TY - JOUR T1 - A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data JF - Applied Energy Y1 - 2013 A1 - Tianzhen Hong A1 - Wen-Kuei Chang A1 - Hung-Wen Lin KW - Actual meteorological year KW - building simulation KW - energy use KW - Peak electricity demand KW - Typical meteorological year KW - weather data AB -

Buildings consume more than one third of the world’s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980–2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: (1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; (2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; (3) the weather impact is greater for buildings in colder climates than warmer climates; (4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and (5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

PB - Lawrence Berkeley National Laboratory VL - 111 U2 - LBNL-6280E ER - TY - CONF T1 - An In-Depth Analysis of Space Heating Energy Use in Office Buildings T2 - ACEEE 2012 Summer Study Y1 - 2012 A1 - Hung-Wen Lin A1 - Tianzhen Hong KW - building energy performance KW - building simulation KW - simulation research KW - simulation research group KW - space heating AB -

Space heating represents the largest end use in the U.S. buildings and consumes more than 7 trillion Joules of site energy annually [USDOE]. Analyzing building space heating performance and identifying methods for saving energy are quite important. Hence, it is crucial to identify and evaluate key driving factors to space heating energy use to support the design and operation of low energy buildings.

In this study, the prototypical small and large-size office buildings of the USDOE commercial reference buildings, which comply with ASHRAE Standard 90.1-2004, are selected. Key design and operation factors were identified to evaluate their degrees of impact for space heating energy use. Simulation results demonstrate that some of the selected building design and operation parameters have more significant impacts on space heating energy use than others, on the other hand, good operation practice can save more space heating energy than raising design efficiency levels of an office building. Influence of weather data used in simulations on space heating energy is found to be significant. The simulated space heating energy use is further benchmarked against those from similar office buildings in two U.S. commercial buildings databases to better understand the discrepancies.

Simulated results from this study and space heating energy use collected from building databases can both vary in two potentially well overlapped wide ranges depending on details of building design and operation, not necessarily that simulation always under-predicts the reality.

JF - ACEEE 2012 Summer Study PB - ACEEE CY - Asilomar, CA U2 - LBNL-5732E ER -