Introduction to Modelica Modeling for Building Systems

A Tutorial Developed for MIT Class 4.421: Space-Conditioning Systems for Low-Carbon Buildings

3/29/2021

By David Blum

I. Requirements

- 1. Dassault Systemes Dymola (v2020), License, and C Compiler
 - a. For notes about choosing and setting up the C Compiler, see: <u>https://www.3ds.com/products-services/catia/products/dymola/c-compiler/</u>
- 2. Modelica Buildings Library (v7.0.0)
 - a. For download, see: https://simulationresearch.lbl.gov/modelica/download.html
 - b. For notes about setting up the library, see: <u>https://simulationresearch.lbl.gov/modelica/installLibrary.html</u>

II. Additional Resources

This is going to be a brief introduction. There is much more to learn about how to use Modelica and Dymola. I recommend the following resources:

- 1. Dymola Users Guide
- 2. Modelica by Example (<u>https://mbe.modelica.university/</u>)
- 3. Buildings Library Users Guide (<u>https://simulationresearch.lbl.gov/modelica/userGuide/index.html</u>)
- 4. Buildings Library Tutorials (https://simulationresearch.lbl.gov/modelica/training.html)

Part 1: Modelica Syntax and Dymola Development Environment

Modelica is a language, like C++ or Python. Therefore, you need to learn its syntax and how it can be used to represent models. Dymola is the development environment that will help us do that, in addition to helping us organize, compile, and simulate our models, as well as explore the results of those simulations.

Therefore, in this part, you will:

- 1. Write a simple heat transfer model in Modelica
- 2. Check that the model is valid
- 3. Simulate the model
- 4. Explore the results

First, let's define the physical phenomenon we will model. Consider a heat transfer problem where a small rock is being cooled by an air stream, as shown in the diagram. We are interested in simulating the temperature of the rock over time. This can be described by the differential equation and initial condition below:

$$\rho V c_v \frac{dT}{dt} = hA(T_a - T)$$
$$T(t = 0) = T_0$$

Where:

T is the rock temperature [K]

 T_0 is the initial rock temperature [K]

 T_a is the air temperature [K]

 ρ is the rock density [kg/m³]

- *V* is the rock volume $[m^3]$
- c_v is the rock specific heat capacity [J/kg-K]
- *h* is the rock-air heat transfer coefficient $[W/m^2-K]$
- A is the rock surface area $[m^2]$

1. Open Dymola. Go to File > Save > SaveAs and save the model file as shown in the Figure below (it will be saved as Rock.mo). Then, switch to the "Modelica Text" view by clicking on the icon indicated in the top Figure on the next page. Your screen should look like the bottom Figure on the next page.

By default, Dymola will open to the "Diagram View." This view is used to configure models using graphical blocks that can be pieced together. We will explore this later in the tutorial. For now, we are concentrating on the underlying text-based implementation of models.

😣 🗊 Rename
Name:
Rock
Description:
This is a model of a rock in air stream
Insert in package:

<u>C</u> ancel <u>O</u> K

D D 📓 🦄 P D O =	Rock - Rock - [Modelica Text]	- a ×
File Graphics Documentation Text Simulation Tool		🗟 Windows 👻 🖭 — 🖬 🗙
Recent Back Forward Modelica Mathematical Used Flat Notation Classes Flat Modelica	Image: Construction Image: Construction Undo Rector Cut: Cut: Description Rector Image: Cut: Select All	
Package Browser @ 🗵	Rock X +	+
Model name V in *	andel Rock "This is a model of a rock in air stream"	
Dymola Commands		
Favorites		
Modelica Reference	ena Rockj	
Modelica		
Rock		
O Errors O Warnings O Messages O		Clear
2		
Syntax Translation Simulation Version		
		Line: 2 🖶 🖶 🚺 🛃 😤

2. Declare all of the variables in the model as shown in the Figure below.

The syntax of defining a basic model is split into two main sections, one that is used to declare all of the variables in the model and one that is used to define the equations of the model. The declaration section is above the word "equation" and the equations section is below the word "equation."

The declaration section is used to give variables names and various characteristics. Here, parameter means the variable is given a value that does not change over time. Real means that the value of the variable is a real number, as opposed to an Integer or Boolean (True/False). Other attributes can be assigned, such as the unit and start value. Finally, "descriptions" of the variables can be given, which are used later to help us document the model.

Notice that all of our variables are given, except the temperature of the rock. This is our only variable that will change with time and needs to be calculated using an equation (this is also called a "state" variable). Notice also that the volume and area parameters are defined as a function of the radius parameter, assuming that our rock is a sphere.

```
model Rock "This is a model of a rock in air stream"
  parameter Real r(unit="m") = 0.1 "Radius of rock";
  parameter Real rho(unit="kg/m3") = 2230 "Density of rock";
  parameter Real c(unit="J/(kg.K)") = 880 "Specific heat capacity of rock";
  parameter Real h(unit="W/(m2.K)") = 1000 "Heat transfer coefficient";
  parameter Real T_a(unit="K") = 273.15+10 "Temperature of air stream";
  parameter Real T_0(unit="K") = 273.15+20 "Initial temperature of rock";
  parameter Real V(unit="m3") = 4/3*3.14*r^3 "Volume of rock";
  parameter Real A(unit="m2") = 4*3.14*r^2 "Surface area of rock";
  equation
end Rock;
```

3. Write the equations of the model as shown in the Figure below.

Here, we only have one equation. It is an ordinary differential equation (ODE). Modelica syntax naturally accepts the specification of variable derivatives with respect to time using the der() syntax.

Notice we can also write equations in an "acausal" manner. That is, it does not matter which variables appear on each side of the equation. In addition, it does not matter the order in which we specify equations, if we had more than one. All of this makes it easier for us to define systems of differential and algebraic equations (DAEs) without having to first solve them analytically and determine the proper order of assigning values to variables. Instead, we define them in Modelica, and let the tool (in this case Dymola) solve them for us.

```
model Rock "This is a model of a rock in air stream"
  parameter Real r(unit="m") = 0.1 "Radius of rock";
  parameter Real rho(unit="kg/m3") = 2230 "Density of rock";
  parameter Real c(unit="J/(kg.K)") = 880 "Specific heat capacity of rock";
  parameter Real h(unit="W/(m2.K)") = 1000 "Heat transfer coefficient";
  parameter Real T_a(unit="K") = 273.15+10 "Temperature of air stream";
  parameter Real T_0(unit="K") = 273.15+20 "Initial temperature of rock";
  parameter Real V(unit="m3") = 4/3*3.14*r^3 "Volume of rock";
  parameter Real A(unit="m2") = 4*3.14*r^2 "Surface area of rock";
  Real T(unit="K", start=T_0) "Temperature of rock";
  equation
  rho*V*c*der(T) = h*A*(T_a - T);
end Rock;
```

4. Check that the model is valid by using the "Check" command, indicated by a green check mark at the top middle of the screen. You should see messages at the bottom of your screen as shown in the Figure.

Notice that Dymola has identified that there is 1 unknown variable in our model (T), and that there is 1 equation in the model (our ODE). Since we have the same number of equations and unknowns, we can solve the problem. Dymola also runs a number of other checks on the model which are not explicitly listed here. However, if there were problems with the syntax or problems with how the model is implemented, Dymola would try to detect and report them here, as either Warnings or Errors. Models with Warnings can still be simulated, while models with Errors will not simulate.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rock - Rock - [Modelica Text]	- a ×
File Graphics Documentation Text Simulation To	ols	🗟 Windows 🕆 💽 — 🗖 🗙
Recent Back Forward Modelica Mathematical Used Flat Text Notation	Lundo Redo Cut: Copy Paste By Select All	
Package Browser @ 😣	Rock X + Check	-
Model name V 40 *	model Rock "This is a model of a rock in air stream"	
Dymola Commands	parameter Real r(unit=*kg/ml*) = 0.1 *Radius of rock*; parameter Real rho(unit=*kg/ml*) = 2230 *Density of rock*;	
Favorites	<pre>parameter Real c(unit="J/(kg.K)") = 880 "Specific heat capacity of rock"; parameter Real h(unit="W/(m2.K)") = 1000 "Heat transfer coefficient";</pre>	
Modelica Reference	parameter Real T_s(unit=*K*) = 273.15+10 "Temperature of air stream"; parameter Real T_0(unit=*K*) = 273.15+20 "Initial temperature of rock"; Check Model	
/ Modelica	parameter Real V(unit=*m3*) = 4/3+3.14*rA3 *Volume of rock*; parameter Real A(unit=*m2*) = 4+3.14*rA2 *Surface area of rock*;	
Rock	Real T(unit="K", start=T_0) "Temperature of rock"; equation	
	<pre>rho*V*c*der(T) = h*A*(T_n - T); end Rock;</pre>	
₩. ₩ + ★		
O Errors 10 Warnings 0 3 Messages		Clear
Check of Rock:		
(i) The model has the same number of unknowns and equations: 1		
Check of <u>Mock</u> successful.		
Syntax Translation Simulation Version		
Reading Rock		Line: 12 🖶 🚍 🚺 🚺 🔮

5. Go to the Simulation view by clicking on the "Simulation" tab at the top of the screen. Then, setup the simulation of the model using the "Setup" command at the top middle of the screen. Configure as shown in the Figure. Finally, simulate the model using the "Simulate" command at the top of the screen.

In the simulation setup, we are configuring the simulation to run for one hour of simulation time, have an output interval of one second, and utilize the Dassl solver with a tolerance of 1e-6. Note that the output interval of one second does NOT define our integration timestep. The Dassl solver is a variable time-step solver, meaning the actual integration timestep will be whatever is needed to successfully solve the equations through time, and will vary depending on how quickly the variables are changing.

Clicking the "Simulate" command actually invokes Dymola to perform multiple processes. First, it processes the equations into a format in which the variables can be sequentially solved. It also determines which groups of equations may need to be solved iteratively, called algebraic loops (we do not have that problem in this simple example). Then, it writes the equations into C code and compiles it. Finally, it executes the compiled code, using the specified solver to solve (or "integrate") the model through time.

Image: Part of the state of the st				Sir	nulation Se	tup			
Avdel Rock Result Rock Stant time 0 3600 s Stap time 3600 0 s Output interval s 0 nterval length 1 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 1 s 0 s 1 s	General	Translation	Output	<u>D</u> ebug	<u>C</u> ompiler	<u>R</u> ealtime	FMI <u>E</u> xport	FMI Import	
Model Rock Result Rock simulation interval interval Start time 0 s Stop time 3600 s Dutput interval 3600 s O Interval length 1 s Number of interval 500 s negration 1 s Algorithm Dassl v Tolerance 1e-6 s Fixed Integrator Step 0 s	Experime	nt							
Result Rock Simulation interval Start time 0 3600 3600 3600 s Stop time 3600 0 interval Interval length 1 Stop time 500 Integration Algorithm Dassl Tolerance 1e-6 Fixed Integrator Step 0	Model		Rock						
Simulation interval Start time 0 3600 s Stop time 3600 s Cutput interval 0 Interval length 1 S 0 Number of interval 500 ntegration Algorithm Dassl ie-6 Fixed Integrator Step 0 s	Result		Rock						
Start time 0 s Stop time 3600 s Dutput interval 3600 s Dutput interval 1 s O Interval length 1 s Number of interval 500 s Integration s s Algorithm Dassl v Tolerance 1e-6 s Fixed Integrator Step 0 s	Simulation	n interval							
Stop time 3600 s Output interval s Image: solution of intervals 500 s Number of intervals 500 s Integration s Algorithm Dassl Tolerance 1e-6 s Fixed Integrator Step 0 s	Start tin	ne	0						s
Output interval Interval length Number of intervals 500 ntegration Algorithm Dassl Tolerance Ite-6 Fixed Integrator Step Integrator s	Stop tim	ie	3600						s
Interval length 1 s Number of intervals 500 s Integration Algorithm Dassl * Tolerance 1e-6 Fixed Integrator Step 0 s	Output int	erval							
Number of intervals 500 ntegration Algorithm Dassl Tolerance 1e-6 Fixed Integrator Step 0 s	 Inter 	val length	1						s
Algorithm Dassl Tolerance 1e-6 Fixed Integrator Step 0 5	O Num	ber of interval	s 500						
Algorithm Dassl Tolerance 1e-6 Fixed Integrator Step 0	ntegratio	n							
Tolerance 1e-6 Fixed Integrator Step 0	Algorith	m	Dassl					•	
Fixed Integrator Step 0 s	Tolerand	e	1e-6						
	Fixed Int	tegrator Step	0						s

6. Explore the results by selecting variables to plot in the Variable Browser to the left of the screen. You can create new plot windows and plot diagrams by using the commands at the top of the screen in the Plot Options tab, which appears when you select a plot window. Plot the rock temperature and air temperature over time. How long does it take for the rock to cool down?

Change the values of the parameters for air temperature and initial rock temperature in the Variable Browser within the Value boxes and simulate again. Does the cool-down time change? Now change the values of the parameters for heat transfer coefficient or the radius of the rock. Does the cool-down time change?

Part 2: Connectors, Components, and Graphic Syntax

One of the strengths of Modelica is that it is object-oriented. This helps us be able to build up libraries of component models which can be pieced together to form larger, custom system models. There are two additional aspects that help us achieve this capability. The first is the definition of connectors and the second is graphical annotation.

Therefore, in this part, you will:

- 1. Learn the basic concept of connectors
- 2. Use the graphical syntax to connect component models into a larger system

First, let's again give ourselves an example problem. Consider heat flow through a multilayer wall, as shown in the diagram below, and a corresponding resistor-capacitor network model (resistor-capacitor modeling in heat transfer is an analogue to electrical circuit modeling). We are interested in simulating the temperature of the inside air over time given a time-varying outside air temperature.

In this problem, we could write down the governing system of equations and implement the model in Modelica as we did in Part 1. However, this would be time-consuming. Instead, let's utilize the connector, component modeling, and graphic syntax capabilities of Modelica to not only solve this problem, but give us the ability to easily solve other, similar, problems.

Before doing this, we need to explore the nature of the resistance-capacitor model a bit. To make things easier, we can simplify the model variables by giving the resistors a resistance, R, and the capacitors a capacitance, C, which can each be calculated from the more specific variables described before.

For a resistor, a constitutive equation relates the heat flow through it to the resistance and temperature different across it:

$$T_1 \stackrel{R}{\longleftarrow} T_2$$

$$q = \frac{T_1 - T_2}{R}$$

For a capacitor, a state equation relates the heat flow into the capacitor to the capacitance and time-rate-of-change of the temperature:

$$q \xrightarrow{T_1} C_1$$

$$\downarrow C_1 \frac{dT_1}{dt} = q$$

For any node where two or more components (a resistor or capacitor) connect, Kirchoff Current and Voltage Laws (also conservation of energy) say that the net heat flow at the node is zero and the temperature of all components at the node is equal. That is, energy that leaves one component must flow into its neighbors and at the point it connects to its neighbors the temperature must be the same:

 $q_1 + q_2 - q_3 = 0$

Thinking back to our original problem, we have 19 unknown variables (4 R's, 3 C's, 5 node temperatures, and 7 component heat flows). We can assign all of the R's and C's based on material properties. Furthermore, we can assume the outside air temperature is just an input that we define. Therefore, we have 11 remaining unknown variables; 4 remaining node temperatures and 7 component heat flows. If we build a generic resistor model using the constitutive equation and instantiate 4 of them, that gives us 4 more equations. Similarly, if we build a generic capacitor model using the state equation and instantiate 3 of them, that gives us another 3 equations. Finally, if we could "connect" these components together as shown in the diagram, we could gain 1 more equation per node which says that the sum of heat flows is zero at the node. Then, we would have 4+3+4=11 equations, which will allow us to solve for all 11 unknown variables!

Why did we go through all of this? What it tells us is we can individually build generic component models that just define the relationship between the heat flow through the component and the temperature(s) at the interface(s). Then, we can connect these component models together in virtually any configuration and have enough equations to solve for the whole system!

Now, let's call the heat flow the "flow" variable and the temperature the "potential" variable for a particular component (you can think of heat flowing through the component while the temperature drives the potential for heat flow). Then, we could say more generally that at a connection node: "flow" variables sum to zero and "potential" variables are equal. As it turns out, this pairing of "flow" and "potential" variables is analogous in other domains than just heat transfer. In particular, electrical circuits, fluid flow, translational kinematics, and rotational kinematics! This is one of the most powerful concepts that Modelica takes advantage of in order to be able to facilitate the simulation of new systems. If you're interested in learning more about this concept of modeling that generalizes across physical domains, it is often referred to as Linear Graph Modeling, and a good discussion is presented from the MIT Mechanical Engineering Department:

- Part 1: <u>http://web.mit.edu/2.14/www/Handouts/OnePorts.pdf</u>
- Part 2: <u>http://web.mit.edu/2.14/www/Handouts/TwoPorts.pdf</u>

Physical Domain	Potential (Across)	Flow (Through)
Heat Transfer	Temperature (T)	Heat Flow (q)
Fluid Flow	Pressure (P)	Mass Flow (m)
Electrical	Voltage (V)	Current (i)
Translational	Displacement (s)	Force (F)
Rotational	Angle (θ)	Torque ($ au$)

Having gone through all of this, let's build our wall model.

1. Open Dymola. Go to File > Save > SaveAs and save the model file as shown in the Figure below (it will be saved as Wall.mo).

😣 🗊 Rename
Name:
Wall
Description:
This is a model of a multilayer wall
Insert in package:
▼ [‡]
<u>C</u> ancel <u>O</u> K

2. Explore the Modelica Standard Library using the Package Browser on the left side of the screen. In particular, navigate to the Thermal Resistor component model at Modelica. Thermal.HeatTransfer.Components.ThermalResistor. Then, click and drag it onto the modeling canvas. Then, double-click on the model to configure it with the name "R1" and parameter R=0.05 K/W.

Double-click on the Thermal Resistor model in the Package Browser to open it. Switch to the Modelica Text view (as we used in Part 1) and notice that the graphical component has a corresponding text implementation. In fact, notice that the parameter R is defined just as we did in our analytical model in Part 1, and that Dymola used that information to populate the configuration we just used to assign a value of 0.05 in a graphical context. Try also switching to the "Documentation" view to read any information the model developer may have given about the model, such as modeling approach, major assumptions, and typical usage. Finally, switch to the "Icon" view to see how the graphic content is constructed.

After you've finished exploring, switch back to the "Diagram" view of our Wall model to continue building.

		the	ermalResist	or in W	/all		
General	Add modifiers	Attributes					
Component							Icon
Name	R1						
Comment	Resistor for wa	ll layer 1					ThermalResi
Model							
Path Comment	Modelica.Therm Lumped therma	al.HeatTrans	sfer.Compone ansporting he	ents.The eat with	rmalResistor out storing it		R=
Parameters							
R			0.05 × K/	W Co	nstant thern	nal resista	nce of material

3. Add a second resistor to the Wall model by clicking and dragging a second instance of Modelica.Thermal.HeatTransfer.Components.ThermalResistor to the right of R1. Then, configure it to have the name "R2" and parameter R=0.1 K/W. Then, click the right heat port of R1 and hold while dragging your mouse to the left heat port of R2. Then, let go. This "connects" the two components together at that heat port. Continue this process of dragging, dropping, configuring, and connecting components until all resistors and capacitors are added according to the specifications in the table below. For capacitors, use Modelica.Thermal.HeatTransfer.Components.HeatCapacitor.

Component Name	Parameter Value
R1	R=0.05 K/W
R2	R=0.1 K/W
ROut	R=0.01 K/W
RIn	R=0.02 K/W
C1	C=1e4 J/K
C2	C=1e5 J/K
CIn	C=1e3 J/K

Once the component models are implemented, switch to the Modelica Text view and explore the corresponding text syntax of the wall model. Notice the declaration of component models, instead of individual variables, and the uses of the "connect" statements in the equation section.


```
model Wall "This is a model of a multilayer wall"
 Modelica.Thermal.HeatTransfer.Components.ThermalResistor R1(R=0.05)
    "Resistor for wall layer 1"
    з; Б
 Modelica.Thermal.HeatTransfer.Components.ThermalResistor R2(R=0.1)
    "Resistor for wall layer 2"
    а;
 Modelica.Thermal.HeatTransfer.Components.ThermalResistor ROut(R=0.01)
    "Resistor for outside convection"
    а;
 Modelica.Thermal.HeatTransfer.Components.ThermalResistor RIn(R=0.02)
    "Resistor for inside convection"
    а;
 Modelica.Thermal.HeatTransfer.Components.HeatCapacitor C1(C=1e4)
    "Capacitor for wall layer 1"
    3 ;
 Modelica.Thermal.HeatTransfer.Components.HeatCapacitor C2(C=1e5)
    "Capacitor for wall layer 2"
    а;
 Modelica.Thermal.HeatTransfer.Components.HeatCapacitor CIn(C=1e3)
    "Capacitor for inside air volume"
    ; 6
equation
 connect(R1.port_b, R2.port_a)
    3;
 connect(R2.port_b, ROut.port_a)
    3;
 connect(RIn.port_b, R1.port_a)
    ; 6
 connect(Cl.port, Rl.port_a)
    3;5
 connect(C2.port, R2.port_a)
    а;
 connect(C2.port, R1.port_b)
    3;
 connect(RIn.port_a, CIn.port)
    з;
  Ы
end Wall;
```

4. Specify the outside air temperature by using Modelica.Blocks.Sources.Sine and Modelica.Thermal.HeatTransfer.Sources.PrescribedTemperature. For the sine block, use the parameterization shown on the next page. Flip the direction of the blocks by selecting on them and using Arrange > Flip Horizontal at the top of the screen (a keyboard shortcut is to press the letter "h" while selected).

Note that the sine block has an interface made of an "output" instead of a "heat port" as the heat transfer models do. This block outputs a Real signal. In Modelica, we can incorporate the generation, mathematical manipulation, and usage of Real signals in our system models. The connection of signals from an output of one component to the input of another is done similarly to connecting the heat ports from before. Here, the prescribed temperature component model uses a Real signal as an input to specify the value of the temperature at its heat port, which allows us to define the outside temperature node for ROut. In this case, according to a sinusoidal signal defined by the sine block. Explore some of the other types of Real signal generation blocks, as well as Boolean signals and available logic blocks. Note that signals are only for the passage of numeric or Boolean values from one component to another and do not represent anything physical like heat ports.

			TOut in Wall	6
General	Add modifiers Attrik	outes		
Component				Icon
Name	TOut			
Comment	Outside air temperatu	re		Sine
Model				
Path Comment	Modelica.Blocks.Sourc Generate sine signal	es.Sine		freqHz=
Parameters				
amplitude	10		Amplitude of sine wave	y A A A A A A A A A A A A A A A A A A A
freqHz	1/(24*3600) ►	Hz	Frequency of sine wave	amplitude
phase	0	۰	Phase of sine wave	offset
offset	273.15 + 20 +		Offset of output signal y	startTime time
startTime	•	s	Output y = offset for time < startTime	
Info				🗶 <u>C</u> ancel 🖉 <u>O</u> K

5. Simulate the model for 1 day (86400 seconds) and an output interval of 60 seconds with the Dassl solver and tolerance of 1e-6. Plot the outside temperature and the inside temperature as shown in the Figure below.

Change the x-axis to hours by right-clicking on the word "Time" > Time Unit > h. Change the y-axis to C by clicking Setup... > Display Unit > degC. Export the results in the plot to a .csv file by right-clicking the word "Wall" in the Variable Browser > Export Result > Only Plot Window. Then, for "Files of type" select "Comma Separated Values", give the file a name, and save it. Try opening it in excel or using it in a Python script for post-processing.

Try changing the values of the R and C parameters and explore how it changes the indoor air temperature. Plot the temperatures of C1 and C2 to understand how the temperature is changing through the wall over time. Add more layers to the wall, or try adding more sources of heat to the outside, like the sun, or inside, like lights! For this, you will find the model

Modelica.Thermal.HeatTransfer.Sources.PrescribedHeatFlow helpful.

Part III: System Modeling

Now that you've learned the basics of Modelica syntax, the Dymola environment, and connecting component models to form larger models, let's build and analyze a simple system model that contains a room and HVAC system for cooling. In doing so, we can explore the performance of a number of design and control scenarios.

Therefore, in this part, you will:

- 1. Implement a system model that includes a room, fan, and weather data.
- 2. Explore the impact of increased thermal mass on the inside air temperature with and without fan operation.
- 3. Add a simple vapor-compression cooling coil with thermostat control to maintain the room air temperature according to a setpoint.
- 4. Adjust the room air temperature setpoint to simulate a demand-response event and compare the cooling power profile to the case without the demand-response event.

1. Open Dymola. Load the Modelica Buildings Library by File > Open > Load and browsing to the "package.mo" file within the Buildings Library. Once loaded, you should see Buildings available in your Package Browser. Then, go to File > Save > SaveAs and save the model file as "System.mo."

Rename	8
Name:	
System	
Description:	
This is a simple model of a room with cooling system	
Insert in package:	
	✓ # D
	🗶 <u>C</u> ancel 🖉 <u>O</u> K

				System - Sy	stem - [Diagrai	m]					- a ×
File Graphics Documentation Text Simulation	Tools									5	Windows * 📧 - 🗆 🗙
Dh	@ 9< B	Delete	1	\circ	T	1 🚄	🕶 📰 Align 👻	🖁 Split Model 📱 😣	At Find	🐏 Insert 👻	
Recent Back Forward Icon Diagram	Redo Cut Con	Duplicate	Line Rectand	e Ellipse Polygor	Taxt Bitma	. <u>*</u>	🝷 🔁 Order 👻	🖉 Check 👻 🔚	G Find Connection	Variable Selections	
v Bick Political Icon Diagram		따 Select All		e Emple Polygo	i lext bitin	Arrange	Annotation	III %	🖧 Diagram Filter	Create Local State	
Package Browser @ 8	System 🖇	< +									*
Model name											
Dymola Commands											
Favorites											
Modelica Reference											
Modelica											
System											
Buildings											
• 🕕 UsersGuide											
→ Air											
Airflow											
Applications											
BoundaryConditions											
Controls											
Electrical											
Fiuid											
HeatTransfer											
Media											
Cocupants											
ThermalZones											
> K Utilities											
T types											
Examples											
Experimental											
> Obselete											
be oppose	_										
O Errors 10 Warnings 10 Messages											Clear
Sustay A Translation Simulation Version											
Sustam											
System											

2. Use the following component models to build the system as shown in the diagram below. Screenshots are shown for how to parameterize the models. Note that the parameter values to edit are displayed in black text. Those in grey text are defaults that are already configured and should be left as they are.

Model Path	Description/Usage
Buildings.BoundaryConditions.WeatherData.ReaderTMY3	Loads weather data from a weather file based on EPW.
Buildings.BoundaryConditions.WeatherData.Bus	Allows for the use of weather data throughout the model.
Buildings.Air.Systems.SingleZone.VAV.Examples.BaseClasses.Room	Single zone room model with 4 exterior walls, a roof, and a floor. The south wall has a large window. The model implements a detailed heat balance to calculate the inside air temperature, including conduction through exterior walls/roof/floor from the outside (using a 1-D finite difference approximation), solar radiation on exterior surfaces and windows, interior radiation exchange, surface convection based on temperature difference and surface orientation, internal gains and schedules, and infiltration.
Buildings.Fluid.Movers.FlowControlled_m_flow	Fan model with mass flowrate as control input signal.
Buildings.Fluid.Sensors.TemperatureTwoPort	Temperature sensor for supply air.
Buildings.Fluid.Sources.Outside	Ideal boundary from where air can flow into the fan and out of the room. Weather data can be used to specify the conditions of the boundary air through time.
Modelica.Blocks.Sources.Constants	Generates a constant signal as output. Used here as a control signal for the fan.

Add modifiers Add	Indites			
omponent			Icon	
Name weaDat				
Comment Weather data			Rea	
- d-l				
odel				
Path Buildings.BoundaryC	onditions.WeatherData.ReaderTMY3			
Comment Reader for TM13 We	ather data			
rameters				
computeWetBulbTemperature			true - If true, then this model computes the wet bulb temperatur	e
filNam	/Resources/weatherdata/USA IL Chicago-OHare.Intl.A	P.72530	0 TMY3.mos")	
ita source				
nAtmSou	Buildings BoundaryConditions Types DataSource		Atmospheric pressure	
pAtm	1.01325	bar	Atmospheric pressure (used if pAtmSou=Parameter)	
ceiHeiSou	Buildings.BoundaryConditions.Types.DataSource		Ceiling height	
ceiHei	20000)	m	Ceiling height (used if ceiHei=Parameter)	
totSkyCovSou	Buildings.BoundaryConditions.Types.DataSource		Total sky cover	
totSkyCov	0.5	1	Total sky cover (used if totSkyCov=Parameter). Use 0 <= totSkyCov <= 1	
opaSkyCovSou	Buildings.BoundaryConditions.Types.DataSource 💌	,	Opaque sky cover	
	0.5	1	Opaque sky cover (used if opaSkyCov=Parameter). Use 0 <= opaSkyCov <= 1	
opaSkyCov	Buildings.BoundaryConditions.Types.DataSource		Dry bulb temperature	
opaSkyCov TDryBulSou		°C	Dry bulb temperature (used if TDryBul=Parameter)	
opaSkyCov TDryBulSou TDryBul	201		Dew point temperature	
opaSkyCov TDryBulSou TDryBul TDewPoiSou	Buildings.BoundaryConditions.Types.DataSource		ben point temperatare	
opaSkyCov TDryBulSou TDryBul TDewPoiSou TDewPoi	Buildings.BoundaryConditions.Types.DataSource	°C	Dew point temperature (used if TDewPoi=Parameter)	

For the "filNam" parameter, specify the full path to the weather file within the quotations. There are example weather files within the Buildings library. Here is an example on my system of how the parameter should look:

ModelicaServices.ExternalReferences.loadResource("/home/dhbubu/git/buildings/modelica-buildings/Buildings/Resources/weatherdata/USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.mos")

Notice that the weather file is a .mos file and not a .epw file. This is because the data format needs to be in a "Modelica table" format to be read into the model. The Buildings library provides a program to convert .epw files into .mos files. The program is located at Buildings/Resources/bin/ConvertWeatherData.jar and instructions can be found in the Documentation section "Adding new weather data" of the model Buildings.BoundaryConditions.WeatherData.ReaderTMY3.

omponent			Icon
Name room			
Comment Room model			
lodel			
Path Buildings.Air.	Systems.SingleZone.VAV.Examples.	BaseC	asses.Room
Comment BESTest Case	e 600 with fluid ports for air HVAC an	d inte	rnal load
arameters			
MediumA	Buildings, Media, Air		Medium model
mAir flow nominal	0.75	ka/s	Design airflow rate of system
lat	weaDat.lat		Building latitude
s	Buildings.Types.Azimuth.S	•	Azimuth for south walls
E	Buildings.Types.Azimuth.E	•	Azimuth for east walls
w_	Buildings.Types.Azimuth.W	•	Azimuth for west walls
N_	Buildings.Types.Azimuth.N	•	Azimuth for north walls
c_	Buildings.Types.Tilt.Ceiling	•	Tilt for ceiling
F_	Buildings.Types.Tilt.Floor	•	Tilt for floor
Z_	Buildings.Types.Tilt.Wall	•	Tilt for wall
nConExtWin	1		Number of constructions with a window
nConBou	1)•		Number of surface that are connected to constructions that are modeled inside the room
matExtWal			Exterior wall
matFlo			Floor
soil	E •		Soil properties
roof	E +		Roof
window600			Window

General Dy			
	ynamics Initialization Assu	mptions Advanced Add modifiers Attributes	
Component			lcon
Name f	fan		
Comment S	Supply fan		
Model			
Path B Comment F	Buildings.Fluid.Movers.FlowContro Fan or pump with ideally controlle	led_m_flow d mass flow rate as input signal	FlowControll
arameters			
Medium		1 Moist air ▼ II > Medium in the component	
per		Generic data record for movers() Record with performance data	
addPowerTo	oMedium	false - False	id flow work) being added
nominalValu	uesDefineDefaultPressureCurve	false Fa	minal and dp_nominal are rve
constantMas	ssFlowRate	m_flow_nominal) kg/s Constant pump mass flow rate, used whe	n inputType=Constant
massFlowRa	ates	m_flow_nominal*{per.speeds[i]/per.speeds[end]] [] > kg/s Vector of mass flow rate set points, used	when inputType=Stage
Iominal condi	lition		
m_flow_nom	ninal	0.75[) kg/s Nominal mass flow rate	
dp_nominal		if rho_default < 500 then 500 else 10000 Pa Nominal pressure raise, used for default pres in record per	sure curve if not specified
Control			
inputType		Buildings.Fluid.Types.InputType.Continuous	Control input type
Info			Cancel OK

💿 senTem in	n System	
General Assu	umptions Advanced Add modifiers Attributes	
Component		Icon
Name sen	nTemSupAir	
Comment Ten	mperature sensor for supply air	A ^T C
Model		
Path Build Comment Idea	ldings.Fluid.Sensors.TemperatureTwoPort al two port temperature sensor	Temperatur
arameters		
Medium	I Moist air III ► Medium in the component	
tau	1) s Time constant at nominal flow rate (use tau=0 for steady-state sensor, but see user guide for	r potential problems)
Nominal conditio	on	
m_flow_nomina	al 0.75 kg/s Nominal mass flow rate, used for regular	ization near zero flow
nitialization		
initType	Modelica.Blocks.Types.Init.InitialState	Output are identical)
T_start	Medium.T_default > °C Initial or guess value of output (= state)	
leat transfer		
transferHeat	false if true, temperature T converges toward	TAmb when no flow
TAmb	Medium.T_default > °C Fixed ambient temperature for heat tran	sfer
tauHeaTra	1200) s Time constant for heat transfer, default	20 minutes
Info		Cancel OK

Jeneral	Add modifiers	Attributes			
omponent					Icon
Name	out				
Comment	Outside air bound	lary			Outside
odel					
Path Comment	Buildings.Fluid.So Boundary that tak	urces.Outside es weather data,	and optionally trace su	ibstances, as an input	C
arameters					
Medium	55		Moist air 👻 🔢 🕨	Medium in the component	
use_C_in			false 🔻 🕨	Get the trace substances from	the input connector
с		fill((0, Medium.nC) 📰 🕨	Fixed values of trace substance	es

😣 🗊 const	in System	
General	Add modifiers Attributes	
Component		lcon
Name Comment	con Control signal for fan	Constant
Model		
Path Comment	Modelica.Blocks.Sources.Constant Generate constant signal of type Real	k=
Parameters		
k	O ► Constant output value	time
Info	<u>_</u> ar	ncel <u>O</u> K

3. Simulate the model from day 120 to 125 with a 60 second output interval using the Dassl solver with a tolerance of 1e-6. Plot the outside air temperature and inside air temperature as shown in the plot below.

4. Increase the thermal mass in the room by increasing the concrete floor slab thickness from 1" to 6". Do this by opening the "room" configuration (doubleclick on the room model). Then, click on the grey box to the right of the parameter called "matFlo", which sets the material layers for the floor construction. Then, click on the small black arrow next to the "material" parameter and choose Edit Text. Then, change the line that reads "x=0.025" to "x=0.025*6". This is the concrete slab floor thickness in meters. Click OK on all of the open windows. Now, simulate the model again. The results in the plot will update. Compare with the previous simulation by expanding the previous result in the Variable Browser and plotting the room air temperature variable.

What do you notice about the air temperature with higher thermal mass compared to the temperature with lower thermal mass?

🛛 🗉 room.ma	tFlo in System			
General Add	modifiers Attributes			
Component			lcon	
Name ro	om matElo			
Commont				
Comment				Generic V/X
Model				
Path Bu	ildings.HeatTransfer.Data.OpaqueConstructions.Generic			
Comment The	ermal properties of opaque constructions			
Parameters				
material	{Buildings.HeatTransfer.Data.Solids.Generic(x=1		Layer by layer declaration of material, starting from outs	side to
absIR_a	0.9		Infrared absorptivity of surface a (usually outside-facing	surface)
absIR_b	0.9		Infrared absorptivity of surface b (usually room-facing su	urface)
absSol_a	0.6		Solar absorptivity of surface a (usually outside-facing sur	irface)
absSol_b	0.6		Solar absorptivity of surface b (usually room-facing surfa	ace)
roughness_a	Buildings.HeatTransfer.Types.SurfaceRoughness.		Exterior surface roughness	
			Bolt lext	
			Edit material	
			{Buildings.HeatTransfer.Data.Solids.Generic(x=1.003,	
			k=0.040, c=0,	
			d=0, nStaRef=Buildings.ThermalZones.Detailed.Validation	n.BESTEST.nStaRef).
			Buildings.HeatTransfer.Data.Solids.Generic(
			k=0.140,	
			d=650,	
			nstaker=Buildings.Thermal2ones.Decalled.Validation	n.BESTEST.nStaRel)}
Info				
inio				
$\mathbf{x}_2 \mathbf{x}^2 \mathbf{A} = \mathbf{A}$				
	Time [d]			
000, numberOfInt	ervals=0, outputInterval=60, method="dassl", to	lera	14	
			-	
				Cancel

5. Turn on the fan by changing the changing the "k" parameter of the model "con" to 0.5. This will specify that the fan constantly blows 0.5 kg/s of air into the room. Since it looks like our outside air temperature is always less than our inside air temperature, this will help us cool down the room. Simulate the model and look at the updated results.

😣 🗊 con in	System	
General	Add modifiers Attributes	
Component		Icon
Name	con	
Comment	Control signal for fan	Constant
Model		
Path Comment	Modelica.Blocks.Sources.Constant Generate constant signal of type Real	k=
Parameters		
k	0.5 Constant output value k	time
Info	<u>C</u> ar	ncel <u>O</u> K

6. The peak inside air temperature still reaches over 305 K, which is about 32 C and 89 F! Add a simple vapor-compression cooling model and controls by adding the following component models as shown in the diagram and screenshots below.

Model Path	Description/Usage
Buildings.Fluid.HeatExchangers.HeaterCooler_u	An ideal heater or cooler with a control input signal
	that specifies the fraction of maximum heating or
	cooling power to apply to the passing fluid.
Buildings.Controls.Continuous.LimPID	A PID feedback controller that is used to control the
	cooling power based on room air temperature setpoint
	and room air temperature measurement.
Modelica.Blocks.Sources.CombiTimeTable	The output signal is specified using a table of values
	that can be defined at particular simulation times. We
	will use this to specify the room air temperature
	setpoint. When connecting to the component
	"conCoo", use index [1] in the resulting prompt.
Modelica.Blocks.Math.Gain	Multiplies the input signal by a constant value and
	outputs the result. We will use this to convert the
	thermal power calculated by the cooler model to
	electrical power by a constant assumed COP.
Modelica.Blocks.Interfaces.RealOutput	Allows the input signal to serve as an output for the
	whole model. This makes it easier to view results, and
	also allows the model to be connected to other models.

😣 🗉 🛛 coo in Syste	m	
General Assum	tions Advanced Flow resistance Dynamics Initialization Add modifiers Attributes	
Component		lcon
Name coo		
Comment Ideal	/apor-compression cooler	
Model		
Path Buildir Comment Heater	gs.Fluid.HeatExchangers.HeaterCooler_u or cooler with prescribed heat flow rate	HeaterCool
Parameters		
Medium	₩ Moist air マ 🗉 > Medium in	the component
Q_flow_nominal	-15000 W Heat flow r	rate at u=1, positive for heating
Nominal condition		
m_flow_nominal	0.75 •	kg/s Nominal mass flow rate
dp_nominal	(IO)	Pa Pressure difference
Info		Cancel OK

👂 🗊 conCoo in Sy	ystem	
General Advance	ed Add modifiers Attributes	
Component		Icon
Name conCoo	0	
Commont Foodba		LimPID
Comment Feedba		
Model		PID
Path Building	gs.Controls.Continuous.LimPID	
Comment P, PI, PE	D, and PID controller with limited output, anti-windup compensation and setpoint weighting	
Parameters		
controllerType	Modelica. Blocks. Types. SimpleController. Pl + Type of controller	
k	0.1 > 1 Gain of controller	
Ti	120 > s Time constant of Integrator block	
Td	0.1 s Time constant of Derivative block	
yMax	1 Vpper limit of output	
yMin	0 > Lower limit of output	
wp	Set-point weight for Proportional block (01)	
wd	0 > Set-point weight for Derivative block (01)	
Ni	0.9 Ni*Ti is time constant of anti-windup compensation	
Nd	10 > The higher Nd, the more ideal the derivative block	
reverseAction	true Set to true for throttling the water flow rate through a cooling co	oil controller
Initialization		
initType M	4odelica.Blocks.Types.InitPID.DoNotUse_InitialIntegr 🔹 Type of initialization (1: no init, 2: steady state, 3: initial state, 4: in	nitial output)
xi_start	0 Initial or guess value value for integrator output (= integrator state	e)
xd_start	0 Initial or guess value for state of derivative block	
y_start	Initial value of output	-
Info	Can	cel <u>O</u> K

😣 🗐 TRooAirSet in S	iystem				
General Add modifie	ers Attributes				
Component				lcon	
Name TRooAirSe	t				
Comment Setpoint fo	or room air temperature			Combi	Time
Model					∃ }
Path Modelica.B	locks.Sources.CombiTimeTable				
Comment Table look-	up with respect to time and linear/periodic extrapo	oolation methods (data from matrix/file)			
Table data definition					-
tableOnFile			false 💌 🕨	= true, if table is defined on file or in function usertab	
table			fill(0.0, 0, 2)	Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4	F])
fileName			"NoName Edit	Table name on file or in function usertab (see docu)	
verboseRead			true	= true, if info message that file is loading is to be printed	
Table data interpretatio					
columns	2:size(table, 2)	Columns of table to be interpolated		y time y[1] y[2]	
smoothness	cks.Types.Smoothness.ConstantSegments 💌 🕨	Smoothness of table interpolation			-
extrapolation	I.Blocks.Types.Extrapolation.HoldLastPoint	Extrapolation of data outside the definition range			
timeScale	1	s Time scale of first table column			1
offset	{0} EE •	Offsets of output signals			
startTime		s Output = offset for time < startTime			
shiftTime	startTime	s Shift time of first table column		columns	-
	Stattine				•
Info				Cancel	<u>0</u> K

Click on the grey box to the right of the parameter "table" to edit the table. We will just define the output value (22 C) at simulation time 0, and let it be constant for the entire simulation.

80	Edit Array for tat	ole				
table						
Rows	1	•	Columns	2		•
	1 2					
1	0.0 273.15+22					
	ОК С	ancel Copy Matrix	Paste Matrix	Import	Export	Plot

Two additional parameters will specify the output to be constant segments between time intervals (instead of interpolating), and to hold the last value specified for the rest of the simulation time (instead of another extrapolation scheme).

smoothness	cks.Types.Smoothness.ConstantSegments	
extrapolation	Table points are linearly interpolated Table points are interpolated (be first derivative is continuous	e
timeScale	Table points are not interpolatevious abscissa point is returned Table points are interpolated (be first derivative is continuous Table points are interpolated (be first derivative is continuous	
-ff-sh		

extrapolation	I.Blocks.Types.Extrapolation.HoldLastPoint Extrapol	lation of data outside the definition range
timeScale	Hold the first/last table point outside of the table scope Extrapolate by using the derivaints outside of the table scope	e of first table column
offset	Repeat the table scope periodically Extrapolation triggers an error	output signals

cop in	n System				
General	Add modifiers	Attributes			
Component					lcon
Name	сор				
Comment	Implements CC)P of cooling sy	stem		Gain
Model	·				
Path	Modelica Blocks	Math Gain			k=
Comment	Output the proc	luct of a gain v	alue with the ir	nput signal	
Parameters					
k			-1/3 1	Gain value multi	plied with input signal
			-10		prica men inpac signal
Info					Cancel OK

General	Add modifiers Attributes	
Component	t	lcon
Name	PCoo	
Comment	t Cooling power consumption	
Model		
Path Comment	Modelica.Blocks.Interfaces.RealOutput t 'output Real' as connector	

PCO	o in system					
eneral	Add modifiers	Attributes				
Add nev Note tha	v modifiers here, e at this is an advan	ed feature, a	, nd you should use	the normal para	meter fields i	f possible.
unit="V	V"					

TRoo	Air in System	_	_
General	Add modifiers Attributes		
Component			Icon
Name	TRooAir		
Comment	Room air temperature measurement		
Model			
Path Comment	Modelica.Blocks.Interfaces.RealOutput 'output Real' as connector		

General Add modifiers Attributes Add new modifiers here, e.g., v(start=1). Note that this is an advanced feature, and you should unit="K"	use the normal parameter fields if possil	ble.
Add new modifiers here, e.g., v(start=1). Note that this is an advanced feature, and you should unit="K"	use the normal parameter fields if possil	ble.

7. Simulate the model and plot the room air temperature, outside air temperature, and cooling power. Use the "New Diagram" command icon to split the plot window between temperature and power measurements. Then, open the "Setup" window, and set the display unit to deg C.

Plot Set	up			
<u>V</u> ariables <u>T</u> i	tles <u>L</u> egen	d <u>R</u> an	ge 🤇	Options
Select a variabl	e, then edit its	s properti	es belo	w:
weaDat.weaBu	is.TDryBul	1		
TRooAir				
Output tempera	ature			
Legend				
weaDat.weal	Bus.TDryBul			Reset
Appearance				
Color	Red		•	Custom
Line style	— Solid		Ŧ	
Marker style	None		*	
Thickness	— Single		•	
Vertical axis	Left		•	
Other propertie	s			ĸ
Unit: K		Display	unit:	degC
	Minimur	n	Maxim	um
Vertical	4.96826		30.927	79
Horizontal	120		125	
File: System. Number of da	mat Ita points: 721	6		
	Apply	<u>c</u>	ancel	<u>о</u> к

8. Let's implement a demand-response event on the 4th day between 1pm and 4pm. To respond, we want to increase the zone temperature setpoint by 3 C. Edit the setpoint table to achieve this. Then, simulate the model again. Compare the power consumption profile to that without the demand response event. What do you notice?

80	Edit Array for table		
table			
Rows	3	Columns 2	\$
	1	2	
1	0.0	273.15 + 22	
2	123*24*3600 + 13*3600	273.15 + 25	
3	123*24*3600 + 16*3600	273.15 + 22	
	OK Cancel	Copy Matrix Paste Matrix Import Export Plot	

Zoom in on the demand response day by using plot Setup and modifying the horizontal range. You must do this for both subplots. You can also modify the vertical range for the temperature plot, compare the demand response room air temperature measurement to the previous, and further edit the plot properties as you wish.

Min	-500				
Max	3500				
	Logarithmic scale				
light v					
Min					
Max					
	Logarithmic scale				
lorizo	ntal range				
Min	123				
Max	124				
	Logarithmic scale				
caline	3				
canne					
	ame horizontal and vertical axis increment				
S D	ame horizontal and vertical axis increment				
	ame horizontal and vertical axis increment				

