Introduction to Modelica Modeling for
Building Systems

A Tutorial Developed for MIT Class 4.421:
Space-Conditioning Systems for Low-
Carbon Buildings

3/29/2021

By David Blum

I. Requirements
1. Dassault Systemes Dymola (v2020), License, and C Compiler

a. For notes about choosing and setting up the C Compiler, see:
https://www.3ds.com/products-services/catia/products/dymola/c-

compiler/

2. Modelica Buildings Library (v7.0.0)

a. For download, see:
https://simulationresearch.Ilbl.gov/modelica/download.html

b. For notes about setting up the library, see:
https://simulationresearch.Ilbl.gov/modelica/installLibrary.html

I1. Additional Resources

This 1s going to be a brief introduction. There is much more to learn about how to
use Modelica and Dymola. I recommend the following resources:

1. Dymola Users Guide

2. Modelica by Example
(https://mbe.modelica.university/)

3. Buildings Library Users Guide
(https://simulationresearch.lbl.gov/modelica/userGuide/index.html)

4. Buildings Library Tutorials
(https://simulationresearch.lbl.gov/modelica/training.html)

Part 1: Modelica Syntax and Dymola Development Environment

Modelica is a language, like C++ or Python. Therefore, you need to learn its
syntax and how it can be used to represent models. Dymola is the development
environment that will help us do that, in addition to helping us organize, compile,
and simulate our models, as well as explore the results of those simulations.

Therefore, in this part, you will:

1. Write a simple heat transfer model in Modelica
2. Check that the model is valid

3. Simulate the model

4. Explore the results

First, let’s define the physical phenomenon we will model. Consider a heat
transfer problem where a small rock is being cooled by an air stream, as shown in
the diagram. We are interested in simulating the temperature of the rock over time.
This can be described by the differential equation and initial condition below:

T, h

v

v

p,c,V, A
T(t) N

»

A 4

dT
pVc, P hA(T, —T)

T(t=0)=T,

Where:
T is the rock temperature [K]
T, is the initial rock temperature [K]

T, is the air temperature [K]

p is the rock density [kg/m?]

V is the rock volume [m?]

¢, 1s the rock specific heat capacity [J/kg-K]

h is the rock-air heat transfer coefficient [W/m?-K]

A is the rock surface area [m?]

1. Open Dymola. Go to File > Save > SaveAs and save the model file as shown in
the Figure below (it will be saved as Rock.mo). Then, switch to the “Modelica
Text” view by clicking on the icon indicated in the top Figure on the next page.
Your screen should look like the bottom Figure on the next page.

By default, Dymola will open to the “Diagram View.” This view is used to
configure models using graphical blocks that can be pieced together. We will
explore this later in the tutorial. For now, we are concentrating on the underlying
text-based implementation of models.

_
i Rename

Mame:
Rock

Description:

This is a model of a rock in air stream| |

Insert in package:

Cancel OK |

X EEERE Rock - Rock - [Diagram] — o I
Graphics. Documentation Text Simulation Tools Pwindows @ - 0 X
L \ 100% M Q- = X 2 - E & = S Rrnd Winsert ~
e > ®@; itk) /8 o OTW3 :
3 Fit Window a9 2 -G @check ~ B Q@ Find Connection Variable Selections.
Recent icon Diagram Line Rectangle Ellipse Polygon Text Bitmay
- - ity Select All - - £ ¥ {3 Annotation % & Diagram filter | 5 Create Local State
Package Browser e® = A .
b Trtils Modelica Text View
» (] pymola commands
» (7] Favorites . .
+ @ wasica efrece Diagram View
Rock
L3] L) L4 L3
g QOEmors _{\0Wamings)0 Messages Clear
€| syntax | Translation ~Simulation = Version
SN I NGRONXE] Rock - Rock - [Modelica Text] =
Graphics. Documentation Text Simulation Tools @ windows ~ B
T ¢ = X Ape @
e » H £ B 90xh@; o % ¥ E
a
Recent Modelica Mathematical at Undo Attributes Check | Find Replace Go Insert Variable
- * Notation Classes Modelica gy select All = T ~ Selections
Package Browser 88 [o < B .
o |7 |lo| »
» (7] oymola commands
+ () Favortes
» @ Modelica Reference e
Rock
R’] + [L3
2 QOEmors _\0Wamings)0 Messages Clear
€| Syntax | Tanslation ~Simulation Version
une: 2 @HABEZ

2. Declare all of the variables in the model as shown in the Figure below.

The syntax of defining a basic model is split into two main sections, one that is
used to declare all of the variables in the model and one that is used to define the
equations of the model. The declaration section is above the word “equation” and
the equations section is below the word “equation.”

The declaration section is used to give variables names and various
characteristics. Here, parameter means the variable is given a value that does
not change over time. Real means that the value of the variable is a real number,
as opposed to an Integer or Boolean (True/False). Other attributes can be
assigned, such as the unit and start value. Finally, “descriptions” of the
variables can be given, which are used later to help us document the model.

Notice that all of our variables are given, except the temperature of the rock. This
is our only variable that will change with time and needs to be calculated using an
equation (this is also called a “state” variable). Notice also that the volume and
area parameters are defined as a function of the radius parameter, assuming that
our rock is a sphere.

model Rock "This is a model of a
parameter F r{unit="m") = 0
paramster R rho {(unit="kg,/mi"
parameter R cl{unit="J/ (kg.K) H
parameter F hi{unit="w,/ {m2.K)")
paramster R T afunitc="K") = 273.15+10
param=eter R T ODfunic="Kg") = 273.15+20
param=eter R 1 V{unit="mi") = 4/3*3,14*rA3
parameter Real A{unit="m2") = 4+3 . 1d*rh2
Re T (unit="K", start=T_ 0) "Temperature ¢

egquation

end Rock;

3. Write the equations of the model as shown in the Figure below.

Here, we only have one equation. It is an ordinary differential equation (ODE).
Modelica syntax naturally accepts the specification of variable derivatives with
respect to time using the der () syntax.

Notice we can also write equations in an “acausal” manner. That is, it does not
matter which variables appear on each side of the equation. In addition, it does
not matter the order in which we specify equations, if we had more than one. All of
this makes it easier for us to define systems of differential and algebraic equations
(DAEs) without having to first solve them analytically and determine the proper
order of assigning values to variables. Instead, we define them in Modelica, and
let the tool (in this case Dymola) solve them for us.

model Rock "This is a model of

%]

parameter Real r{unit="m") =
I

parameter Real rho{unit="k

s
1
Lo

parameter Real clunit="J/ (kg.H)
parameter Real h{unit="w/ (m2.)

parameter Real T _a{unit="K

parameter Real T_0(unit="K

parameter Real V{unit="mi") = 4/3
parameter Real A({unit="ma") = 4*3.
Real T(unit="K", start=T_0) "Temperature of rock";

equation
rho*V*oc*der (T) = h*a* (T_a - T);

end Rock;:

4. Check that the model is valid by using the “Check” command, indicated by a
green check mark at the top middle of the screen. You should see messages at the
bottom of your screen as shown in the Figure.

Notice that Dymola has identified that there is 1 unknown variable in our model
(T), and that there is 1 equation in the model (our ODE). Since we have the same
number of equations and unknowns, we can solve the problem. Dymola also runs
a number of other checks on the model which are not explicitly listed here.
However, if there were problems with the syntax or problems with how the model
is implemented, Dymola would try to detect and report them here, as either
Warnings or Errors. Models with Warnings can still be simulated, while models
with Errors will not simulate.

DREDEO S Rock - Rock - [Modelica Text] — -
Documentation | Text | Simulation Took 2 Windows ~ [- 0 X

T £ B 2cexha B @ % .y ¥
ca Mathematical Used Fiat Undo Redo _ utes Check \Jind. Replace Go insert Variable

T Selections

v e o T © s : Check Model

Reading Rock une: 2 HSHBE

5. Go to the Simulation view by clicking on the “Simulation” tab at the top of the
screen. Then, setup the simulation of the model using the “Setup” command at the
top middle of the screen. Configure as shown in the Figure. Finally, simulate the
model using the “Simulate” command at the top of the screen.

In the simulation setup, we are configuring the simulation to run for one hour of
simulation time, have an output interval of one second, and utilize the Dassl solver
with a tolerance of 1e-6. Note that the output interval of one second does NOT
define our integration timestep. The Dassl solver is a variable time-step solver,
meaning the actual integration timestep will be whatever is needed to successfully
solve the equations through time, and will vary depending on how quickly the
variables are changing.

Clicking the “Simulate” command actually invokes Dymola to perform multiple
processes. First, it processes the equations into a format in which the variables
can be sequentially solved. It also determines which groups of equations may need
to be solved iteratively, called algebraic loops (we do not have that problem in this
simple example). Then, it writes the equations into C code and compiles it.

Finally, it executes the compiled code, using the specified solver to solve (or
“Integrate”) the model through time.

|an.»u ® s Rock - Rock = > I
Q@D B % 00 k£ - T @0A @ e et st :
: ot ! ok e Paramet “ ve in M F‘ " Y ' e A - st 3 ’ A\ Show K q

vvvvvvvvvvvvvvv
aaaaaaaa

ccccc

=882

General | Translation = Output | Debug | Compiler = Realtime | FMIExport = FMIImport

Experiment
Model Rock
Result |Rock |

Simulation interval

Start time o | s
Stop time 3600 | s
Output interval

(®) Interval length [1 I s

(") Number of intervals [500 I

Integration
Algorithm [Dassl - I
Tolerance Ile—G]
Fixed Integrator Step [0] s

Store in Model Automatically store General and Inline integration settings

Graphics Documentation

Text Simulation Tools.

- Stop:[3600 | =1 Continue ~ & simulation Analysis | > Play << Ip Time: Speed:
Q B 58 & 60 E PO e [© Visualioe Wrse » 0 Js[2]~
Run New Commands Tansiate Simulate Siop Sweep setup . - - .
Script~ Scripts - > | Parameters. ‘Save in Model A\ Show Log " o
Variable Browser € 10)
Variable Valve unit = Bloviash

Simulate

4 | e O
filter variables | More >>
: |QoEmors | f\oWarnings ()3 Messages | Clear
® check of Rock:

(@ The model has the same number of unknowns and equations: 1

® check of Rock successful.

gspm Translation | Simulation Version
Logs | Commands

=gEas

6. Explore the results by selecting variables to plot in the Variable Browser to the
left of the screen. You can create new plot windows and plot diagrams by using
the commands at the top of the screen in the Plot Options tab, which appears when
you select a plot window. Plot the rock temperature and air temperature over time.
How long does it take for the rock to cool down?

Change the values of the parameters for air temperature and initial rock
temperature in the Variable Browser within the Value boxes and simulate again.
Does the cool-down time change? Now change the values of the parameters for
heat transfer coefficient or the radius of the rock. Does the cool-down time
change?

Rock - Rock - [Plot (1] =y |

dows <0 - O X

o & I Tz =
independent Setup Expression Text

™~ New Diagram

292

A o
> z
3mrz=fs < ;]
SHELRR ez
/2838 RAw & ¥
o g)

=) > New Plot Window

"

288

A T T T T T T T g
0 500 1000 1500 2000 2500 3000 3500 4000
Time [s]

=QREZ

Part 2: Connectors, Components, and Graphic Syntax

One of the strengths of Modelica is that it is object-oriented. This helps us be able
to build up libraries of component models which can be pieced together to form
larger, custom system models. There are two additional aspects that help us
achieve this capability. The first is the definition of connectors and the second is
graphical annotation.

Therefore, in this part, you will:

1. Learn the basic concept of connectors
2. Use the graphical syntax to connect component models into a larger system

First, let’s again give ourselves an example problem. Consider heat flow through a
multilayer wall, as shown in the diagram below, and a corresponding resistor-
capacitor network model (resistor-capacitor modeling in heat transfer is an
analogue to electrical circuit modeling). We are interested in simulating the
temperature of the inside air over time given a time-varying outside air
temperature.

hin

T T

(p; C) V) in

(p,c,k,L); (p,c kL),

1 L, L, 1

(peV)in _L (peLAJL] (pcLA),

In this problem, we could write down the governing system of equations and
implement the model in Modelica as we did in Part 1. However, this would be
time-consuming. Instead, let’s utilize the connector, component modeling, and
graphic syntax capabilities of Modelica to not only solve this problem, but give us
the ability to easily solve other, similar, problems.

Before doing this, we need to explore the nature of the resistance-capacitor model
a bit. To make things easier, we can simplify the model variables by giving the
resistors a resistance, R, and the capacitors a capacitance, C, which can each be
calculated from the more specific variables described before.

Rin T, Ry T, R Rout

CinI IC1 IC2

For a resistor, a constitutive equation relates the heat flow through it to the
resistance and temperature different across it:

T1QJ\/\/—. Ty

—
q

n—-T

q= R

For a capacitor, a state equation relates the heat flow into the capacitor to the
capacitance and time-rate-of-change of the temperature:

Ty
—
1
1
L

dT;
R

For any node where two or more components (a resistor or capacitor) connect,
Kirchoff Current and Voltage Laws (also conservation of energy) say that the net
heat flow at the node is zero and the temperature of all components at the node is
equal. That is, energy that leaves one component must flow into its neighbors and
at the point it connects to its neighbors the temperature must be the same:

qg1+q2—q3=0

Thinking back to our original problem, we have 19 unknown variables (4 R’s, 3
C’s, 5 node temperatures, and 7 component heat flows). We can assign all of the
R’s and C’s based on material properties. Furthermore, we can assume the outside
air temperature is just an input that we define. Therefore, we have 11 remaining
unknown variables; 4 remaining node temperatures and 7 component heat flows.
If we build a generic resistor model using the constitutive equation and instantiate
4 of them, that gives us 4 more equations. Similarly, if we build a generic
capacitor model using the state equation and instantiate 3 of them, that gives us
another 3 equations. Finally, if we could “connect” these components together as
shown in the diagram, we could gain 1 more equation per node which says that the
sum of heat flows is zero at the node. Then, we would have 4+3+4=11 equations,
which will allow us to solve for all 11 unknown variables!

Why did we go through all of this? What it tells us is we can individually build
generic component models that just define the relationship between the heat flow
through the component and the temperature(s) at the interface(s). Then, we can
connect these component models together in virtually any configuration and have
enough equations to solve for the whole system!

Now, let’s call the heat flow the “flow” variable and the temperature the
“potential” variable for a particular component (you can think of heat flowing
through the component while the temperature drives the potential for heat flow).
Then, we could say more generally that at a connection node: “flow” variables sum
to zero and “potential” variables are equal. As it turns out, this pairing of “flow”

and “potential” variables is analogous in other domains than just heat transfer. In
particular, electrical circuits, fluid flow, translational kinematics, and rotational
kinematics! This is one of the most powerful concepts that Modelica takes
advantage of in order to be able to facilitate the simulation of new systems. If
you’re interested in learning more about this concept of modeling that generalizes
across physical domains, it is often referred to as Linear Graph Modeling, and a
good discussion is presented from the MIT Mechanical Engineering Department:

e Part 1: http://web.mit.edu/2.14/www/Handouts/OnePorts.pdf

e Part 2: http://web.mit.edu/2.14/www/Handouts/TwoPorts.pdf

Physical Domain

Potential (Across)

Flow (Through)

Heat Transfer Temperature (T) Heat Flow (q)
Fluid Flow Pressure (P) Mass Flow (m)
Electrical Voltage (V) Current (i)
Translational Displacement (s) Force (F)
Rotational Angle (0) Torque (7)

Having gone through all of this, let’s build our wall model.

1. Open Dymola. Go to File > Save > SaveAs and save the model file as shown in

the Figure below (it will be saved as Wall.mo).

Mame:

Rename

‘Wall

Description:

[This is a model of a multilayer walll

Insert in package:

Wall - Wall - [Model View)

/S 0 o O TR

icon Diagram B Seboctan | U Rectangle Ellipse Polygon Text Bitmap

Iels

=082

2. Explore the Modelica Standard Library using the Package Browser on the left
side of the screen. In particular, navigate to the Thermal Resistor component
model at Modelica.Thermal.HeatTransfer.Components.ThermalResistor.
Then, click and drag it onto the modeling canvas. Then, double-click on the model
to configure it with the name “R1” and parameter R=0.05 K/W.

Double-click on the Thermal Resistor model in the Package Browser to open it.
Switch to the Modelica Text view (as we used in Part 1) and notice that the
graphical component has a corresponding text implementation. In fact, notice that
the parameter R is defined just as we did in our analytical model in Part 1, and
that Dymola used that information to populate the configuration we just used to
assign a value of 0.05 in a graphical context. Try also switching to the
“Documentation’ view to read any information the model developer may have
given about the model, such as modeling approach, major assumptions, and

typical usage. Finally, switch to the “Icon” view to see how the graphic content is
constructed.

After you've finished exploring, switch back to the “Diagram” view of our Wall
model to continue building.

D@D EO0: Wall - Wall - [Model View] - o Il
c

& 2@ o » @ /0o OTRx

©
&0 W
> o &
2 21

B Annotatior

=e@EZ

hermalResistor in Wall

General ‘ Add modifiers = Attributes
Component Icon
Name ‘Rl ‘
Comment |Resistor for wall layer 1 ‘ ThermalResi...
Model
Path Modelica.Thermal. HeatTransfer.Components. ThermalResistor
Comment Lumped thermal element transporting heat without storing it
Parameters
R 0.05 |» Constant thermal resistance of material
| info | | X cancel
D & NEODs Wall - Wall - [Model View]
Graphics Documentation Text Simulation Tools T Windows
- s > v r =
100% - A > X v K R S8 Mrnd
| - o] =
% A / . 3 Fit window &3 ¢ 3 t} m a9 / D © O T g‘ - % @icheck ~ B @ Find Connection
Recent icon Diagram indo iy Selectan | U7 Rectangle Elipse Polygon Text Bimap 2 nnotaton B | & Disgram iter
Package Browser 88 [. % B
" 7|lo| &

» [») examples
~ B components
(@ Heatcapacitor
¥4 ThermalConductor
R} ThermalResistor
#4 convection
4 convectiveesistor
ff BodyRradiation
¥ Temalcollector
B ceneraleatriowToTemperatureadaptor
{| GenerarmemperatureToHeatrlowadaptor
») sensors
» (=] sources
Celsius

Fahrenheit

Rankine
» HE3 interfaces

» [\ math

» (1] complexmath

» (34 tiities:

» [7] constants

» (] cons

» [kg] siunits

[} = + L

& syntax A\ Tanslation = Simulation = Version

Rl

AV

R=0.05 KW

I

=808

B
Graphics | Documentati Text

e =

Icon Diagram

2 K fa S A
/8 o OTWs ¢ el [
lpy Select All ‘ A B3 Annotation o &
Package Browses ThemalResistor X | #
Model name.

» [»] examples

() HeatCapacitor

¥ ThermalConductor

4 convection

4 ConvectiveResistor

ek BodyRadiation

¥ Thermalcollector

B GeneraneatriowToTemperatureadaptor

{| GenerarmemperatureToHeatrlowadaptor

| ¢« | » |

Log-file of program ./dymos

in
(generated: sat Mar 27 11:44:09 2021)

arced

.txt= loading (dymosim inpuc file)
K.mate creating (stmilation result file)
& syntax 1\ Tanslation | Simulation | Version
Modelica

Modelica Text View
Documentation View

name

Diagram View

Icon View

Winsert ~

Variable Selections.

Pywindows [- 0 x

3. Add a second resistor to the Wall model by clicking and dragging a second
instance of Modelica.Thermal.HeatTransfer.Components.ThermalResistor
to the right of R1. Then, configure it to have the name “R2” and parameter R=0.1
K/W. Then, click the right heat port of R1 and hold while dragging your mouse to
the left heat port of R2. Then, let go. This “connects” the two components
together at that heat port. Continue this process of dragging, dropping,
configuring, and connecting components until all resistors and capacitors are added

according to the specifications in the table below. For capacitors, use
Modelica.Thermal.HeatTransfer.Components.HeatCapacitor.

Component Name | Parameter Value
R1 R=0.05 K/W

R2 R=0.1 K/W

ROut R=0.01 K/W

RIn R=0.02 K/W

Cl C=le4 JJK

C2 C=le5 J/JK

Cln C=1e3 J/K

Once the component models are implemented, switch to the Modelica Text view
and explore the corresponding text syntax of the wall model. Notice the
declaration of component models, instead of individual variables, and the uses of
the “connect” statements in the equation section.

Wall - Wall - [Diagram} =) -
ows ~[8 - 0 X

L insert -
< (@ S O o OTWS I S
iy select | UM Pectangle Elipse Polygon Text Gitmap ° S Annotatio

]
J

& B
P 5

o c1 c2
1e3 9% 1e4 165 4
R\ N’ N’ &N
Re0.02 KW Ra0.05 KW Ra0.1 KW R20.01 KW

=082

model wWall "This is a model of a multilayer wall"™

Modelica.Thermal .HeatTransfer.Components.ThermalResistor R1(R=0.05)
"Resgistor for wall layer 1v
=

Modelica.Thermal .HeatTransfer.Components.ThermalResistor R2 (R=0.1)
"Resistor for wall layer 2©
d

Modelica.Thermal .HeatTransfer.Components. ThermalResistor ROout (R=0.01)
"Resistor for outside convection™
d :

Modelica.Thermal .HeatTransfer.Components. ThermalResistor RIn (R=0.02)
"Resistor for inside convection®
d

Modelica.Thermal .HeatTransfer.Components.HeatCapacitor Cl{C=1led)
"Capacitor for wall layer 1v
d

Modelica.Thermal .HeatTransfer.Components.HeatCapacitor C2{C=1e5)
"Capacitor for wall layer 2v
d

Modelica.Thermal .HeatTransfer.Components.HeatCapacitor CIn(C=1le3)
"Capacitor for inside air wvolume"
d

egquation

connect (Rl.port_b, RZ.port_a)
d i

connect (R2..port_b, ROut.port_a)
d ;

connect (RIn.port_b, Rl.port_a)
d

connect (Cl.port, Rl.port_a)
B:l

connect (C2.port, RZ.port_a)
d

connect (C2.port, Rl.port_b)
d

connect (RIn.port_a, CIn.port})
d :

d

end wall;

4. Specify the outside air temperature by using Modelica.Blocks.Sources.Sine
and Modelica.Thermal.HeatTransfer.Sources.PrescribedTemperature.
For the sine block, use the parameterization shown on the next page. Flip the
direction of the blocks by selecting on them and using Arrange > Flip Horizontal at
the top of the screen (a keyboard shortcut is to press the letter “h” while selected).

Note that the sine block has an interface made of an “output” instead of a “heat port” as the
heat transfer models do. This block outputs a Real signal. In Modelica, we can incorporate the
generation, mathematical manipulation, and usage of Real signals in our system models. The
connection of signals from an output of one component to the input of another is done similarly
to connecting the heat ports from before. Here, the prescribed temperature component model
uses a Real signal as an input to specify the value of the temperature at its heat port, which
allows us to define the outside temperature node for ROut. In this case, according to a
sinusoidal signal defined by the sine block. Explore some of the other types of Real signal
generation blocks, as well as Boolean signals and available logic blocks. Note that signals are
only for the passage of numeric or Boolean values from one component to another and do not
represent anything physical like heat ports.

Wall - Wall - [Diagram] — -
R windows ~H — 0 X
— ¥ . % S| A Hin
@ 5 = 28
) @ X /8 o OTWF | @ B | &ec
1y Select Al ine Rectangle Ellipse Polygon Text Bitmap =1 a, & Diagram F -

Arrange

=eBEZ

TOut in Wall >

General | Add modifiers = Attributes

Component Icon

Name TOut

Comment |Outside air temperature Sine
B
Model /\/
Path Modelica.Blocks.Sources.Sine freqHz=

Comment Generate sine signal

Parameters
LAY
amplitude 10 |» Amplitude of sine wave
amplitude
freqHz 1/(24*¥3600) |» Hz Frequency of sine wave
. offset
phase o © Phase of sine wave
offset 27315 + 20 » Offset of output signal y - -
startTime -
time
startTime 0» s Output y = offset for time < startTime

Info | X cancel

5. Simulate the model for 1 day (86400 seconds) and an output interval of 60
seconds with the Dassl solver and tolerance of 1e-6. Plot the outside temperature
and the inside temperature as shown in the Figure below.

Change the x-axis to hours by right-clicking on the word “Time” > Time Unit > h.
Change the y-axis to °C by clicking Setup... > Display Unit > degC. Export the
results in the plot to a .csv file by right-clicking the word “Wall” in the Variable
Browser > Export Result > Only Plot Window. Then, for “Files of type” select
“Comma Separated Values”, give the file a name, and save it. Try opening it in
excel or using it in a Python script for post-processing.

Try changing the values of the R and C parameters and explore how it changes the
indoor air temperature. Plot the temperatures of CI1 and C2 to understand how the
temperature is changing through the wall over time. Add more layers to the wall,
or try adding more sources of heat to the outside, like the sun, or inside, like lights!
For this, you will find the model
Modelica.Thermal.HeatTransfer.Sources.PrescribedHeatFlow helpful.

Wall - Wall - Plot (1+]) - -

2 Windows ~ (8 - 0 X

® & I TG -
Variable ~ -

Setup

oooooooooooo

=eBEZ

Part III: System Modeling

Now that you’ve learned the basics of Modelica syntax, the Dymola environment,
and connecting component models to form larger models, let’s build and analyze a
simple system model that contains a room and HVAC system for cooling. In doing
s0, we can explore the performance of a number of design and control scenarios.

Therefore, in this part, you will:

1. Implement a system model that includes a room, fan, and weather data.

2. Explore the impact of increased thermal mass on the inside air temperature
with and without fan operation.

3. Add a simple vapor-compression cooling coil with thermostat control to
maintain the room air temperature according to a setpoint.

4. Adjust the room air temperature setpoint to simulate a demand-response
event and compare the cooling power profile to the case without the
demand-response event.

1. Open Dymola. Load the Modelica Buildings Library by File > Open > Load and
browsing to the “package.mo” file within the Buildings Library. Once loaded, you
should see Buildings available in your Package Browser. Then, go to File > Save
> SaveAs and save the model file as “System.mo.”

Look in: [/home/dhbubu18/git/buil...ica-buildings/Buildings ~ | @ © © @ [[E

= computer Name v Size =

= dhbubul8 |&F Controls |
9 Electrical |
Examples |
9 Experimental |
9 Fluid I
5 HeatTransfer |
= Media |
5 Obsolete |
Occupants |
8 Resources |
5 ThermalZones |
= Types |
9 utilities |

B package.mo 395...KiB

[QK »

File name: package.mo 4 Open

Files of type: | All Modelica Files (*.mo *.moe) ~ || X cancel

D@9 @060 Buildings - Buildings - [Diagram]
Graphics |~ Documentation Text Simulation Tools

- 5 P o
Wherm@l..RCxDG /D 0 OTWEST

Recent icon Diagram Line Rectangle Ellipse Polygon Text Bitmap —

ligy Select All
Package Browser

Dymola Commands
Favorites
» @ Modelica Reference

» 72| Modelica

«[] suildings

» @ userscuide

] Air
» 1) Airflow
[52) appiications
» (%) soundaryconditions
» | controls
» | £] Electrical
» [5%3] i
» [=] Heatwransfer
» [B) media
» [1] occupants
» [E] Thermalzones.
» (€] wilities

Types

» [»] examples
(] experimental
] Baseclasses

Obsolete

R = * [L3

% |QoEmors _1\0Warnings | (1)0Messages Clear

& syntax [\ Tanslation ~Simulation Version

=082

LELELE

Name:

System \

Description:

This is a simple model of a room with cooling system]

Insert in package:

~|% 0
Xgancel” & ok]

Graphics = Documentation ~ Text Simulation Tools B windows ~[- 0 x

= 100% > 8 A 9 R X
@ = B @ &y / O o &
e m@ o CxDB] TRS
Recent icon Diagram Line Rectangle Elipse Polygon Text Bitmap

ligy Select All

D@D FO0s System - System - [Diagram] -9 -

K & = S Afnd H insert ~
2 @icheck ~ B3I Q Find Connection | Variable Selections

[= Annotation Hk & Diagram Filter {3 Create Local State

Package Browser System X |+

»] pymola commands
» () Fovorites

» @ Modelica Reference
» 2] Modelica

] Buildings

» @ userscuide

] Applications

» (] Boundaryconditions
» B controls

» [#] Electrical

» (%) Fluia

» (=] Heattransfer
+) vedis

» [2]) occupants

+ (B hemaizones
» [3€) tilties

’ (L Types

» [»] examples

» [7) experimental

» [©] Baseclasses
+ () obsolete

L3 = * [L3

QOEmors | {\0Warnings | 1)0 Messages Clear

8®

&€ syntax A\ Tanslation ~Simulation = Version

System =082

2. Use the following component models to build the system as shown in the
diagram below. Screenshots are shown for how to parameterize the models. Note
that the parameter values to edit are displayed in black text. Those in grey text are
defaults that are already configured and should be left as they are.

Model Path Description/Usage

Buildings.BoundaryConditions. WeatherData.ReaderTM Y 3 Loads weather data from a weather file
based on EPW.

Buildings.BoundaryConditions. WeatherData.Bus Allows for the use of weather data
throughout the model.

Buildings.Air.Systems.SingleZone.VAV.Examples.BaseClasses.Room | Single zone room model with 4 exterior
walls, a roof, and a floor. The south
wall has a large window. The model
implements a detailed heat balance to
calculate the inside air temperature,
including conduction through exterior
walls/roof/floor from the outside (using
a 1-D finite difference approximation),
solar radiation on exterior surfaces and
windows, interior radiation exchange,
surface convection based on
temperature difference and surface
orientation, internal gains and
schedules, and infiltration.

Buildings.Fluid.Movers.FlowControlled m_flow Fan model with mass flowrate as
control input signal.

Buildings.Fluid.Sensors. TemperatureTwoPort Temperature sensor for supply air.

Buildings.Fluid.Sources.Outside Ideal boundary from where air can flow

into the fan and out of the room.
Weather data can be used to specify the
conditions of the boundary air through
time.

Modelica.Blocks.Sources.Constants Generates a constant signal as output.
Used here as a control signal for the
fan.

weaDat

weaBus

e

const

weaBus

L]

weaBus

senTem

@ (@ weaDat in System

General | Add modifiers = Attributes

Component Icon
Name weaDat
Comment |Weather data gpFiea X
: @ |
E
Model E ‘
Path Buildings.BoundaryConditions.WeatherData.ReaderTMY3 "

Comment Reader for TMY3 weather data

Parameters -
computeWetBulbTemperature ~» If true, then this model computes the wet bulb temperature
filNam }/‘Resources]weatherdata/USA_IL_Chicago-OHare.IntIAP.?ZS300_TMY3.mos"J ‘ » Name of weather data file

Data source

pAtmSou v |» Atmospheric pressure

pAtm » bar Atmospheric pressure (used if pAtmSou=Parameter)

ceiHeiSou L Ceiling height

ceiHei b m Ceiling height (used if ceiHei=Parameter)

totSkyCovSou - Total sky cover

totSkyCov » Total sky cover (used if totSkyCov=Parameter). Use 0 <= totSkyCov <=1

opaSkyCovSou - » Opaque sky cover

opaSkyCov » Opaque sky cover (used if opaSkyCov=Parameter). Use 0 <= opaSkyCov <=1

TDryBulSou > Dry bulb temperature

TDryBul » °C Dry bulb temperature (used if TDryBul=Parameter)

TDewPoiSou v |» Dew point temperature

TDewPoi » °C Dew point temperature (used if TDewPoi=Parameter)

TBlaSkySou - [» Black-body sky temperature =
Info Cancel OK

For the “filNam” parameter, specify the full path to the weather file within the
quotations. There are example weather files within the Buildings library. Here is
an example on my system of how the parameter should look:

ModelicaServices.ExternalReferences.loadResource(
"fhome/dhbubu/git/buildings/modelica-buildings/Buildings/Resources/weatherdata/USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.mos")

Notice that the weather file is a .mos file and not a .epw file. This is because the
data format needs to be in a “Modelica table” format to be read into the model.
The Buildings library provides a program to convert .epw files into .mos files. The
program is located at Buildings/Resources/bin/ConvertWeatherData.jar and
instructions can be found in the Documentation section “Adding new weather
data” of the model Buildings.BoundaryConditions. WeatherData.ReaderTMY3.

General | Add modifiers = Attributes

Component Icon

Name room

Comment |Room model|

Model

Path Buildings.Air.Systems.SingleZone.VAV.Examples.BaseClasses.Room
Comment BESTest Case 600 with fluid ports for air HVAC and internal load

Parameters
MediumA B s.Me » Medium model
maAir_flow_nominal 0.75 » Design airflow rate of system
lat weaDat.lat » Building latitude
S_ B 5. Types.Az Sy oo Azimuth for south walls
ER B 5. Types.Az Ep ° Azimuth for east walls
w_ E gs. Types.Azimuth.W|» © Azimuth for west walls
N_ B 5. Types.Az [Azimuth for north walls
C_ B gs. Types.Tilt.Ceiling[p ° Tilt for ceiling
[E gs.T Tilt.F [Tilt for floor
" B s.Types.T alljp © Tilt for wall
nConExtWin 1 Number of constructions with a window
NGONEo i E;l)rgggj c:i] :il(l:lrgatchee tr()aot rr.?re connected to constructions that are
matExtWal » Exterior wall
matFlo » Floor
soil » Soil properties
roof » Roof
window600 » Window

Info Cancel oK

0 fan in System

General | Dynamics Initialization = Assumptions =~ Advanced = Add modifiers = Attributes
Component Icon
Name fan

Comment |Supply fan

Model

—
Path Buildings.Fluid.Movers.FlowControlled_m_flow FlowControll...
Comment Fan or pump with ideally controlled mass flow rate as input signal

Parameters
Medium = £] Moist air = » Medium in the component
per 2 - 2 ers - » Record with performance data
r - Set to false to avoid any power (=heat and flow work) being added
addPowerToMedium false " to medium (may give simpler equations)

. X ol v Set to true to avoid warning if m_flow_nominal and dp_nominal are
nominalValuesDefineDefaultPressureCurve se » used to construct the default pressure curve
constantMassFlowRate » Constant pump mass flow rate, used when inputType=Constant
massFlowRates Vector of mass flow rate set points, used when inputType=Stage

Nominal condition

m_flow_nominal 0.75||> Nominal mass flow rate

dp_nominal - - ols Pa il:l]o:gicr;iljppr:rssure raise, used for default pressure curve if not specified
Control

inputType B B 3 0 ous| ¥ (b Control input type

Info Cancel 0

B senTem in System

General | Assumptions =~ Advanced = Add modifiers = Attributes
Component Icon
Name senTemSupAir
Comment |Temperature sensor for supply air T/_
Model i
P —
Path Buildings.Fluid.Sensors. TemperatureTwoPort Temperatur...
Comment Ideal two port temperature sensor
Parameters
Medium Moist air » Medium in the component
tau i s Time constant at nominal flow rate (use tau=0 for steady-state sensor, but see user guide for potential problems)
Nominal condition
m_flow_nominal 0.75» Nominal mass flow rate, used for regularization near zero flow
Initialization
initType B T alState| = |» Type of initialization (InitialState and InitialOutput are identical)
T_start T aultp °C Initial or guess value of output (= state)
Heat transfer
transferHeat se| v |» if true, temperature T converges towards TAmb when no flow
TAmMb : _default|» Fixed ambient temperature for heat transfer
tauHeaTra » Time constant for heat transfer, default 20 minutes
Info Cancel oK

& out in System |

General Add maodifiers Attributes

Component Icon
Name out
Comment |Outside air boundary Oulside
Model
Path Buildings.Fluid.Sources.Outside
Comment Boundary that takes weather data, and optionally trace substances, as an input
Parameters
Medium | 2 Moist air « » Medium in the component
use C_in el w |b Get the trace substances from the input connector
C : » Fixed values of trace substances

Info Cancel oK

. const in System

General | Add modifiers = Attributes

Component Icon

MName con

Comment |Control signal for fan Caonstant

Model

Path Modelica.Blocks.Sources.Constant
Comment Generate constant signal of type Real

Parameters

‘y

k | 0|» Constant output value k

time

Info Cancel oK '

3. Simulate the model from day 120 to 125 with a 60 second output interval using
the Dassl solver with a tolerance of 1e-6. Plot the outside air temperature and
inside air temperature as shown in the plot below.

D@9 @
Graphics

Documentation Text
FE = B 2
= Reset Layout
New New New
Plot + Table Diagram~ All
Variable Browser o
Variable Value
~ # System
» weaDat
~ room
mAir_flow_nominal 0.75 kgis
rad
0/rad
-1.5708/rad
1.5708|rad
3.14159) rad
rad
rad
rad

OZEMVE

N

nConExtWin
nConBou

» matExtwal

» matflo

» soil

» window600
» soi

» supplyAir
» returnAir
V' TRooAir 3
» oo
» qConGai_flow
» qRadGai_flow
» mul
» qlatGai_flow
» @ Tsoi
» sininf
» InfiltrationRate
» product

vore >> | (&

& [Simlation

A\ Translation

Logs | Commands

X

Simulation Tools | Plot Options

2 A [

ontent

ro0m.TRooAlr

Toggle Grid
| Measurement

2 Sync PaniZoom

weaBus. TOryBul

> Play

1l Pause

System - System - [Plot [1°]]

o & I

Independent Setup
ble ~

T[Z

Expression Text

B Windows <& - 0 X

3251
320
315
310
305
300
205
2004\
285

2804\

N /

120

Model View (¢ 0| x

Version

T
122

Time []

T
123

T
124

=20EZ

4. Increase the thermal mass in the room by increasing the concrete floor slab
thickness from 1” to 6”. Do this by opening the “room” configuration (double-
click on the room model). Then, click on the grey box to the right of the parameter
called “matFlo”, which sets the material layers for the floor construction. Then,
click on the small black arrow next to the “material” parameter and choose Edit
Text. Then, change the line that reads “x=0.025" to “x=0.025*6". This is the
concrete slab floor thickness in meters. Click OK on all of the open windows.
Now, simulate the model again. The results in the plot will update. Compare with
the previous simulation by expanding the previous result in the Variable Browser
and plotting the room air temperature variable.

What do you notice about the air temperature with higher thermal mass compared
to the temperature with lower thermal mass?

General | Add modifiers
Component Icon
Name room.matFlo

Comment

Model

Path Buildings.HeatTransfer.Data.OpaqueConstructions.Generic
Comment Thermal properties of opaque constructions

Parameters
Layer by layer declaration of material, starting from outside to
material » room-side -
absIR_a > Infrared absorptivity of surface a (usually outside-facing surface)
absIR_b 3 Infrared absorptivity of surface b (usually room-facing surface)
absSol_a 3 Solar absorptivity of surface a (usually outside-facing surface)
absSol_b » Solar absorptivity of surface b {usually room-facing surface) &
roughness_a - Exterior surface roughness
Edit material
{Buildings.HeatTransfer.Data.Solids.Generic(
x=1.003,
k=0.040,
=0,
d=0,
nStaRef=Buildings. ThermalZones.Detailed.Validation.BESTEST.nStaRef),
Buildings.HeatTransfer.Data.Solids.Generic(
x=0.025%6}
k=0.140,
c=1200,
d=650,
nStaRef=Buildings. ThermalZones.Detailed.Validation.BESTEST.nStaRef) }
Info
|omme |
1
x. * Avdv | E=EE=EE EE =i O = A
—

Time [d]
000, numberOfIntervals=0, outputInterval=66, method="dassl", toleram(

Cancel OK

268005
Graphics Documentation Text

Simulation Tools | Plot Options

Toggle Grid > Play
|® Measurement 1l Pause

» & [

Rescale Erase Delete

—— room.TRooAK /2 —— weaBus.TOryBul //2 —— room.TRooAlr // 1

o &

) Independent Setup
5@ Content 4 sync Pan/zoom Variable ~

Expression Text

Pwindows ~ - 0 x

325

315

310

T
120 121

5
s22 Warnina: You are usina a flow or oressure controlled mover with the

| Close All
P Reset Layout
New New New Rescale
Plot ~ Table Diagram~ All
Variable Browser e®
 Variable Value Unit *
~ 4 System 1
» weaDat
~ room
‘mair_flow_nominal kals
lat rad
S_ rad
€ rad
w_ rad
N rad
c rad
£ rad
Z rad
nConExtWin
nConBou
» matExtwal
» matFlo
» soil
» roof
» window600
»
» supplyAir
» retumair
v TRooAir K
»
» qConGai flow
» qRadGai_flow
» mul
» qlatGai_flow
» @ TSoi
» sininf
» InfiltrationRate
» product
» density
» senTZon
» soulnf
» intLoad
» weaBus
» fan
» senTem
» out
» const
» weaus -
‘ 0
filter variables | more>> ||@
® | 10g-tile of progran ./dymosin
@ | (generated: sat ¥ar 27 12:31:16 2021)
dymosin scarced
- *dain.txcs loading (dymosim input file)
Warning: The following was detected at time: 10368000
& syntax) Tanslation | simulation
Logs | Commands

T
124

5. Turn on the fan by changing the changing the “k” parameter of the model “con”
to 0.5. This will specify that the fan constantly blows 0.5 kg/s of air into the room.
Since it looks like our outside air temperature is always less than our inside air
temperature, this will help us cool down the room. Simulate the model and look at
the updated results.

[con in System |

General Add modifiers Attributes

Component Icon

Name con

Constant

Comment Control signal for fan

Model

Path Modelica.Blocks.Sources.Constant k=

Comment Generate constant signal of type Real

Parameters

‘y

k 0.5 » Constant output value k

time

Info Cancel oK

(Bt (1))

= NGO NXK]
Graphics Documentation Text

Qe & % 0
-
Run New Commands Tanslate Simulate
script~ Script~ - -
variable Browser e®
variable Value Unit |+

NTOZEMme

£3833
i

soi
supplyAir

retumAir

v TRooAir 3
ro0

qConGai flow

,
,

» qRadGai flow
» mul

» gLatGai_flow

» @ Tsoi

» sininf

» InfiltrationRate
,
,
,
,
,
»

filter variables

® | 10g-11e of progran ./dymosin
B | (generated: sar war 27 12:32:56 2021)

arced
£+ loading (dymosim input £ile)
The following was d X
s22 Warning: You are usina a fiow of DIy

€ syntax |\ Tansiation
Logs | Commands

dymosin
o.. s
warning

Simulation ~ Tools Plot Options

—
bt

0 E Stop: 1.08e+07 Continue ~ @
Sweep

Ag: | Dass| Linearize
Setup

Load
Parameters. Savein Model | Result

—— room.TRooAr /1 —— room.TRooA /3 —— weaBus.TDryBul /13

New New
Plot + Table

New
Animation

[&

Visualize

i simulation Analysis
@ Visualize
30 A\ showlog

> Play <« |p Time:
1l Pause >
Ll a

Rywindows [- 0 x

315

310

T
120 121

10368000

uze_controlled mever with the

Time fd)

6. The peak inside air temperature still reaches over 305 K, which is about 32 C
and 89 F! Add a simple vapor-compression cooling model and controls by adding
the following component models as shown in the diagram and screenshots below.

Model Path Description/Usage

Buildings.Fluid.HeatExchangers.HeaterCooler u An ideal heater or cooler with a control input signal
that specifies the fraction of maximum heating or
cooling power to apply to the passing fluid.

Buildings.Controls.Continuous.LimPID A PID feedback controller that is used to control the
cooling power based on room air temperature setpoint
and room air temperature measurement.

Modelica.Blocks.Sources.CombiTimeTable The output signal is specified using a table of values
that can be defined at particular simulation times. We
will use this to specify the room air temperature
setpoint. When connecting to the component
“conCo0”, use index [1] in the resulting prompt.

Modelica.Blocks.Math.Gain Multiplies the input signal by a constant value and
outputs the result. We will use this to convert the
thermal power calculated by the cooler model to
electrical power by a constant assumed COP.

Modelica.Blocks.Interfaces.RealOutput Allows the input signal to serve as an output for the
whole model. This makes it easier to view results, and
also allows the model to be connected to other models.

weaDat

weaBus

cop

PCoo

>

TRooAir

>

weaBus

senTemSupAir

TRooAirSet conCoo

=

General | Assumptions = Advanced Flow resistance = Dynamics Initialization = Add modifiers = Attributes

Component Icon
Name coo
Comment |Ideal vapor-compression cooler u
Model ’;E:
—
Path Buildings.Fluid.HeatExchangers.HeaterCooler_u HeaterCool..
Comment Heater or cooler with prescribed heat flow rate
Parameters
Medium <£ Moist air « » Medium in the component
Q_flow_nominal -15000» W Heat flow rate at u=1, positive for heating
Nominal condition
m_flow_nominal 0.75 |» Nominal mass flow rate
dp_nominal 0||> Pa Pressure difference

Info Cancel oK

. conCoo in System

General | Advanced = Add modifiers = Attributes
Component Icon
Name conCoo
Comment Feedback controller for cooler LimPID
» S
Model > @
Path Buildings.Controls.Continuous.LimPID ia
Comment P, PI, PD, and PID controller with limited output, anti-windup compensation and setpoint weighting
Parameters -
controllerType Modelica.Blocks. Types.SimpleController.Pl | = |» Type of controller
k 0.1 Gain of controller
Ti 120» s Time constant of Integrator block
Td » Time constant of Derivative block
yMax » Upper limit of output
yMin » Lower limit of output
wp » Set-point weight for Proportional block (0..1)
wd » Set-point weight for Derivative block (0..1)
Ni 0.9 Ni*Ti is time constant of anti-windup compensation
Nd » The higher Nd, the more ideal the derivative block
reverseAction true = » Set to true for throttling the water flow rate through a cooling coil controller
Initialization
initType B 5 P 5 gl - v Type of initialization (1: no init, 2: steady state, 3: initial state, 4: initial output)
xi_start o/ Initial or guess value value for integrator output (= integrator state)
xd_start » Initial or guess value for state of derivative block
y_start » Initial value of output -
Info Cancel

() TRooAirSet in System

General | Add modifiers | Attributes
Component
Name TRooAirSet

Comment | Setpoint for room air temperature

Model
Path Modelica.Blocks.Sources.CombiTimeTable
Comment Table look-up with respect to time and linear/periodic extrapolation methods (data from matrix/file)

Table data definition

tableOnFile
table
tableName
fileName

verboseRead

Icon

CombiTime

= true, if table is defined on file or in function usertab

Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table name on file or in function usertab (see docu)

File where matrix is stored

= true, if info message that file is loading is to be printed

Table data interpretation

columns » Columns of table to be interpolated y .
time | v[1] | v[2]
smoothness. cks.Types.Smoothness.ConstantSegments ~ |» Smoothness of table interpolation
extrapolation 1.Blocks. Types.Extrapolation.HoldLastPoint | ~) Extrapolation of data outside the definition range
timeScale b s Time scale of first table column
offset » Offsets of output signals
startTime b s Output = offset for time < startTime
columns
shiftTime b s Shift time of first table column offset -
Info Cancel OK ‘

Click on the grey box to the right of the parameter “table’ to edit the table. We
will just define the output value (22 C) at simulation time 0, and let it be constant
for the entire simulation.

Edit Array for table

table
Rows | 1 = Columns | 2 >
1 2
1 273.15+22
oK Cancel Copy Matrix | | Paste Matrix | | Import... Export... Plot

Two additional parameters will specify the output to be constant segments between
time intervals (instead of interpolating), and to hold the last value specified for the
rest of the simulation time (instead of another extrapolation scheme).

smoothness
extrapolation

timeScale

-~

cks.Types.Smoothness.ConstantSegments | = |» Smoothness of table interpolation

Table points are linearly interpolated o . tion of data outside the definition range
Table points are interpolated (b...e first derivative is continuous

Table points are not interpolate...vious abscissa point is returned
Table points are interpolated (b...e first derivative is continuous
Table points are interpolated (b...e first derivative is continuous

e of first table column

T |l PEESSESICE . ik e e

extrapolation
timeScale

offset

1.Blocks. Types.Extrapolation.HoldLastPoint| « |» Extrapolation of data outside the definition range

Hold the first/last table point outside of the table sco|

Extrapolate by using the deriva...ints outside of the table scope
Repeat the table scope pericdically

Extrapolation triggers an error output signals

. cop in System]

General | Add modifiers | Attributes
Component lcon
Name cop

Comment Implements COP of cooling system Gain

Model

Path Modelica.Blocks.Math.Gain
Comment Output the product of a gain value with the input signal

Parameters

k -1/3 |» Gain value multiplied with input signal

Info Cancel oK '

PCoo in System

General | Add modifiers = Attributes
Component Icon

Name PCoo

Comment |Cooling power consumption
Model I>

Path Modelica.Blocks.Interfaces.RealOutput
Comment ‘output Real' as connector

PCoo in System

General | Add modifiers | Attributes

Add new modifiers here, e.g., vistart=1).
Note that this is an advanced feature, and you should use the normal parameter fields if possible.
unit="w"

Info Cancel oK

TRooAI

System

General | Add modifiers Attributes

Component Icon
Name TRoOAIr
Comment |Room air temperature measurement

Model

Path Modelica.Blocks.Interfaces.RealOutput
Comment 'output Real' as connector

Info Cancel oK

> TRoo System

General | Add modifiers | Attributes

Add new modifiers here, e.g., v(start=1).
Note that this is an advanced feature, and you should use the normal parameter fields if possible.
unit="K"

Info Cancel OK

7. Simulate the model and plot the room air temperature, outside air temperature,
and cooling power. Use the “New Diagram” command icon to split the plot
window between temperature and power measurements. Then, open the “Setup”
window, and set the display unit to deg C.

X EEEEE T e System - System. - Plot (2°1] — o Il
Graphics Documentation Text Simulation Tools Plot Options Pywindows @ - 0 x
i 4
S 2 o Y8 [[X Emees o ; 5l
= X © o L [TZ
New New

| Measurement I Pause
New Rescale . Rescale Erase Delete
Plot ~ Table Diagram~ Al = Content £ Sync Pan/Zoom

1
N

Independent Setup Expression Text
Variable ~

Variable Browser 28

—— weaBus.TDryBul —— TRoOAK
Variable Value Unit

» System 1

» System 2

» System 3

~ 8 Systeml
» weaDat

rel

<
3
8
=

TRooAir
» weaBus : . . :
cPutim s
s 120 121 122 123 124 125
Time (6]
— peoo
3000-] A
/
2000 /
£ / \ / N
A 7\ / \ / \
1000 7\ —\ | / ‘
/ \, f \ / \ /
\ \ f \
\ \ /
T T T T
120 121 122 123 124 125
= > Time [0
More >> | (@ Model view (#)0)x i
& syntax 1\ Tanslation | Simulation | Version
Logs | Commands
=e0EZ

(> Plot Setup

Variables | Titles Legend Range Options

Select a variable, then edit its properties below:

weaDat.weaBus.TDryBul
TRooAIr

Output temperature

Legend
weaDat.weaBus.TDryBul Reset!
Appearance
Color W Red - Custom...
Line style — Solid -
Marker style None -
Thickness — Single -
Vertical axis | Left -
Other properties _
Unit: K Display unit: JGEGTS
Minimum Maximum
Vertical 4.96826 30.9279
Horizontal 120 125]

File: System.mat
Number of data points: 7216

Apply Cancel oK

8. Let’s implement a demand-response event on the 4™ day between 1pm and 4pm.
To respond, we want to increase the zone temperature setpoint by 3 C. Edit the
setpoint table to achieve this. Then, simulate the model again. Compare the power
consumption profile to that without the demand response event. What do you
notice?

M & Edit Array for table .

table
Rows | 3 s Columns | 2 s
1 2
0.0 273.15 + 22
123*24*3600 + 13*3600 273.15 + 25
3 123*24*3600 + 16%3600 273.15 + 22

oK Cancel Copy Matrix | | Paste Matrix | | Import... Export... Plot

System - System1 - [Plot [1+])

Simulation ~ Tools Plot Options
IC Stop: 1.08e+07 @ @ @ E @ % simulation Analysis > Play i Speed
) s 1~
Alg: | Dass! . ; . 1l Pause
o ew ew Visualiz
P2 Resul able mation 30 9 L
—— weaBus. TDryBul —— TRooAlr
30, o N\
~ L
/ h /
D /S J Va
75N Va - f— L —4
20 V4 \\ /
T S~ / / A\
g . A / N\ / \ A
A\ : N\ / \ ™~ ~
. / N \ — A
0N/ X / X -~
w Cooli N\ A N/ NAAA
K Roorr N7 ~ \
s
T T T
120 121 122 23 124 125
Time f6]
PCoo
3000
i / A\
2000 r\‘ \ / \
B 1 N\ / N
/ \ \
1000 \\ f \ /
\
\ \
o4
T T T
120 121 122 123 124 125
U Time (d]
More >> | |@ Model View (#)D)X
Logs | Commands
=c0EZ

Zoom in on the demand response day by using plot Setup and modifying the
horizontal range. You must do this for both subplots. You can also modify the
vertical range for the temperature plot, compare the demand response room air
temperature measurement to the previous, and further edit the plot properties as

you wish.

@ @ Pplot Setup

Max

Scaling

Variables

Titles

Vertical range
Min |-500

Max 3500

Legend

Logarithmic scale

Horizontal range

Min [123

Range

Options

124

Logarithmic scale

[ZFit Plotted Data

Apply

Same horizontal and vertical axis increment

Cancel

Lo]

D ED @ ® O System1 - Systeml - [Plot [1*]] - -
Graphics Documentation Text Simulation Tools Plot Options. By Windows ~FH — g x

ﬂ - Close All | E D i Toggle Grid » Play ® @
- L-
New Rescale Rescale Erase Delete Independent Setup Expression Text

ResetLayout @) O |= Measurement 11 Pause
New New -
Plot ~ Table Diagram~ All B @ Content & sync Pan/Zoom
Variable Browser ®
Variable Value Unit Descl
~ 41 Systeml1 o T

weaDat s — \

(1]
[T

—— weaBus.TDryBul / 2 —— TRooAIr /2 —— TRooAIr /1

room
1

fan - N

sontern

ot

const 26|

]
conCoo -4 / N\
TRooarset 2] / |

cop \
y e / \

T T T T T T T T T
weaDat. 123.0 123 1232 1233 1284 1235 1236 1237 1238 1239 1240
fn Time [d]

—— PCoo

TRooAirset 3000-]
op.
PCoo Cooli
V| TRooAir Roor —
» weadus 2000
cputime s
EventCounter

]

w1

10004

T T T T T T T T T
123.0 1231 1232 1233 1234 1235 1236 1237 1238 1239 124.0
< D

_ Time [a]
riables More >> Model view (#)0](x]

Log-£ile of progran ./aymosim

)
: 10368000

@ contollea mover with the c
8 syntax | A\ Translation | Simulation | Version

Logs | Commands

=aHEZ

