morecomponent models based on physics and thus has significant innovations in: (1) enabling advanced con-trols, including variable evaporating and condensing temperatures in the indoor and outdoor units, andvariable fan speeds based on the temperature and zone load in the indoor units, (2) adding a detailedrefrigerant pipe heat loss calculation using refrigerant flow rate, operational conditions, pipe length, andpipe insulation materials, (3) improving accuracy of simulation especially in partial load conditions, and(4) improving the usability of the model by significantly reducing the number of user input performancecurves. The VRF-HP model is implemented in EnergyPlus and validated with measured data from fieldtests. Results show that the new VRF-HP model provides more accurate estimate of the VRF-HP systemperformance, which is key to determining code compliance credits as well as utilities incentive for VRFtechnologies.

VL - 117 U2 - LBNL-1004499 ER - TY - JOUR T1 - A pattern-based automated approach to building energy model calibration Y1 - 2015 A1 - Kaiyu Sun A1 - Tianzhen Hong A1 - Sarah C. Taylor-Lange A1 - Mary Ann Piette AB -

Building model calibration is critical in bringing simulated energy use closer to the actual consumption. This paper presents a novel, automated model calibration approach that uses logic linking parameter tuning with bias pattern recognition to overcome some of the disadvantages associated with traditional calibration processes. The pattern-based process contains four key steps: (1) running the original precalibrated energy model to obtain monthly simulated electricity and gas use; (2) establishing a pattern bias, either Universal or Seasonal Bias, by comparing load shape patterns of simulated and actual monthly energy use; (3) using programmed logic to select which parameter to tune first based on bias pattern, weather and input parameter interactions; and (4) automatically tuning the calibration parameters and checking the progress using pattern-fit criteria. The automated calibration algorithm was implemented in the Commercial Building Energy Saver, a web-based building energy retrofit analysis toolkit. The proof of success of the methodology was demonstrated using a case study of an office building located in San Francisco. The case study inputs included the monthly electricity bill, monthly gas bill, original building model and weather data with outputs resulting in a calibrated model that more closely matched that of the actual building energy use profile. The novelty of the developed calibration methodology lies in linking parameter tuning with the underlying logic associated with bias pattern identification. Although there are some limitations to this approach, the pattern-based automated calibration methodology can be universally adopted as an alternative to manual or hierarchical calibration approaches.

U2 - LBNL-1004495 ER - TY - JOUR T1 - Integrated Design for High Performance Buildings Y1 - 2014 A1 - Tianzhen Hong A1 - Cheng Li A1 - Richard C. Diamond A1 - Da Yan A1 - Qi Zhang A1 - Xin Zhou A1 - Siyue Guo A1 - Kaiyu Sun A1 - Jingyi Wang U2 - LBNL-6991E ER - TY - JOUR T1 - Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration Y1 - 2014 A1 - Kaiyu Sun A1 - Tianzhen Hong A1 - Siyue Guo KW - building energy use KW - building simulation KW - model calibration KW - occupant behavior KW - overtime occupancy KW - stochastic modeling AB -

Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

U2 - LBNL-6670E ER -