@article {214, title = {Anisotropy invariant Reynolds stress model of turbulence (AIRSM) and its application on attached and separated wall-bounded flows}, journal = {Flow, Turbulence and Combustion}, volume = {83}, year = {2009}, month = {07/2009}, pages = {81-103}, chapter = {81}, abstract = {

Numerical predictions with a differential Reynolds stress closure, which in its original formulation explicitly takes into account possible states of turbulence on the anisotropy-invariant map, are presented. Thus the influence of anisotropy of turbulence on the modeled terms in the governing equations for the Reynolds stresses is accounted for directly. The anisotropy invariant Reynolds stress model (AIRSM) is implemented and validated in different finite-volume codes. The standard wall-function approach is employed as initial step in order to predict simple and complex wall-bounded flows undergoing large separation. Despite the use of simple wall functions, the model performed satisfactory in predicting these flows. The predictions of the AIRSM were also compared with existing Reynolds stress models and it was found that the present model results in improved convergence compared with other models. Numerical issues involved in the implementation and application of the model are also addressed.

}, keywords = {Anisotrpoy, Invariant map, Reynolds stress model, Reynolds-averaged Navier-Stokes, Separated wall-bounded flow, Turbulence, Turbulence modeling}, issn = {1573-1987}, doi = {10.1007/s10494-008-9190-y}, author = {V. Kumar and Bettina Frohnapfel and Jovan Jovanovi{\'c} and Michael Breuer and Wangda Zuo and Ibrahim Hadzi{\'c} and Richard Lechner} }