Introduction to Modelica and Thermo-fluid Modeling with Applications from the Buildings Library

Presented at the American Modelica Conference 2022

10/28/2022

This tutorial utilizes the Modelon Impact tool as a Modelica development environment and simulation tool.

Initial: Load Buildings Library into Impact Workspace

Initially, create an Impact Workspace. Here, let's call it Tutorial. Before beginning the tutorial, we must first load the Modelica Buildings Library into that Workspace.

To do that, in Impact go to Workspace Management > Repository Management. Then, click New and add the Repository URL for the Buildings Library (<u>https://github.com/lbl-srg/modelicabuildings.git</u>), a Remote Display Name of Buildings-9.0.0, select Git, and add a Branch/tag name of v9.0.0. This will use version 9.0.0 of the library. Then click CLONE.

Vorkspace Repositories			+ New
ledentials		NEW WO	DRKING COPY
	Repository URL	em//bl.org/modelies.buik	Using credentials for:
	Remote display na	me	Open credentials
	Buildings-9.0.0)	
	I Git	O SVN	
	Branch / tag		
	v9.0.0		

Then, go to Workspace and click Edit. Drag and drop the Buildings() library from the Available Libraries list into the Dependencies area of your workspace. Then, click Done and reload your Workspace. You should see Buildings available in the Libraries list on the left.

۵	Modelon Impact	 \$	0
[Film. 0,] ▼ TUTORIAL_TEST <u>2</u> <u>2</u> + → Workspace FAVORITES +	Create a new model		
LIBRARES ¢ ► Buildings ► 22 Modelica 4.0.0	New		
	Examples		

Part I: Simple Thermofluid System

Let's start by implementing a simple thermofluid system model consisting of a water flow source of 1kg/s water at 30 °C, a well-mixed tank with no heat loss, a volume of 2 m³, and an initial temperature of 20 °C, and an infinite-volume flow sink that is at atmospheric pressure. A schematic of such a system is presented in the Figure below. It is maybe useful to think of the flow source as a pump with an infinite supply of water.

To implement the system model, first create a new model called "Simple." Then, drag and drop the component models defined in the table below. Then, parameterize them as described in the table. Finally, connect the components as you see in the diagram.

We use three component models for an ideal flow source, a mixing volume, and a flow boundary condition. Then, we'll use what is known as a media model (or medium), which is a collection of algebraic equations for thermodynamic variables used to specify to each of the first three components that water is flowing through them (as opposed to air or some other fluid).

Temperature parameters are defined below in Kelvin, but you can change the unit settings in Impact (Settings Gear > Units) to specify temperatures in °C. This will also make result plots of temperature variables in °C later on.

Component Model	Name	Description	Parameters
Buildings.Fluid.Sources.MassFlowSour	Sou	Ideal flow	General
ce_T		source	 Medium=Water
			• m_flow=1
			• T=273.15+30
Buildings.Fluid.Sources.Boundary_pT	Sin	Infinite flow	 Medium=Water
		sink	
Buildings.Fluid.MixingVolumes.Mixing	Vol	Mixing volume	 Medium=Water
Volume			• V=2
			 m_flow_nominal=1

Display Units	SI 🔵 Imperial		Result Rounding		
Unit	Conversion		Significant Digits	Scientific No	tation
Default			6	Auto	Y
1/K	1/K	×	6	Auto	Ŧ
4	A	Ŧ	6	Auto	Ŧ
n. 	C	Ŧ	6	Auto	Y
=	F	¥	6	Auto	Y
(g	kg	¥	6	Auto	¥
	J	-	6	Auto	-
/kg	J/kg	•	6	Auto	-
/(kg·K)	J/(kg·K)	¥	6	Auto	•
<	К	*	6	Auto	Y
‹g/m³	К		6	Auto	
(g/s	°E		6	Auto	-
n	m	×	6	Auto	
m/s	m/s	¥	6	Auto	
m²	m²	-	6	Auto	
				C A - A -	

Now let's simulate the model for 2 hours and see how the temperature of the water in the tank changes over time. Note that by default, the water in the tank starts at 20 °C. Set up the experiment so the start time is 0 s and final time is 7200 s using the Experiment tab. Then, execute the simulation using the play button and plot the results by clicking and dragging the variable vol.T onto the canvas.

Advanced:

Change the initial temperature of the water in the tank to 10 °C by changing the parameter T_start to 10 °C in the Initialization tab in the component vol. Re-simulate and see the new results on the same plot as the old results to compare (click and drag the variable vol.T from the new result to the existing plot).

Part II: Space Cooling Tutorial

This tutorial is adopted from the <u>SpaceCooling tutorial</u> from the Modelica Buildings Library. We will implement a space cooling system with supply fan, cooling coil, fresh air supply with heat recovery, and space temperature control. We will also implement a schedule-based temperature control set point that emulates a demand response event. The system diagram is shown in below.

1. Room Model

We will first implement a simple room model, represented by a volume of air with an enlarged heat capacity to account for internal thermal mass in furniture and building constructions, a prescribed heat source for the internal convective heat gain, and a heat conductor for steady-state heat conduction to the outside.

Create a new model called "SpaceCooling." Declare a moist air media model and a water model at the top level to be able to propagate to lower-level component models later in this exercise. Declare the media model by switching to Code view and then writing the appropriate declaration as follows:

```
replaceable package MediumA = Buildings.Media.Air "Medium for air";
replaceable package MediumW = Buildings.Media.Water "Medium for water";
```

			🖪 S	paceCo	ooling	🔛 Experiment 1 (default)	Results
Code	-	$\alpha \mid \leftarrow$	\rightarrow	Q	R	⊊ Impact Light 👻 <u>বী</u> ব	
-	1 model SpaceCo 2 replaceab 3 replaceab	oling le package le package	Mediur Mediur	nA = E nW = E	Buildin Buildin	ngs.Media.Air "Medium for air"; ngs.Media.Water "Medium for water";	

Next, we will declare system-level parameters for the room volume, nominal air mass flow rate, and internal heat gains of the room. These system-level parameters will be propagated down to lower-level models. Declare the system-level parameters using the "Properties > Add variable (Plus icon)" according to the table below. Notice parameters can be used in expressions of other parameters.

Variability	Туре	Name	Expression	Description
Parameter	Volume	V	6*10*3	Room volume
Parameter	MassFlowRate	mA_flow_nominal	V*1.2*6/3600	Nominal mass flow rate
Parameter	HeatFlowRate	QRooInt_flow	1000	Internal heat gains of the room

Variability	Туре	
Parameter	volume (m³)	~
Name	Expression	
V	6*10*3	
Description		
Room volume		
Tab	Group	

Now let's implement our room model. Drag and drop the component models defined in the table below. Then, parameterize them as described in the table. Finally, connect the components as you see in the diagram. Noe for the Medium declaration you need to type MediumA.

Component Model	Name	Description	Parameters
Buildings.Fluid.MixingVolumes.Mixing	vol	Room air	General
Volume		volume	 Medium = MediumA
			• V=V
			 m_flow_nominal=mA_flow_nominal
			<u>Dynamics</u>
			 energyDynamics=Modelica.Fluid.Typ
			es.Dynamics.FixedInitial
			• mSenFac=3
Modelica.Thermal.HeatTransfer.Com	theCon	Thermal	<u>General</u>
ponents.ThermalConductor		conductance	• G=10000/30
		with the	
		ambient	

Modelica.Thermal.HeatTransfer.Sourc	TOut	Outside	• T=273.15-10
es.FixedTemperature		temperature	
Modelica. Thermal. Heat Transfer. Sourc	preHea	Prescribed	 Q_flow=QRooInt_flow
es.FixedHeatFlow		internal heat	
		gain flow rate	

Finally, let's simulate the model for 3 hours, or 10800 seconds, and observe the response. First, edit the "Stop Time" in the "Experiment" tab. Then, simulate the model and view the results.

EXPERIMENT					
Experiment 1 (default)					
+ New experiment					
Analysis Modifications O	utputs				
	a				
	Custom				
Dynamic	custom				
Start Time Stop Time	Interval				
0 s 10800 s	21.6 s				
^ Advanced					
Solver Tolerance	Global				
CVode Ie-6	settings				

2. System Model

Now we're ready to implement the system model, operating under open-loop control. If you have not completed section 1. Room Model, start by copying the model "Buildings.Examples.Tutorial.SpaceCooling.System1." Then define additional top-level parameters as defined in the table below.

Variability	Туре	Name	Expression	Description
Parameter	Real	eps	0.8	Heat recovery
				effectiveness
Parameter	Temperature	TRooSet	273.15+24	Nominal room air
				temperature
Parameter	Temperature	TASup_nominal	273.15+18	Nominal air temperature
				supplied to room
Parameter	Dimensionless Ratio	wASup_nominal	0.012	Nominal supply air
				humidity ratio [kg/kg]
Parameter	Temperature	TOut_nominal	273.15+30	Design outside air
				temperature
Parameter	Temperature	THeaRecLvg	TOut_nominal -	Nominal air temperature
			eps*(TOut_nominal-TRooSet)	leaving the heat recovery
Parameter	Dimensionless Ratio	wHeaRecLvg	0.0135	Nominal air humidity
				ratio [kg/kg] leaving the
				heat recovery
Parameter	HeatFlowRate	QRooC_flow_nominal	-QRooInt_flow-	Nominal cooling load of
			10E3/30*(TOut_nominal-	the room
			TRooSet)	
Parameter	MassFlowRate	mA_flow_nominal	1.3*QRooC_flow_nominal/100	Nominal air mass flow
			6/(TASup_nominal-TRooSet)	rate, increased by factor
		* Note this is a		1.3 to allow for recovery
		change to an existing		after temperature
		parameter		setback
Parameter	TemperatureDifference	dTFan	2	Estimated temperature
				raise across fan that
				needs to be made up by
				the cooling coil
Parameter	HeatFlowRate	QCoiC_flow_nominal	mA_flow_nominal*(TASup_no	Cooling load of coil,
			minal-THeaRecLvg-	taking into account
			dTFan)*1006+mA_flow_nomin	economizer, and
			al*(wASup_nominal -	increased due to latent
			wHeaRecLvg)*2458.3e3	heat removal
Parameter	Temperature	TWSup_nominal	273.15+12	Water supply
-				temperature
Parameter	Temperature	TWRet_nominal	273.15+16	Water return
				temperature
Parameter	MassFlowRate	mW_flow_nominal	-QCoiC_flow_nominal /	Nominal water mass flow
			(TWRet_nominal-	rate
			TWSup nominal)/4200	

Now let's implement our system model. First, replace the component "TOut" with a "Modelica.Thermal.HeatTransfer.Sources.PrescribedTemperature." Then, drag and drop the additional component models defined in the table below. Then, parameterize them as described in the table. Finally, connect the components as you see in the diagram.

Pay special attention to the arrangement of the cooling coil model such that port a2 is towards the top left of the component. Also note that connecting the weather bus from the component "weaDat" to "TOut", type the variable from the bus wanting to be connected, "TDryBul," as shown in the screen shot below.

Component Model	Name	Description	Parameters
Buildings.Fluid.Movers.FlowControlle	fan	Supply air fan	Medium=MediumA
d_m_flow			 m_flow_nominal=mA_flow_nominal
			 energyDynamics=
			Modelica.Fluid.Types.Dynamics.Stead
			yState
Buildings.Fluid.HeatExchangers.Const	hex	Heat	 Medium1=MediumA
antEffectiveness		recovery	 Medium2=MediumA
			 m1_flow_nominal=mA_flow_nominal
			 m2_flow_nominal=mA_flow_nominal
			 dp1_nominal=200
			 dp2_nominal=200
Buildings.Fluid.HeatExchangers.WetC	cooCoi	Cooling coil	 Medium1=MediumW
oilEffectivenessNTU			 Medium2=MediumA
			 m1_flow_nominal=mW_flow_nominal
			 m2_flow_nominal=mA_flow_nominal
			 dp1_nominal=6000
			 dp2_nominal=200
			 use_Q_flow_nominal=true
			 Q_flow_nominal=
			QCoiC_flow_nominal
			 T_a1_nominal=TWSup_nominal
			 T_a2_nominal=THeaRecLvg
			 W_a2_nominal= wHeaRecLvg
			 show_T=true
			 energyDynamics=Modelica.Fluid.Type
			s.Dynamics.FixedInitial
Buildings.Fluid.Sources.Outside	out	Ambient air	 Medium=MediumA
		source	
Buildings.Fluid.Sources.MassFlowSour	souWat	Source for	 Medium=MediumW
ce_T		water flow	 use_m_flow_in=true
		rate	T=TWSup_nominal
Buildings.Fluid.Sources.Boundary_pT	sinWat	Sink for	 Medium=MediumW
		water circuit	
Buildings.BoundaryConditions.Weath	weaDat	Weather data	• filNam=Modelica.Utilities.Files.loadRe
erData.ReaderTMY3		reader	source("modelica://Buildings/Resourc
			es/weatherdata/USA_IL_Chicago-
			OHare.Intl.AP.725300_TMY3.mos"))

			 pAtmSou=Buildings.BoundaryConditio ns.Types.DataSource.Parameter TDryBulSou=Buildings.BoundaryCondit ions.Types.DataSource.Parameter TDryBul=TOut nominal
Buildings.Controls.OBC.CDL.Continuo	mAir_fl	Fan air flow	k=mA_flow_nominal
us.Sources.Constant	ow	rate	
Buildings.Controls.OBC.CDL.Continuo	mWat_f	Water flow	k=mW_flow_nominal
us.Sources.Constant	low	rate	
Buildings.Fluid.Sensors.TemperatureT	senTem	Temperature	 Medium=MediumA
woPort	HXOut	sensor for	 m_flow_nominal=mA_flow_nominal
		heat recovery	
		outlet on	
		supply side	
Buildings.Fluid.Sensors.TemperatureT	senTem	Temperature	 Medium=MediumA
woPort	SupAir	sensor for	 m_flow_nominal=mA_flow_nominal
		supply air	

Finally, let's simulate the model for the same 3 hours as previously. Double check the Experiment is set up so "Start Time" is 0 s and "Stop Time" is 10800 s. Then, simulate the model and view the results.

3. Closed Loop Control

Now let's simulate the system in more realistic ambient conditions and add feedback control in the form of an on/off controller based on room temperature measurement controlling the flow of chilled water. If you did not complete 2. System Model, then start by copying "Buildings.Examples.Tutorial.SpaceCooling.System2."

First, let's change the source of the outside dry bulb temperature to the weather file instead of a constant value. Do this by selecting "Use data from file" for the parameter "weaDat.TDryBulSou." Then, add control by dragging and dropping the additional component models defined in the table below. Then, parameterize them as described in the table. Finally, connect the components as you see in the diagram.

Component Model	Name	Description	Parameters
Buildings.Controls.OBC.CDL.Logical.O	con	Controller for	 bandwidth=1
nOffController		coil water	
		flow rate	
Buildings.Controls.OBC.CDL.Continuo	TRooSet	Room	• k=TRooSet
us.Sources.Constant	Poi	temperature	
		set point	
Modelica.Thermal.HeatTransfer.Sens	senTem	Room	
ors.TemperatureSensor	Roo	temperature	
		sensor	
Buildings.Controls.OBC.CDL.Conversio	mWat_f	Conversion	• realTrue=0
ns.BooleanToReal	low	from boolean	 realFalse=mW_flow_nominal
		to real for	
*Replacing		water flow	
Buildings.Controls.OBC.CDL.Continuo		rate	
us.Sources.Constant			

Finally, let's simulate the model for one day during summer from hour 4320 to 4344, and observe the response. First, edit the "Start Time" and "Stop Time" in the "Experiment" tab. Then, simulate the model and view the results.

EXPERIMENT				
Experiment 1 (default)				
+ New experiment				
Analysis Modifi	cations Outputs			
Ŵ		2		
Dynamic	:	Custom		
Start Time	Stop Time	Interval		
15552000 s	15638400 s	172.8 s		
	^ Advanced			
Solver	Tolerance	Global		
Lvode	▼ 1e-6	settings		

4. Demand Response

Now, let's use our system to simulate a demand response event, where the room set point temperature is increased by 2 °C for three hours in the afternoon in order to reduce energy usage during that time. This may be valuable to an electric grid that is strained during this time.

Start by replacing the constant room temperature set point with a schedule-based set point. To do this, replace the existing "TRooSetPoi" with the component

"Modelica.Blocks.Sources.CombiTimeTable." Then, set the parameters of this component as follows in the table below. Note that the "Table" parameter sets the schedule of a typical day in pairs of {time [sec], temperature [K]}. Then, the "smoothness" parameter ensures the values are implemented stepwise in time and constant between the defined points. Finally, the "extrapolation" parameter ensures the same schedule is repeated every day (24 hours).

Component Model	Name	Description	Parameters
Modelica.Blocks.Sources.CombiTimeT	TRooSet	Schedule-	• Table =
able	Poi	based room	{{0,297.15},{3600*12,297.15},{3600*1
		temperature	5,297.15},{3600*24,297.15}}
		set point	 smoothness = ConstantSegments
			 extrapolation = Periodic

Simulate the model to obtain a baseline result. Then, change the temperature set point at hour 12 to 299.15 (26 C) and re-simulate. Plot the results and compare the room temperature and cooling water mass flow profiles. What do you notice?

