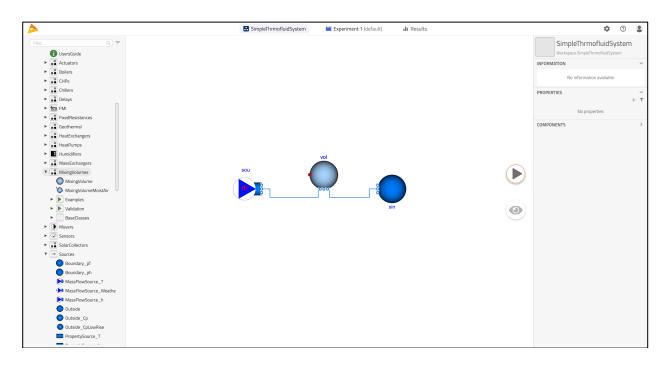

Modelica Buildings Library Tutorial with Modelon IMPACT

Presented at the 14th International Modelica Conference

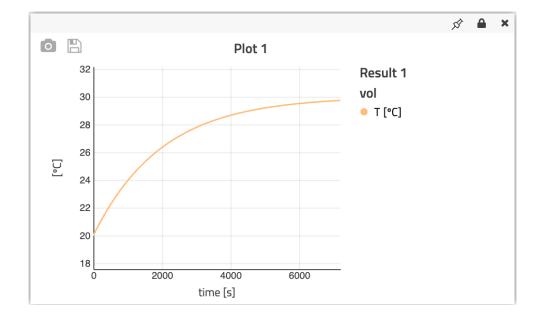
9/20/2021

Part I: Simple Thermofluid System

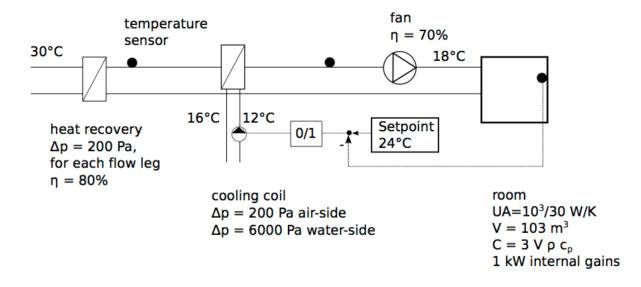

Let's start by implementing a simple thermofluid system model consisting of a water flow source of 1kg/s water at 30 °C, a well-mixed tank with no heat loss, a volume of 2 m³, and an initial temperature of 20 °C, and an infinite-volume flow sink that is at atmospheric pressure. A schematic of such a system is presented in the Figure below. It is maybe useful to think of the flow source as a pump with an infinite supply of water.

We use three component models for an ideal flow source, a mixing volume, and a flow boundary condition. Then, we'll use what is known as a media model (or medium), which is a collection of algebraic equations for thermodynamic variables used to specify to each of the first three components that water is flowing through them (as opposed to air or some other fluid). To implement the system model, drag and drop the component models defined in the table below. Then, parameterize them as described in the table. Finally, connect the components as you see in the diagram.

Temperature parameters are defined below in Kelvin, but you can change the unit settings in IMPACT to specify temperatures in °C. This will also make result plots of temperature variables in °C later on.


Component Model	Name	Description	Parameters
Buildings.Fluid.Sources.MassFlowSour	sou	Ideal flow	General
ce_T		source	 Medium=Water
			• m_flow=1
			• T=273.15+30
Buildings.Fluid.Sources.Boundary_pT	sin	Infinite flow sink	• Medium=Water
Buildings.Fluid.MixingVolumes.Mixing	vol	Mixing volume	Medium=Water
Volume			• V=2
			 m_flow_nominal=1

Display Units	SI 🔵 Imperial	Result Rounding		
Unit	Conversion	Significant Digits	Scientific Notation	
Default		6	Auto	-
1/K	1/K	• 6	Auto	-
A	A	• 6	Auto	Y
с	C	• 6	Auto	Y
F	F	• 6	Auto	Y
kg	kg	• 6	Auto	
J	J	• 6	Auto	-
J/kg	J/kg	• 6	Auto	•
J/(kg-K)	J/(kg·K)	• 6	Auto	v
к	°C	• 6	Auto	v
kg/m³	К	6	Auto	
kg/s	°C °F	6	Auto	Y
m	m	• 6	Auto	v
m/s	m/s	• 6	Auto	v
m²	m²	• 6	Auto	
m²/s	m²/s	▼ 6	Auto	-
m'	m³	♥ 6	Auto	-
m³/s	m³/s	• 6	Auto	-


Now let's simulate the model for 2 hours and see how the temperature of the water in the tank changes over time. Set up the experiment so the start time is 0 s and final time is 7200 s. Then, simulate the model and plot the results.

EXPERIMENT		~
Experime	nt 1 (default)	
+ New experi	ment	
Analysis Mod	ifications Outpu	÷~
Analysis	incations Outpu	11.5
\sim		4
Dynam	ic	Custom
Start Time	Stop Time	Interval
0 s	7200 s	14.4 s
	^ Advanced	
Solver CVode	Tolerance	Global
Crode		settings

Part II: Space Cooling Tutorial

This tutorial is adopted from the <u>SpaceCooling tutorial</u> from the Modelica Buildings Library. We will implement a space cooling system with supply fan, cooling coil, fresh air supply with heat recovery, and space temperature control. The system diagram is shown in below.

1. Room Model

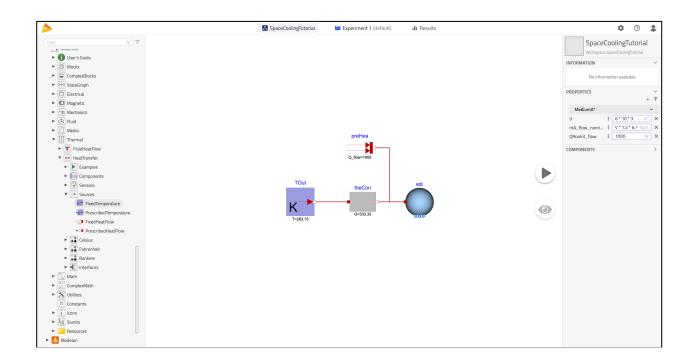
We will first implement the room model, represented by a volume of air with an enlarged heat capacity to account for internal thermal mass. In furniture and building constructions, prescribed heat source for the internal convective heat gain, and a heat conductor for steady-state heat conduction to the outside.

First, declare a moist air media model at the top level to be able to propagate to lower-level component models. Note that declaring a moist air media model will allow for accounting for humidity variations, particularly across the cooling coil. Declare the media model by first enabling the code editor under "Settings (Gear icon in upper right) > Application > MISC > Enable code editor," then changing the model view to source code by right-clicking in the canvas and selecting "Edit source", and then writing the appropriate declaration as follows:

replaceable package MediumA = Buildings.Media.Air "Medium for air";

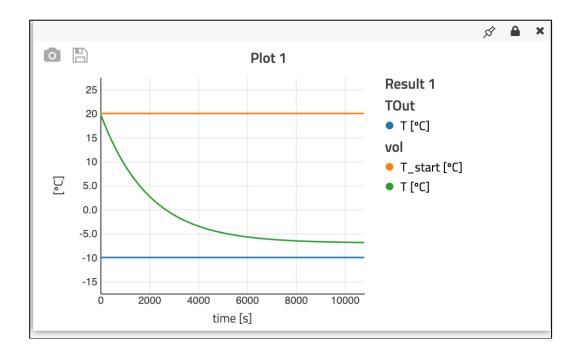
Application	Execution	Export	Units		
CANVAS			LOGGING		
Show grid			Compilation Log Level	WARNING	¥
Enable snapping			Simulation Log Level	WARNING	¥
MODEL BROWSI	NG		STEADY STATE		
Show final parameter	s		Enable steady state simu	lation	
Show disabled param	eters		Initialize from latest resu	It by default	
Enable automatic pro	pagation				
MISC					
Open class after creat	ion				
Enable code editor					
		CANCEL	SAVE		
		\square			

	SpaceCoolingTutorial	Experiment 1 (default)	II Results		\$	0	
[Fittes DAVIDBLUM ← → Q, α, CΞ	Workspace	e.SpaceCoolingTutorial (edited)				oria orial	
<pre>Wor 1 model SpaceCoolingTutorial 2 replaceAble package MediumA = Buildings.Me 3 annotation(%%); 4 end SpaceCoolingTutorial; 5 Un Un </pre>	dia.Air "Medium for air";					e	
LURARIES LIBRARIES MIC Buil Construction Buil Construction Buil Construction Buil Construction Buil Construction Buil Construction Buil Construction Buil Construction							
* * * *							
Impact Light V C C Coll V SpaceCooling	C	CLOSE Save (Ctrl + S)		G Check syntax	G Check local balance		


Next, we will declare system-level parameters for the room volume, nominal air mass flow rate, and internal heat gains of the room. These system-level parameters will be propagated down to lower-level models. Declare the system-level parameters using the "Properties > Add variable (Plus icon)" according to the table below.

Variability	Туре	Name	Expression	Description
Parameter	Volume	V	6*10*3	Room volume
Parameter	MassFlowRate	mA_flow_nominal	V*1.2*6/3600	Nominal mass flow rate
Parameter	HeatFlowRate	QRooInt_flow	1000	Internal heat gains of the room

ADD VARIABLE					
Variability	Туре				
Parameter	Volume (m³)	•			
Name		Expression			
V		6*10*3			
Description					
Room volume					
Tab		Group			
	CANCEL	ADD			


Now let's implement our room model. Drag and drop the component models defined in the table below. Then, parameterize them as described in the table. Finally, connect the components as you see in the diagram.

Component Model	Name	Description	Parameters
Buildings.Fluid.MixingVolumes.Mixing	vol	Room air	General
Volume		volume	 Medium = MediumA
			• V=V
			 m_flow_nominal=mA_flow_nominal
			<u>Dynamics</u>
			 energyDynamics=Modelica.Fluid.Typ
			es.Dynamics.FixedInitial
			• mSenFac=3
Modelica.Thermal.HeatTransfer.Com	theCon	Thermal	General
ponents.ThermalConductor		conductance	• G=10000/30
		with the	
		ambient	
Modelica.Thermal.HeatTransfer.Sourc	TOut	Outside	• T=273.15-10
es.FixedTemperature		temperature	
Modelica.Thermal.HeatTransfer.Sourc	preHea	Prescribed	 Q_flow=QRooInt_flow
es.FixedHeatFlow		internal heat	
		gain flow rate	

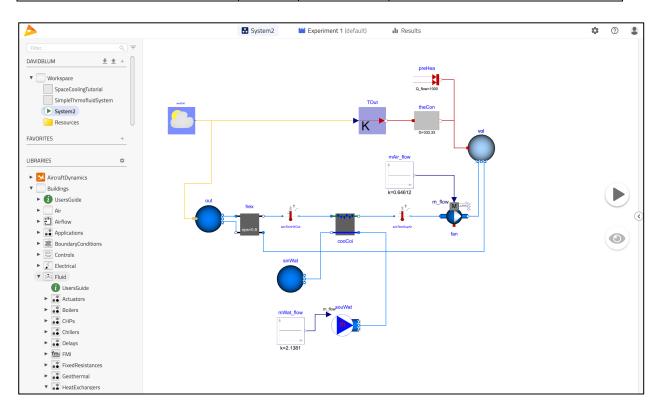
Finally, let's simulate the model for 3 hours, or 10800 seconds, and observe the response. First, edit the "Stop Time" in the "Experiment" tab. Then, simulate the model and view the results.

EXPERIMENT		\checkmark
Experiment	1 (default)	
+ New experime	int	
Analysis Modifie	ations O	utputs
\sim		2
Dynamic		Custom
	op Time 10800 s	Interval 21.6 s
~	Advanced	
Solver CVode -	Tolerance 1e-6	Global settings

2. System Model

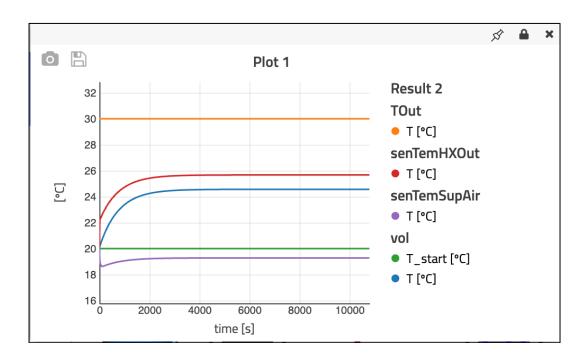
Now we're ready to implement the system model, operating under open-loop control. If you have not completed 1. Room Model, start by copying the model

"Buildings.Examples.Tutorial.SpaceCooling.System1." Then define the system-level parameters as defined in the table below.


Variability	Туре	Name	Expression	Description
Parameter	Real	eps	0.8	Heat recovery
				effectiveness
Parameter	Temperature	TRooSet	273.15+24	Nominal room air
				temperature
Parameter	Temperature	TASup_nominal	273.15+18	Nominal air temperature
				supplied to room
Parameter	Dimensionless Ratio	wASup_nominal	0.012	Nominal supply air
				humidity ratio [kg/kg]
Parameter	Temperature	TOut_nominal	273.15+30	Design outside air
				temperature
Parameter	Temperature	THeaRecLvg	TOut_nominal -	Nominal air temperature
			eps*(TOut_nominal-TRooSet)	leaving the heat recovery
Parameter	Dimensionless Ratio	wHeaRecLvg	0.0135	Nominal air humidity
				ratio [kg/kg] leaving the
				heat recovery
Parameter	HeatFlowRate	QRooC_flow_nominal	-QRooInt_flow-	Nominal cooling load of
			10E3/30*(TOut_nominal-	the room
			TRooSet)	
Parameter	MassFlowRate	mA_flow_nominal	1.3*QRooC_flow_nominal/100	Nominal air mass flow
			6/(TASup_nominal-TRooSet)	rate, increased by factor
		* Note this is a		1.3 to allow for recovery
		change to an existing		after temperature
		parameter		setback
Parameter	TemperatureDifference	dTFan	2	Estimated temperature
				raise across fan that
				needs to be made up by
				the cooling coil
Parameter	HeatFlowRate	QCoiC_flow_nominal	mA_flow_nominal*(TASup_no	Cooling load of coil,
			minal-THeaRecLvg-	taking into account
			dTFan)*1006+mA_flow_nomin	economizer, and
			al*(wASup_nominal -	increased due to latent
			wHeaRecLvg)*2458.3e3	heat removal
Parameter	Temperature	TWSup_nominal	273.15+12	Water supply
			272.45.46	temperature
Parameter	Temperature	TWRet_nominal	273.15+16	Water return
				temperature
Parameter	MassFlowRate	mW_flow_nominal	-QCoiC_flow_nominal /	Nominal water mass flow
			(TWRet_nominal-	rate
			TWSup_nominal)/4200	

Now let's implement our system model. First, replace the component "TOut" with a "Modelica.Thermal.HeatTransfer.Sources.PrescribedTemperature." Then, add a new top-level media model called "MediumW" as "Buildings.Media.Water" similar to how the media model for air was added before. Then, drag and drop the additional component models defined in the table below. Then, parameterize them as described in the table. Finally, connect the components as you see in the diagram.

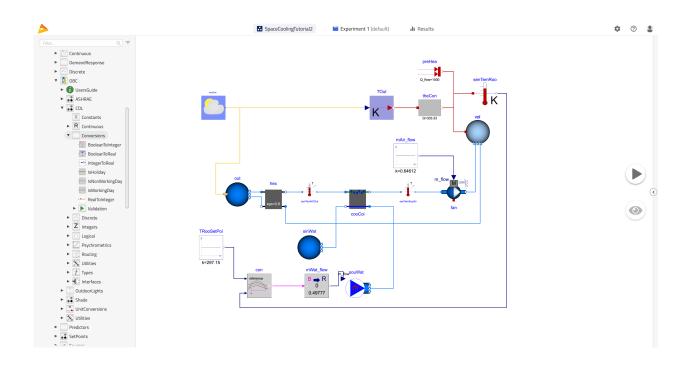
Pay special attention the arrangement of the cooling coil model such that port a2 is towards the top left of the component. Also note that connecting the weather bus from the component "weaDat" to "TOut", type the variable from the bus wanting to be connected, "TDryBul," as shown in the screen shot below.


Component Model	Name	Description	Parameters
Buildings.Fluid.Movers.FlowControlle	fan	Supply air fan	Medium=MediumA
d_m_flow			 m_flow_nominal=mA_flow_nominal
			 energyDynamics=
			Modelica.Fluid.Types.Dynamics.Stead
			yState
Buildings.Fluid.HeatExchangers.Const	hex	Heat	 Medium1=MediumA
antEffectiveness		recovery	 Medium2=MediumA
			 m1_flor_nominal=mA_flow_nominal
			 m2_flor_nominal=mA_flow_nominal
			 dp1_nominal=200
			• dp2_nominal=200
Buildings.Fluid.HeatExchangers.WetC	cooCoi	Cooling coil	 Medium1=MediumW
oilEffectivenessNTU			 Medium2=MediumA
			 m1_flow_nominal=mW_flow_nominal
			 m2_flow_nominal=mA_flow_nominal
			 dp1_nominal=6000
			 dp2_nominal=200
			 use_Q_flow_nominal=true
			 Q_flow_nominal=
			QCoiC_flow_nominal
			 T_a1_nominal=TWSup_nominal
			 T_a2_nominal=THeaRecLvg
			 W_a2_nominal= wHeaRecLvg
			 show_T=true
			 energyDynamics=Modelica.Fluid.Type
			s.Dynamics.FixedInitial
Buildings.Fluid.Sources.Outside	out	Ambient air	 Medium=MediumA
		source	
Buildings.Fluid.Sources.MassFlowSour	souWat	Source for	Medium=MediumW
ce_T		water flow	 use_m_flow_in=true
		rate	• T=TWSup_nominal
Buildings.Fluid.Sources.Boundary_pT	sinWat	Sink for	 Medium=MediumW
		water circuit	
Buildings.BoundaryConditions.Weath	weaDat	Weather data	• filNam=Modelica.Utilities.Files.loadRe
erData.ReaderTMY3		reader	source("modelica://Buildings/Resourc

			es/weatherdata/USA_IL_Chicago- OHare.Intl.AP.725300_TMY3.mos")) • pAtmSou=Buildings.BoundaryConditio ns.Types.DataSource.Parameter • TDryBulSou=Buildings.BoundaryCondit ions.Types.DataSource.Parameter • TDryBul=TOut_nominal
Buildings.BoundaryConditions.Weath erData.Bus	weaBus	Weather bus access	
Buildings.Controls.OBC.CDL.Continuo us.Sources.Constant	mAir_fl ow	Fan air flow rate	k=mA_flow_nominal
Buildings.Controls.OBC.CDL.Continuo us.Sources.Constant	mWat_f low	Water flow rate	k=mW_flow_nominal
Buildings.Fluid.Sensors.TemperatureT woPort	senTem HXOut	Temperature sensor for heat recovery outlet on supply side	 Medium=MediumA m_flow_nominal=mA_flow_nominal
Buildings.Fluid.Sensors.TemperatureT woPort	senTem SupAir	Temperature sensor for supply air	 Medium=MediumA m_flow_nominal=mA_flow_nominal

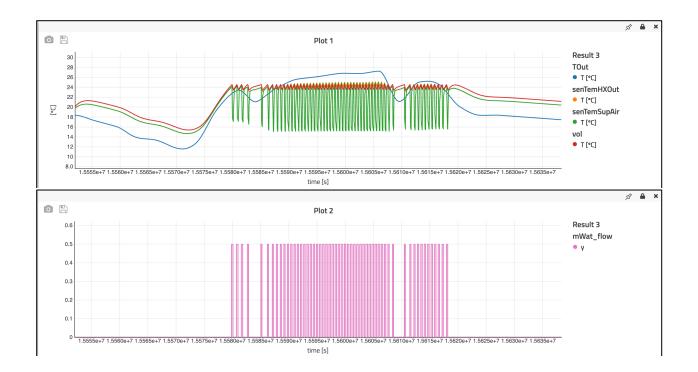
SELECT WHAT TO CONNECT			
🦲 weaDat	► <mark>ĸ</mark> ► TOut		
🥺 weaBus	C)		
	CANCEL		

Finally, let's simulate the model for the same 3 hours as previously. Double check the Experiment is set up so "Start Time" is 0 s and "Stop Time" is 10800 s. Then, simulate the model and view the results.



3. Closed Loop Control

Now let's simulate the system in more realistic ambient conditions and add feedback control in the form of an on/off controller based on room temperature measurement controlling the flow of chilled water. If you did not complete 2. System Model, then start by copying "Buildings.Examples.Tutorial.SpaceCooling.System2."


First, let's change the source of the outside dry bulb temperature to the weather file instead of a constant value. Do this by selecting "Use data from file" for the parameter "weaDat.TDryBulSou." Then, add control by dragging and dropping the additional component models defined in the table below. Then, parameterize them as described in the table. Finally, connect the components as you see in the diagram.

Component Model	Name	Description	Parameters
Buildings.Controls.OBC.CDL.Logical.O	con	Controller for	 bandwidth=1
nOffController		coil water	
		flow rate	
Buildings.Controls.OBC.CDL.Continuo	TRooSet	Room	• k=TRooSet
us.Sources.Constant	Poi	temperature	
		set point	
Modelica.Thermal.HeatTransfer.Sens	senTem	Room	
ors.TemperatureSensor	Roo	temperature	
		sensor	
Buildings.Controls.OBC.CDL.Conversio	mWat_f	Conversion	• realTrue=0
ns.BooleanToReal	low	from boolean	 realFalse=mW_flow_nominal
		to real for	
*Replacing		water flow	
Buildings.Controls.OBC.CDL.Continuo		rate	
us.Sources.Constant			

Finally, let's simulate the model for one day during summer from hour 4320 to 4344, and observe the response. First, edit the "Start Time" and "Stop Time" in the "Experiment" tab. Then, simulate the model and view the results.

EXPERIMENT				
Experiment 1 (default)				
+ New experiment				
Analysis Modifications Outputs				
\sim	2			
Dynamic	Custom			
Start Time Stop Time	Interval			
15552000 s 15638400	s 172.8 s			
^ Advanced	d			
Solver Tolerance	Global			
CVode - 1e-6	settings			

