

Introduction to Modelica Modeling for Building Systems

A Tutorial Developed for MIT Class 4.421: Space-Conditioning Systems for Low-Carbon Buildings

3/29/2021

By David Blum

I. Requirements
1. Dassault Systemes Dymola (v2020), License, and C Compiler
a. For notes about choosing and setting up the C Compiler, see: https://www.3ds.com/products-services/catia/products/dymola/c-compiler/
2. Modelica Buildings Library (v7.0.0)
a. For download, see: https://simulationresearch.lbl.gov/modelica/download.html
b. For notes about setting up the library, see:
https://simulationresearch.lbl.gov/modelica/installLibrary.html

II. Additional Resources
This is going to be a brief introduction. There is much more to learn about how to use Modelica and Dymola. I recommend the following resources:

1. Dymola Users Guide
2. Modelica by Example
(https://mbe.modelica.university/)
3. Buildings Library Users Guide (https://simulationresearch.lbl.gov/modelica/userGuide/index.html)
4. Buildings Library Tutorials
(https://simulationresearch.lbl.gov/modelica/training.html)

Part 1: Modelica Syntax and Dymola Development Environment
Modelica is a language, like C++ or Python. Therefore, you need to learn its syntax and how it can be used to represent models. Dymola is the development environment that will help us do that, in addition to helping us organize, compile, and simulate our models, as well as explore the results of those simulations.
Therefore, in this part, you will:
1. Write a simple heat transfer model in Modelica
2. Check that the model is valid
3. Simulate the model
4. Explore the results
First, let’s define the physical phenomenon we will model. Consider a heat transfer problem where a small rock is being cooled by an air stream, as shown in the diagram. We are interested in simulating the temperature of the rock over time. This can be described by the differential equation and initial condition below:

Where:
 is the rock temperature [K]
 is the initial rock temperature [K]
 is the air temperature [K]
 is the rock density [kg/m3]
 is the rock volume [m3]
 is the rock specific heat capacity [J/kg-K]
 is the rock-air heat transfer coefficient [W/m2-K]
 is the rock surface area [m2]

1. Open Dymola. Go to File > Save > SaveAs and save the model file as shown in the Figure below (it will be saved as Rock.mo). Then, switch to the “Modelica Text” view by clicking on the icon indicated in the top Figure on the next page. Your screen should look like the bottom Figure on the next page.

By default, Dymola will open to the “Diagram View.” This view is used to configure models using graphical blocks that can be pieced together. We will explore this later in the tutorial. For now, we are concentrating on the underlying text-based implementation of models.

[image:]

[image:]Modelica Text View
Diagram View

[image:]

2. Declare all of the variables in the model as shown in the Figure below.

The syntax of defining a basic model is split into two main sections, one that is used to declare all of the variables in the model and one that is used to define the equations of the model. The declaration section is above the word “equation” and the equations section is below the word “equation.”

The declaration section is used to give variables names and various characteristics. Here, parameter means the variable is given a value that does not change over time. Real means that the value of the variable is a real number, as opposed to an Integer or Boolean (True/False). Other attributes can be assigned, such as the unit and start value. Finally, “descriptions” of the variables can be given, which are used later to help us document the model.

Notice that all of our variables are given, except the temperature of the rock. This is our only variable that will change with time and needs to be calculated using an equation (this is also called a “state” variable). Notice also that the volume and area parameters are defined as a function of the radius parameter, assuming that our rock is a sphere.

[image:]

3. Write the equations of the model as shown in the Figure below.

Here, we only have one equation. It is an ordinary differential equation (ODE). Modelica syntax naturally accepts the specification of variable derivatives with respect to time using the der() syntax.

Notice we can also write equations in an “acausal” manner. That is, it does not matter which variables appear on each side of the equation. In addition, it does not matter the order in which we specify equations, if we had more than one. All of this makes it easier for us to define systems of differential and algebraic equations (DAEs) without having to first solve them analytically and determine the proper order of assigning values to variables. Instead, we define them in Modelica, and let the tool (in this case Dymola) solve them for us.

[image:]

4. Check that the model is valid by using the “Check” command, indicated by a green check mark at the top middle of the screen. You should see messages at the bottom of your screen as shown in the Figure.

Notice that Dymola has identified that there is 1 unknown variable in our model (T), and that there is 1 equation in the model (our ODE). Since we have the same number of equations and unknowns, we can solve the problem. Dymola also runs a number of other checks on the model which are not explicitly listed here. However, if there were problems with the syntax or problems with how the model is implemented, Dymola would try to detect and report them here, as either Warnings or Errors. Models with Warnings can still be simulated, while models with Errors will not simulate.

[image:]Check Model

5. Go to the Simulation view by clicking on the “Simulation” tab at the top of the screen. Then, setup the simulation of the model using the “Setup” command at the top middle of the screen. Configure as shown in the Figure. Finally, simulate the model using the “Simulate” command at the top of the screen.

In the simulation setup, we are configuring the simulation to run for one hour of simulation time, have an output interval of one second, and utilize the Dassl solver with a tolerance of 1e-6. Note that the output interval of one second does NOT define our integration timestep. The Dassl solver is a variable time-step solver, meaning the actual integration timestep will be whatever is needed to successfully solve the equations through time, and will vary depending on how quickly the variables are changing.

Clicking the “Simulate” command actually invokes Dymola to perform multiple processes. First, it processes the equations into a format in which the variables can be sequentially solved. It also determines which groups of equations may need to be solved iteratively, called algebraic loops (we do not have that problem in this simple example). Then, it writes the equations into C code and compiles it. Finally, it executes the compiled code, using the specified solver to solve (or “integrate”) the model through time.

[image:]Simulation Setup

[image:]

[image:]Simulate

6. Explore the results by selecting variables to plot in the Variable Browser to the left of the screen. You can create new plot windows and plot diagrams by using the commands at the top of the screen in the Plot Options tab, which appears when you select a plot window. Plot the rock temperature and air temperature over time. How long does it take for the rock to cool down?

Change the values of the parameters for air temperature and initial rock temperature in the Variable Browser within the Value boxes and simulate again. Does the cool-down time change? Now change the values of the parameters for heat transfer coefficient or the radius of the rock. Does the cool-down time change?

[image:]New Diagram
New Plot Window

Part 2: Connectors, Components, and Graphic Syntax
One of the strengths of Modelica is that it is object-oriented. This helps us be able to build up libraries of component models which can be pieced together to form larger, custom system models. There are two additional aspects that help us achieve this capability. The first is the definition of connectors and the second is graphical annotation.

Therefore, in this part, you will:

1. Learn the basic concept of connectors
2. Use the graphical syntax to connect component models into a larger system

First, let’s again give ourselves an example problem. Consider heat flow through a multilayer wall, as shown in the diagram below, and a corresponding resistor-capacitor network model (resistor-capacitor modeling in heat transfer is an analogue to electrical circuit modeling). We are interested in simulating the temperature of the inside air over time given a time-varying outside air temperature.

[image:]

In this problem, we could write down the governing system of equations and implement the model in Modelica as we did in Part 1. However, this would be time-consuming. Instead, let’s utilize the connector, component modeling, and graphic syntax capabilities of Modelica to not only solve this problem, but give us the ability to easily solve other, similar, problems.

Before doing this, we need to explore the nature of the resistance-capacitor model a bit. To make things easier, we can simplify the model variables by giving the resistors a resistance, R, and the capacitors a capacitance, C, which can each be calculated from the more specific variables described before.

[image:]

For a resistor, a constitutive equation relates the heat flow through it to the resistance and temperature different across it:

[image:]

For a capacitor, a state equation relates the heat flow into the capacitor to the capacitance and time-rate-of-change of the temperature:

[image:]

For any node where two or more components (a resistor or capacitor) connect, Kirchoff Current and Voltage Laws (also conservation of energy) say that the net heat flow at the node is zero and the temperature of all components at the node is equal. That is, energy that leaves one component must flow into its neighbors and at the point it connects to its neighbors the temperature must be the same:

[image:]

Thinking back to our original problem, we have 19 unknown variables (4 R’s, 3 C’s, 5 node temperatures, and 7 component heat flows). We can assign all of the R’s and C’s based on material properties. Furthermore, we can assume the outside air temperature is just an input that we define. Therefore, we have 11 remaining unknown variables; 4 remaining node temperatures and 7 component heat flows. If we build a generic resistor model using the constitutive equation and instantiate 4 of them, that gives us 4 more equations. Similarly, if we build a generic capacitor model using the state equation and instantiate 3 of them, that gives us another 3 equations. Finally, if we could “connect” these components together as shown in the diagram, we could gain 1 more equation per node which says that the sum of heat flows is zero at the node. Then, we would have 4+3+4=11 equations, which will allow us to solve for all 11 unknown variables!

Why did we go through all of this? What it tells us is we can individually build generic component models that just define the relationship between the heat flow through the component and the temperature(s) at the interface(s). Then, we can connect these component models together in virtually any configuration and have enough equations to solve for the whole system!

Now, let’s call the heat flow the “flow” variable and the temperature the “potential” variable for a particular component (you can think of heat flowing through the component while the temperature drives the potential for heat flow). Then, we could say more generally that at a connection node: “flow” variables sum to zero and “potential” variables are equal. As it turns out, this pairing of “flow” and “potential” variables is analogous in other domains than just heat transfer. In particular, electrical circuits, fluid flow, translational kinematics, and rotational kinematics! This is one of the most powerful concepts that Modelica takes advantage of in order to be able to facilitate the simulation of new systems. If you’re interested in learning more about this concept of modeling that generalizes across physical domains, it is often referred to as Linear Graph Modeling, and a good discussion is presented from the MIT Mechanical Engineering Department:
· Part 1: http://web.mit.edu/2.14/www/Handouts/OnePorts.pdf
· Part 2: http://web.mit.edu/2.14/www/Handouts/TwoPorts.pdf

[image:]

Having gone through all of this, let’s build our wall model.

1. Open Dymola. Go to File > Save > SaveAs and save the model file as shown in the Figure below (it will be saved as Wall.mo).

[image:]

[image:]

2. Explore the Modelica Standard Library using the Package Browser on the left side of the screen. In particular, navigate to the Thermal Resistor component model at Modelica.Thermal.HeatTransfer.Components.ThermalResistor. Then, click and drag it onto the modeling canvas. Then, double-click on the model to configure it with the name “R1” and parameter R=0.05 K/W.

Double-click on the Thermal Resistor model in the Package Browser to open it. Switch to the Modelica Text view (as we used in Part 1) and notice that the graphical component has a corresponding text implementation. In fact, notice that the parameter R is defined just as we did in our analytical model in Part 1, and that Dymola used that information to populate the configuration we just used to assign a value of 0.05 in a graphical context. Try also switching to the “Documentation” view to read any information the model developer may have given about the model, such as modeling approach, major assumptions, and typical usage. Finally, switch to the “Icon” view to see how the graphic content is constructed.

After you’ve finished exploring, switch back to the “Diagram” view of our Wall model to continue building.

[image:]
[image:]

[image:]
[image:]Modelica Text View
Documentation View
Diagram View
Icon View

3. Add a second resistor to the Wall model by clicking and dragging a second instance of Modelica.Thermal.HeatTransfer.Components.ThermalResistor to the right of R1. Then, configure it to have the name “R2” and parameter R=0.1 K/W. Then, click the right heat port of R1 and hold while dragging your mouse to the left heat port of R2. Then, let go. This “connects” the two components together at that heat port. Continue this process of dragging, dropping, configuring, and connecting components until all resistors and capacitors are added according to the specifications in the table below. For capacitors, use Modelica.Thermal.HeatTransfer.Components.HeatCapacitor.

	Component Name
	Parameter Value

	R1
	R=0.05 K/W

	R2
	R=0.1 K/W

	ROut
	R=0.01 K/W

	RIn
	R=0.02 K/W

	C1
	C=1e4 J/K

	C2
	C=1e5 J/K

	CIn
	C=1e3 J/K

Once the component models are implemented, switch to the Modelica Text view and explore the corresponding text syntax of the wall model. Notice the declaration of component models, instead of individual variables, and the uses of the “connect” statements in the equation section.

[image:]

[image:]

4. Specify the outside air temperature by using Modelica.Blocks.Sources.Sine and Modelica.Thermal.HeatTransfer.Sources.PrescribedTemperature. For the sine block, use the parameterization shown on the next page. Flip the direction of the blocks by selecting on them and using Arrange > Flip Horizontal at the top of the screen (a keyboard shortcut is to press the letter “h” while selected).

Note that the sine block has an interface made of an “output” instead of a “heat port” as the heat transfer models do. This block outputs a Real signal. In Modelica, we can incorporate the generation, mathematical manipulation, and usage of Real signals in our system models. The connection of signals from an output of one component to the input of another is done similarly to connecting the heat ports from before. Here, the prescribed temperature component model uses a Real signal as an input to specify the value of the temperature at its heat port, which allows us to define the outside temperature node for ROut. In this case, according to a sinusoidal signal defined by the sine block. Explore some of the other types of Real signal generation blocks, as well as Boolean signals and available logic blocks. Note that signals are only for the passage of numeric or Boolean values from one component to another and do not represent anything physical like heat ports.

[image:]Arrange

[image:]

5. Simulate the model for 1 day (86400 seconds) and an output interval of 60 seconds with the Dassl solver and tolerance of 1e-6. Plot the outside temperature and the inside temperature as shown in the Figure below.

Change the x-axis to hours by right-clicking on the word “Time” > Time Unit > h. Change the y-axis to C by clicking Setup… > Display Unit > degC. Export the results in the plot to a .csv file by right-clicking the word “Wall” in the Variable Browser > Export Result > Only Plot Window. Then, for “Files of type” select “Comma Separated Values”, give the file a name, and save it. Try opening it in excel or using it in a Python script for post-processing.

Try changing the values of the R and C parameters and explore how it changes the indoor air temperature. Plot the temperatures of C1 and C2 to understand how the temperature is changing through the wall over time. Add more layers to the wall, or try adding more sources of heat to the outside, like the sun, or inside, like lights! For this, you will find the model Modelica.Thermal.HeatTransfer.Sources.PrescribedHeatFlow helpful.

[image:]Setup

Part III: System Modeling
Now that you’ve learned the basics of Modelica syntax, the Dymola environment, and connecting component models to form larger models, let’s build and analyze a simple system model that contains a room and HVAC system for cooling. In doing so, we can explore the performance of a number of design and control scenarios.

Therefore, in this part, you will:

1. Implement a system model that includes a room, fan, and weather data.
2. Explore the impact of increased thermal mass on the inside air temperature with and without fan operation.
3. Add a simple vapor-compression cooling coil with thermostat control to maintain the room air temperature according to a setpoint.
4. Adjust the room air temperature setpoint to simulate a demand-response event and compare the cooling power profile to the case without the demand-response event.

1. Open Dymola. Load the Modelica Buildings Library by File > Open > Load and browsing to the “package.mo” file within the Buildings Library. Once loaded, you should see Buildings available in your Package Browser. Then, go to File > Save > SaveAs and save the model file as “System.mo.”

[image:]

[image:]

[image:]

[image:]

2. Use the following component models to build the system as shown in the diagram below. Screenshots are shown for how to parameterize the models. Note that the parameter values to edit are displayed in black text. Those in grey text are defaults that are already configured and should be left as they are.

	Model Path
	Description/Usage

	Buildings.BoundaryConditions.WeatherData.ReaderTMY3
	Loads weather data from a weather file based on EPW.

	Buildings.BoundaryConditions.WeatherData.Bus
	Allows for the use of weather data throughout the model.

	Buildings.Air.Systems.SingleZone.VAV.Examples.BaseClasses.Room
	Single zone room model with 4 exterior walls, a roof, and a floor. The south wall has a large window. The model implements a detailed heat balance to calculate the inside air temperature, including conduction through exterior walls/roof/floor from the outside (using a 1-D finite difference approximation), solar radiation on exterior surfaces and windows, interior radiation exchange, surface convection based on temperature difference and surface orientation, internal gains and schedules, and infiltration.

	Buildings.Fluid.Movers.FlowControlled_m_flow
	Fan model with mass flowrate as control input signal.

	Buildings.Fluid.Sensors.TemperatureTwoPort
	Temperature sensor for supply air.

	Buildings.Fluid.Sources.Outside
	Ideal boundary from where air can flow into the fan and out of the room. Weather data can be used to specify the conditions of the boundary air through time.

	Modelica.Blocks.Sources.Constants
	Generates a constant signal as output. Used here as a control signal for the fan.

[image:]

[image:]

For the “filNam” parameter, specify the full path to the weather file within the quotations. There are example weather files within the Buildings library. Here is an example on my system of how the parameter should look:

[image:]

Notice that the weather file is a .mos file and not a .epw file. This is because the data format needs to be in a “Modelica table” format to be read into the model. The Buildings library provides a program to convert .epw files into .mos files. The program is located at Buildings/Resources/bin/ConvertWeatherData.jar and instructions can be found in the Documentation section “Adding new weather data” of the model Buildings.BoundaryConditions.WeatherData.ReaderTMY3.

[image:]

[image:]

[image:]

[image:]

[image:]

3. Simulate the model from day 120 to 125 with a 60 second output interval using the Dassl solver with a tolerance of 1e-6. Plot the outside air temperature and inside air temperature as shown in the plot below.

[image:]

4. Increase the thermal mass in the room by increasing the concrete floor slab thickness from 1” to 6”. Do this by opening the “room” configuration (double-click on the room model). Then, click on the grey box to the right of the parameter called “matFlo”, which sets the material layers for the floor construction. Then, click on the small black arrow next to the “material” parameter and choose Edit Text. Then, change the line that reads “x=0.025” to “x=0.025*6”. This is the concrete slab floor thickness in meters. Click OK on all of the open windows. Now, simulate the model again. The results in the plot will update. Compare with the previous simulation by expanding the previous result in the Variable Browser and plotting the room air temperature variable.

What do you notice about the air temperature with higher thermal mass compared to the temperature with lower thermal mass?

[image:]

[image:]

5. Turn on the fan by changing the changing the “k” parameter of the model “con” to 0.5. This will specify that the fan constantly blows 0.5 kg/s of air into the room. Since it looks like our outside air temperature is always less than our inside air temperature, this will help us cool down the room. Simulate the model and look at the updated results.

[image:]

[image:]

6. The peak inside air temperature still reaches over 305 K, which is about 32 C and 89 F! Add a simple vapor-compression cooling model and controls by adding the following component models as shown in the diagram and screenshots below.

	Model Path
	Description/Usage

	Buildings.Fluid.HeatExchangers.HeaterCooler_u
	An ideal heater or cooler with a control input signal that specifies the fraction of maximum heating or cooling power to apply to the passing fluid.

	Buildings.Controls.Continuous.LimPID
	A PID feedback controller that is used to control the cooling power based on room air temperature setpoint and room air temperature measurement.

	Modelica.Blocks.Sources.CombiTimeTable
	The output signal is specified using a table of values that can be defined at particular simulation times. We will use this to specify the room air temperature setpoint. When connecting to the component “conCoo”, use index [1] in the resulting prompt.

	Modelica.Blocks.Math.Gain
	Multiplies the input signal by a constant value and outputs the result. We will use this to convert the thermal power calculated by the cooler model to electrical power by a constant assumed COP.

	Modelica.Blocks.Interfaces.RealOutput
	Allows the input signal to serve as an output for the whole model. This makes it easier to view results, and also allows the model to be connected to other models.

[image:]
[image:]

[image:]

[image:]

Click on the grey box to the right of the parameter “table” to edit the table. We will just define the output value (22 C) at simulation time 0, and let it be constant for the entire simulation.

[image:]

Two additional parameters will specify the output to be constant segments between time intervals (instead of interpolating), and to hold the last value specified for the rest of the simulation time (instead of another extrapolation scheme).

[image:]

[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

7. Simulate the model and plot the room air temperature, outside air temperature, and cooling power. Use the “New Diagram” command icon to split the plot window between temperature and power measurements. Then, open the “Setup” window, and set the display unit to deg C.

[image:]

[image:]
8. Let’s implement a demand-response event on the 4th day between 1pm and 4pm. To respond, we want to increase the zone temperature setpoint by 3 C. Edit the setpoint table to achieve this. Then, simulate the model again. Compare the power consumption profile to that without the demand response event. What do you notice?

[image:]

[image:]

Zoom in on the demand response day by using plot Setup and modifying the horizontal range. You must do this for both subplots. You can also modify the vertical range for the temperature plot, compare the demand response room air temperature measurement to the previous, and further edit the plot properties as you wish.

[image:]
[image:]
image1.emf

ℎ𝑇!

𝑇(𝑡)
𝜌, 𝑐, 𝑉, 𝐴

image2.png
CELET

Name:

Rock

Description:

|Thi5 is a model of a rock in air stream| |

Insert in package:

M
Conce

image3.png
= fock.o Pock. (Disgrar,
Graphics | Documentation | Text | Simuation Tools Bwindows - - 0 x
foo% - X oeer T T YT Binsert -

% ‘ ’ . ' .mmm " F kEh o "movpicate /8 O © T = ~ % Order @ Check ~ @ Find Connection | Variable Selections
Facont ko o e © lyseecny | U Peconde Elpse Fobygon Text Bimep T T L B | > | S cmintocaisan
Package Browser @8 o x |'% .
odel name [¥[k[2 |
+ (] oymaa commands
s [ravorites
s @ wodeica reference

Rock

R ® | ¢« | » [= I

H[EE= o= e o

image4.png
Fywindows ~ {8 - 0 X

Graphics Documentation | Text | Simulation Tools

e B B = E -)o-ktiti*:f‘;f;m @]
e s o | B vt s o | i | Gt oy ot g | ot k| ot e | bt
Package Browser HIW -
o e I B ey gy
+ () oymola Commands - N
= I
o e e
o
RO @ | € | » [®
HEESr e =

Al
|
E
i

image5.png
model Rock "This is a model of a rock in air stream®

parameter Real r{unit="m") = 0.1 "Radius of rock";
parameter Real rho(unit="kg/m3") = 2230 "Density of rock";
parameter Real c{unit=»J/({kg.K)") = 880 "sSpecific heat capacity of rock":

parameter Real h{unit="w/({m2.K)") = 1000 "Heat transfer coefficient";
parameter Real T_a(unit="K") = 273.15+10 "Temperature of air stream";
parameter Real T_0(unit="K") = 273.15+20 "Initial temperature of rock";
mmin) = 4/3+3.14+1A3 "volume of rock";

parameter Real A(unit="m2") 4*3.14*rA2 vsurface area of rock";

Feal T(unit="K", start=T_0) "Temperature of rock";
equation

parameter Real V(uni

end Rock;

image6.png
model Rock "This is a model of a rock in air stream®
parameter Real r{unit="m") = 0.1 "Radius of rock";
parameter Real rho(unit="kg/m3") = 2230 "Density of rock";
parameter Real c{unit=»J/({kg.K)") = 880 "sSpecific heat capacity of rock":
parameter Real h{unit="w/({m2.K)") = 1000 "Heat transfer coefficient";
parameter Real T_a(unit="K") = 273.15+10 "Temperature of air stream";
"E") = 273.15+20 "Initial temperature of rock";

parameter Real T_0 (unit
parameter Real V{unit="m3i") = 4/3%3.14+*rA3 »volume of rock";
parameter Real A(unit="m2") 4*3.14*rA2 vsurface area of rock";
Feal T(unit="K", start=T_0) "Temperature of rock";

equation
rho*V*c*der (T) = h*a*(T_a - T):

end Rock;

image7.png
Fywindows ~ {8 - 0 X

Simulation Tols

Graprics_ Documentation | Text
Xoelete @ A . £

Bedr» B H Z B Hexhall B ake .

= Undo Redo | it Copy Paste
wodica Ity Select All

Recen 5ok o Madeca Mathematical
Tot etston clases
Package eromser 88y 3]
odel name. [P[b]s] g o * P2
+ () oymla Commands
() ravortes
+ @ wodeica reference
() wadsica
Unnamed Real T(unite="K*, start=T_0) “Temperature of rock=;
[imarvicrinrm = neaeiea < 118
s
R ® | € | » [=
(Qoerors | Noverings)3 Messages | Clear
D checkof pacc
@ The modelhas th same numberof unknowns and equatons: 1

image8.png
Graphics Documentatin Text | Simulation | Tools

2 windows - 65
- stop:[1 B Simulation Analysis > Play <« I TMe
QR 2 % 0O e S e
fun New Commands Tansiate Smuste o Sweep o oo lad New New New Visualze —_——
scrpee senpte e - Forameters Resu_Plot - Tobie Anmation ' 30 4\ ShowLog W
Variable srowser [———
ariable Ve unit sk .
1 Wierance, and transiaion aptons. -
o8
o5
o4-]
02|
o T T r
) 02 o o
Tt
« e
fiter varabies Wore >>
®
@ clear
 Check of Rock:

() The model has the same number of unknowns and equations: 1
® check of Rock successful.

B S | rantvon [Simtaton | Varon

| o [

image9.png
Simulation Setup

General | Translation | Output | Debug | Compiler = Realtime = FMIExport = FMIImport

Experiment
Model Rock
Result |Rock

Simulation interval

Start time lo | s

Stop time |3600 | s

Output interval

(®) Interval length 1 | s

) Number of intervals |500 |

Integration
Algorithm | Dassl - |
Tolerance | le-6 |

Fixed Integrator Step | |

Store in Model | v Automatically store General and Inline integration settings | X Cancel | | & ok

image10.png
fockfock,
Graphics Documentation Text | Simulatin | Tools B windows ~ ()
- |4 continve ~ . simulation Analysis | B Play <« I Tme
Qb 2 % 00 o o S T @ 7 e A —
Run New Commands Tanslate Simulate Siop Sweep e setup Load New New New Visualize e
scrpte septe e B Farameters SaveinModel | Resut Plot - Tavle Animation 30 A Showlog “ a
variabie srowser Simalate (F10)
Variable Value. Unit LT
Simuiates the
® o x |+ °

o8

o8

04

024

o T T T

o0 oz o8 o

Time [s)
« e
tervarabies Wore >>
Q 3
- cler
© checkof pock:

() The model has the same number of unknowns and equations: 1
® check of Rock successful.

B S | rantvon [Simtaton | Varon

| o [

image11.png
o focka ook L Pt 71 —2

ot SmistionToos | ot Opions B indows -5 - 3 x
coen B Eomeond > ray = +
= GO LOEGe . 08 L BT B s %
1 Goment A syncpanzoom| ["R S Frerssen T
2]
e =0
Erencouer
e
a5
e
} P o oo £ = £ o o
N v ot
iter variabies More>>a]

® [iog-cita of progran /aymosis
@ | (qeneraceds Tue mar 30 15113157 2021)

aymosia scarees
T Ranin. e loading (aymostn tnput £iie)

(5hs mules atep solver (dassl/dassize of Pateold moditied by Dassauls Systemes))
Crutime for integration +"020243 seconds

& symtax | A mansation | simutation | verion

image12.emf

𝑻𝟏 𝑇"#$𝑇%&

𝜌, 𝑐, 𝑘, 𝐿 ' 𝜌, 𝑐, 𝑘, 𝐿 (

𝐴

𝑻(

𝑇!" 𝑇#$%
𝑇&𝑇'

𝜌𝑐𝐿𝐴 &	𝜌𝑐𝐿𝐴 '	

1
ℎ!"𝐴

	
𝐿'
𝑘'𝐴

𝐿&
𝑘&𝐴

1
ℎ#$%𝐴

	

ℎ"#$ℎ%&

𝜌, 𝑐, 𝑉 %&

𝜌𝑐𝑉 !"	

�

�

�

�

�,�,�,� �,�,�,�

�

�

�

�

� �

��Y� 	

��Y� 	

1

ℎ �

	

�

��

�

��

1

ℎ �

	

ℎ

ℎ

�,�,�

�Y� 	

image13.emf

𝑇!" 𝑇#$%
𝑇&𝑇'

𝐶&𝐶'

𝑅!"	 𝑅' 𝑅& 𝑅#$%	

𝐶!"

�

�

�

�

� �

� 	 �

�

� 	

�

image14.emf

𝑇! 𝑇"

𝑅	

𝑞	

� �

�	

�	

image15.emf

𝐶!

𝑇!

𝑞	

�

�

�	

image16.emf

𝑇!

𝑞!	

𝑞"	

𝑞#	

�

�	

�	

�	

image17.emf

Physical Domain Potential (Across) Flow (Through)
Heat Transfer Temperature (𝑇) Heat Flow (𝑞)
Fluid Flow Pressure (𝑃) Mass Flow (𝑚)

Electrical Voltage (𝑉) Current (𝑖)
Translational Displacement (𝑠) Force (𝐹)

Rotational Angle (𝜃) Torque (𝜏)

image18.png
CELET

Name:
- wall
Description:
|Thi5 is a model of a multilayer wall| |

' Insert in package:

M
Conce

image19.png
Graphics | Documentation Text Simulation Tools FyWindows ~ [- 0 X
l00% - | x;m 2 ~ I Aign Ba ol vodel B S| Rgrind Binsert -

% ‘ ’ . . Immnm " (S 9([5 ﬁ cate /0o 0T 2 ~ % Order @icheck - [@ Find Connection | Variable Selections.

Racent ko Undo Redo | Cut Copy Pase mﬂ_“" Une ecnge lipe Foyoon Tt tmap =T B | &ourmmrie | O cosatocu smte

Fackage Browser 29w x |+ .

odel name. [¥[k[2 .

+ (] oymaa commands

s [ravorites

s @ vodeicanerence

B[® [¢« | » [=

® [iog-cita of progran /aymosin e
@) | (quneraceds ot mar 27 11rad:09 2021)

= loading (dymosin tnpuc ciie)
“Rock mate creating (simslacion remsls £i1e)

(oax it atep solver (dassl/dassize of Fateold sodified by Dassault Systemes))

Syntax A\ Tanslation | Simulation | Version

Logs.

image20.png
u Graphics | Documentation Text Simulation Tools

e BB xhG]

o

fipse Polygon

T

(141N

sitmap

Fwindows <[- 0 x

ecent " con Digram undo
Package srowser s
Woselname. —[¥[b[s
[oymola Commands 2
(] ravortes

© Hoseica eterence

72) wodeicn

£ Canvecion
5 Convectienestor
4k soaymadon
R = | € | » [&

in.cxt= loading (dymosin nput file)
“Rock mate creating (simlation esuic £iie)

ML Ra ol vocel B S A Find Hinsert -
-%0 @check + [@ Find Comnection | Varable Selections
B aotaton | % | & oiagamiter | B create Localstate
[

ermabessor

image21.png
thermalResistor in Wall

General | Add modifiers | Attributes

Component Icon
Name |R1 |
Comment |Resistor for wall layer 1 | ThermalResi...
Model Nﬂ
Path Modelica. Thermal.HeatTransfer.Components. ThermalResistor

Comment Lumped thermal element transporting heat without storing it

Parameters

R 0.05 [» Constant thermal resistance of material

Info | X Cancel || & ok

image22.png
u Graphics | Documentation Text Simulation Tools

Fywindows ~[H - 0 x
=) e = -
Be) mB_oexhG /0o OTMsy (5 booEste e
h(:m omard |t nde - Uity Select All o Fmmnt B fegn o B ge [Annotation i B & Diagram Fiter | 5 Create Local State
S E .
Mode e RS ‘

3 Memaicotector
[cenerateatriowToTemperatureadaptor
| ceneraempersturensteatrionadaptor
a

») sensors

+ 5] sources

+ 58) cetis

in.cxt= loading (dymosin input file
“Rock mate creating (simlation esuic £iie)

image23.png
Graphics | Documentation Text Simulation Tools. R Windows ~[8 - 0 x

= o v T = P o
Be) ME- ocxbBI /0 o O TRy I sovEsr e
v =2 SR R | L D2 2 L ME e (oo B g | e
s s i - .
Model name. [¥[o[2]
+[5) examples e
~ 4 comy

2 ThermalConductor

5 convection
4 onvectivenesstor
ek BodyRadiation
% Themacotecor
[———
| ceneranempersturemstetrionadaptor

+ [teons
+ [sunis

» [
S I

& Sytan | A wansition | simiation | Verson
"Modelica Thermal HeatTransfer.Components.ThermalResistor [=]=]F3

image24.png
oo Wal o (Disgracy),
Graphics | Documentation Text Simulation Tools Pwindows <8 - 0 x
[00% -] X belete 2 ~ I A Ba ol vocel B S| Rfind insert -
ng. v = = | D CIXMBIIE |2 O O OTME UL 60T B s | ks
LI Uy selectan | U0 Pectengle Elfpe Pobgon Tt Bemap TU B Annotation | & %% &oiagamfiter | [Create Local State
Fackaqe Bomser, — e v-u x |+ B
odeiname. [¥[b[2]
+ () pymola Commands
» @ Modelica Reference
7] modeica
sranes
o o o
- o - o
RO ® [« | » [& |
% (Qoens | Bowamings 10 Messaes

image25.png
model Wall "This is a model of a multilayer wall"™

Modelica.Thermal .HeatTransfer.Components. ThermalResistor R1(R=0.05)
"Resistor for wall layer 1¢
da i

Modelica.Thermal .HeatTransfer.Components.ThermalResistor R2(R=0.1)
"Resistor for wall layer 2©
da:

Modelica.Thermal .HeatTransfer.Components.ThermalResistor RoOut (R=0.01)
"Resistor for ocutside convection®
da:

Modelica.Thermal .HeatTransfer.Components.ThermalResistor RIn (R=0.02)
"Resistor for inside convection®
da i

Modelica.Thermal .HeatTransfer.Components.HeatCapacitor Cl(c=1led)
"Capacitor for wall layer 1"
G

Modelica.Thermal .HeatTransfer.Components.HeatCapacitor C2(c=1le5)
"Capacitor for wall layer 2»
da:

Modelica.Thermal .HeatTransfer.Components.HeatCapacitor CIn(c=lel)
"Capacitor for inside air wvolume"
da i

equation

connect (Rl.port_b, R2.port_a)
da;

connect (R2.port_b, ROut.port_a)
da;

connect (RIn.port_b, Rl.port_a)
G

connect (Cl.port, Rl.port_a)
d |

connect (C2.port, RZ.port_a)
da:

connect (C2.port, Rl.port_b)
da:

connect (RIn.port_a, CIn.port)

image26.png
X%

Graphics | Documentation Text Simulation Tools

e d B0 xDG S O O

Une Rectangle Elipse.

B windows ~£8 - 0 x
“EA Ba ot voce B S| Aena Binsent -

% @check ~ B @ Find Connection Variable Selections.

& % | Boagamater | B creae Localsate

ol
[T |

2
5459

ity Select All

Package Browser e

pomesmser @8 . [y -
odel name. [¥[b][=
+) oymola Commands
O ravoies
@ wodeicaefeence

2] odeica

unmamed

=

E 2 | ¢« | % =

% (Qoeros | Bowermings | o messaes

image27.png
TOut in Wall

General | Add modifiers | Attributes

Component Icon

Name |T0ut |

Comment |Outside air temperature | Sing

A

Path Modelica.Blocks.Sources.Sine freqHz=
Comment Generate sine signal

Parameters
R Ay
amplitude | 10 Amplitude of sine wave
S amplitude
freqHz | 1/(24*3600) |> Hz Frequency of sine wave
— offset
phase | o = Phase of sine wave
offset | 27315+ 20 » Offset of output signal y [
— starTime ;
time
startTime | op s Output y = offset for time < startTime

Info | X Cancel || & ok

image28.png
windows <[- 0 x

Graphics _ Documentation _Text _ Simulation _Tools | Plot Options

= =] Coseal B & HiTggleGid > Play ss 4
o 5 Bl B Bal 0 O 2 N : -
Plot + Tble Disgrame Al Ch © Coment Rsyncranzoom T ahee = P ol EreEen < Marker Sty hied :
e e o]y T T o
e - L3 sesmnepior
et [
TR
o
T
&
e
tan
" [T
vr i
dertn s dertt
o
2]
g a2
]
1]
1«
]
0]
. H o " »
4 —
fiter variabes [wore>> |[@ oiagam [#)5))] e
8 [ocite ot proveen -/armorin
@ | lovmeracens o ar 31 Tavoresr 26310
o —
orin e tonding (dymorin inpuc £i1e)
| AT st ermiation semits €110 L
& symtax | A Tansaton | simuaton | Verson

Logs | Commands.

image29.png
Lookin: | /home/dhbubul8/git/buil...ica-buildings/Buildings ~ | @ © © @ [[EF

= computer Name * Size =
= dhbubul8 || controls I
B Electrical |
9 Examples |
9 Experimental I
™ Fluid |
B HeatTransfer |
= Media I
|
|
|
|
|
|

[Obsolete

9 Occupants

8 Resources

B ThermalZones
B Types
B utilities
|

1 DI I [»

File name: |package.mo || & Open |

Files of type: |AII Modelica Files (*.mo *.moe) b | | X Cancel |

image30.png
Graphics | Documentation Text Simulation Tools R windows - - 0 x

Bed BB woxBGI /00 OT@E DL LLUERIm T

orde @ Find Comnection | Variable Selections.
et lcon Diagram Line Rectangle Elipse Polygon Text Bitmap

<« iy select 5o - EAnnotation | 9% &Disgramfiter | [Create Local State
Package srowser) -
odel e, [F[Bls]| D2k B ‘
+ () oymola commands
(0] Favores

© Hoseica etrence

clear

image31.png
Rename

Name:

System

Description:

|Thi5 is a simple model of a room with cooling system |

Insert in package:

> | & O

X cance

image32.png
Text

Bed mBT

Simulation Tools

Cxb@IT

GIN

osgam Y —
e T T R =T
— - 722 @n 2 9o Qo B Knd Comection
- - : * apsam | U P e oy e merep T2 % | Aosanie | 6 cess atsate
Package Browser - .
odet rame. - — | e
+ (] oymola commands
» [Favorites
» @ odelca Reference
» 7] modelica
ar

image33.png
weaBus

weaDat

weaBus
weaBus
const
k=k
m_flow T ~
weaBus
out o
fan senTem

image34.png
weaDat in System

General | Add modifiers | Attributes

Component Icon

Name weaDat

Comment |Weather data

Model

Path Buildings.BoundaryConditions.WeatherData.ReaderTMY3
Comment Reader for TMY3 weather data

Parameters o
computeWetBulbTemperature - |» If true, then this model computes the wet bulb temperature
filNam PResourcesfweatherdata.l'USA_lL_Chicag&OHare,IntI,AP.}'25300_TMY3.mos'} » Name of weather data file

Data source
pAtmSou - |» Atmospheric pressure
pAtm » bar Atmospheric pressure (used if pAtmSou=Parameter)
ceiHeiSou - |» Ceiling height
ceiHei b m Ceiling height (used if ceiHei=Parameter)
totSkyCovSou - |» Total sky cover
totSkyCov » Total sky cover (used if totSkyCov=Parameter). Use 0 <= totSkyCov <=1
opaSkyCovSou - |» Opaque sky cover
opaSkyCov » Opaque sky cover (used if opaSkyCov=Parameter). Use 0 <= opaSkyCov <=1
TDryBulSou - |» Dry bulb temperature
TDryBul » °C Dry bulb temperature (used if TDryBul=Parameter)

TDewPoiSou - |» Dew point temperature
TDewPoi » °C Dew point temperature (used if TDewPoi=Parameter)
TBlaSkySou - |» Black-body sky temperature -

Info Cancel

image35.png
ModelicaServices.ExternalReferences.loadResource(
“fhome/dhbubu/git/buildings/modelica-buildings/Buildings/Resources/weatherdata/USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.mos")

image36.png
General | Add modifiers | Attributes

Component Icon

Name room

Comment |Room model| |

MOdeI n)

Path Buildings.Air.Systems.SingleZone.VAV.Examples.BaseClasses.Room
Comment BESTest Case 600 with fluid ports for air HYAC and internal load

Parameters
MediumA 3 Medium model
maAir_flow_nominal 0.75 » Design airflow rate of system
lat weaDat.lat » Building latitude
5 [Azimuth for south walls
ES [Azimuth for east walls
W_ [Azimuth for west walls
N_ [Azimuth for north walls
(=) [Tilt for ceiling
F_ [Tilt for floor
Z [Tilt for wall
nConExtWin » Number of constructions with a window
~TETL 5 Number of surface that are connected to constructions that are
modeled inside the room
matExtWal 3 Exterior wall
matFlo 3 Floor
s0il 3 Soil properties
roof 3 Roof
window&00 3 Window

Info Cancel

image37.png
fan in System

General | Dynamics | Initialization = Assumptions | Advanced = Add moedifiers | Attributes

Component Icon

Name fan

Comment |Supply fan

Model
Path Buildings.Fluid.Movers.FlowControlled_m_flow FlowCentroll...
Comment Fan or pump with ideally controlled mass flow rate as input signal
Parameters
Medium £ Moist air « » Medium in the component
per - » Record with performance data
. - Set to false to avoid any power (=heat and flow work) being added
addioweriome dian false D to medium (may give simpler equations)

. - Set to true to aveid warning if m_flow_nominal and dp_nominal are
nominalValuesDefineDefaultPressureCurve » used to construct the default pressure curve
constantMassFlowRate » Constant pump mass flow rate, used when inputType=Constant
massFlowRates =l Vector of mass flow rate set points, used when inputType=5tage

Nominal condition
m_flow_nominal 0.75| | » Nominal mass flow rate
. Nominal pressure raise, used for default pressure curve if not specified
dp_nominal » Pa in record per
Control
inputType - |» Control input type

Info Cancel

image38.png
senTem in System

General | Assumptions | Advanced = Add medifiers | Attributes
Component
Name senTemSupAir

Comment |Temperature sensor for supply air

Model

Path Buildings.Fluid.Sensors. TemperatureTwoPort
Comment Ideal two port temperature sensor

Parameters
Medium Moist air » Medium in the component
tau L1

Nominal condition

m_flow_nominal 0.75 »

Initialization

initType - |»
T_start y °C

Heat transfer

transferHeat - |»
TAmb »
tauHeaTra 4

Info

Icon

A

—
Temperatur...

Time constant at nominal flow rate (use tau=0 for steady-state sensor, but see user guide for potential problems)

Nominal mass flow rate, used for regularization near zero flow

Type of initialization (InitialState and InitialOutput are identical)
Initial or guess value of output (= state)

if true, temperature T converges towards TAmb when no flow
Fixed ambient temperature for heat transfer
Time constant for heat transfer, default 20 minutes

Cancel

image39.png
out in System

General | Add modifiers | Attributes

Component Icon

Name out

Comment |Outside air boundary

Model

Path Buildings.Fluid.Sources.Outside
Comment Boundary that takes weather data, and optionally trace substances, as an input

Parameters
Medium | [Moist air ~ |EE » Medium in the component
use_C_in false| = (b Get the trace substances from the input connector
Cc fill{(0, Medium.nC)| ER » Fixed values of trace substances

Info Cancel

image40.png
const in System

General | Add modifiers | Attributes

Component Icon

Name con

Comment |Control signal for fan

Model

Path Modelica.Blocks.Sources.Constant
Comment Generate constant signal of type Real

Parameters

k E » Constant output value k

time

Info Cancel

image41.png
“ Graphics Documentation Text Simulation Tools | PltOptions.

@y windows <[— 0 x

Coenl B & ggeGid > lay
B 0
Resetlayout) O . |8 Measurement 11 Pause
New New New Rescoe Rescale Erase Deete . Independent. Setup
o e W Coment 2 syncpanzoom
o —— room.TRooAlr —— weaBus. TDryBul
variabe e unk -
- % Sysem
weadat
i o, rominl (075 kg a5
I e
IS i ora
£ [
Vi 15708 rad 201
- 3tase
4
[a5
z
Eonestwin
aou
210
s
B
3 00
.
20
P
0]
5 2 i P P A s
2 Time fd]
e varabie vore>> | (@ Modelview (#)2]]

i de e s L o aemara. s pr ks cha
& Sinan | & wandiaton | Smulton | Version

togs |

image42.png
General | Add modifiers

Component Icon
Name room.matFlo
Comme Genetric
Model i
Path Buildings.HeatTransfer.Data.OpaqueConstructions.Generic
Comment Thermal properties of opaque constructions
Parameters
. Layer by layer declaration of material, starting from outside to
material » room-side
absIR_a » Infrared absorptivity of surface a (usually outside-facing surface)
absIR_b » Infrared absorptivity of surface b (usually room-facing surface)
absSol_a » Solar absorptivity of surface a (usually outside-facing surface)
absSol_b » Solar absorptivity of surface b (usually room-facing surface)
roughness_a - |» Exterior surface roughness
Edit material
{Buildings.HeatTransfer.Data.Solids.Generic(
x=1.003,
k=0.040,
c=0,
d=0,
nStaRef=Buildings.ThermalZones.Detailed.Validation. BESTEST.nStaRef),
Buildings.HeatTransfer.Data.Solids.Generic(
x=0.025%6}
k=0.140,
c=1200,
d=650,
nStaRef=Buildings.ThermalZones.Detailed.Validation. BESTEST.nStaRef) }
Info

A
(]

EE Ov = B
Time [d]

)000, numberOfIntervals=0, outputInterval=60, method="dassl", toleram¢

Cancel

image43.png
Sysiam; Systarn ; (Pot (12)) -
“ Graphics _Documentaton Text Simuation Tools | Plotoptons Bwindows < - 0 x

2@ = BIl.ne B OREL L 0 e BT

New New New Rescale Rescale Erase Dekte . independent Setup Expression Text
Plot + Table Diagram~ Al R Content & syncPanzoom | Variable + -
variable Browser LX)
—— room.TRooAY /12 —— weaBus TONYBul 12 —— room.TRook /11
Variable -
- system1
» weabat
‘mai_flow_nominal Ko 25
at rad
s rad
€ rad
& = 220
Iy rad
< rad
[rad 15
z ad
a0
305
<
x 0
205
200
25
200
o 2 121 122 2 126 125

T T — | ST) e

8 [iog-eite ot progean /aymosin
@ | (quneraced: 2ot var 37 1231116 2011)

in.cxt= losding (dymosin input file)

Bl -.mi. i s o S aminte. e e ke

Logs | Commands

image44.png
con in System

General | Add modifiers | Attributes

Component Icon

Name con

Comment |Control signal for fan

Model

Path Modelica.Blocks.Sources.Constant
Comment Generate constant signal of type Real

Parameters

k 05 Constant output value k

time

Info Cancel

image45.png
Graphics Documentation Text | Simulation | Tools | Plot Options

QD = % OO E o o [R P simuiation Anlysis | > pay << [Tme: Speed
o s[al
G= Ag: Daset oM nearze - © viusize e » |
R en Conmands | Tarsoe Smite LR load New New New Vialae _—
Scripte_Scripte e SaveinModel | Result Plot - Table Amimation | 30 A ShowLog " o
s —— room.TRooAkr // 1 —— room TRooA¥ //3 —— weaBus. TDryBul /3.
Ve uni =
P
a5 o]
=1
1
m a5
1
=1
et J
et s
s
£ 00
205
x
0
]
20
s
G pa P = s e
. et
Fiter varables [More>> | (@ model view (#)0)x)]

® [iag-ci1e of progran /aymosia.
@ | (qunaratod: sur mar 31 1333156 2021)

aymontn scarcea
“duin. xt* loading (dymosia input il
‘axa_uaina a flow ox oressure controlled mever with the.

HE i e

togs | commands |

image46.png
weaBus

weaDat

weaBus
weaBus T
con
k=0.5
m_flow
out weaBus
fan coo senTemSupAir

—e

O
TRooAirSet conCoo

eE

PCoo

TRooAir

image47.png
General | Assumptions | Advanced = Flow resistance = Dynamics | Initialization = Add modifiers | Attributes

Component Icon
Name coo
Comment |ldeal vapor-compression cooler u
ot .3
—
Path Buildings.Fluid.HeatExchangers.HeaterCooler_u HeaterCool...
Comment Heater or cooler with prescribed heat flow rate
Parameters
Medium £ Moist air ~ |EE » Medium in the component
Q_flow_nominal -15000)y W Heat flow rate at u=1, positive for heating
Nominal condition
m_flow_nominal 0.75 » Nominal mass flow rate
dp_nominal] | » Pa Pressure difference

Info Cancel

image48.png
conCoo in System

General | Advanced = Add modifiers = Attributes

Component Icon
Name conCoo
Comment |Feedback controller for cooler LimPID
™
Model > 4
Path Buildings.Controls.Continuous.LimPID ia

Comment P, PI, PD, and PID controller with limited output, anti-windup compensation and setpoint weighting

Parameters -

controllerType Modelica.Blocks. Types.SimpleController.Pl | = |» Type of controller

k 0.1 Gain of controller

Ti 120 » s Time constant of Integrator block

Td » Time constant of Derivative block

yMax » Upper limit of output

yMin » Lower limit of output

wp 3 Set-point weight for Proportional block (0..1)

wd 3 Set-point weight for Derivative block (0..1)

Ni » Ni*Ti is time constant of anti-windup compensation

Nd » The higher Nd, the more ideal the derivative block

reverseAction true |~ » Set to true for throttling the water flow rate through a cooling coil controller
Initialization

initType > » Type of initialization (1: no init, 2: steady state, 3: initial state, 4: initial output)

xi_start » Initial or guess value value for integrator output (= integrator state)

xd_start » Initial or guess value for state of derivative block

y_start » Initial value of output -

Info Cancel

image49.png
TRooAirSet in System

General | Add modifiers | Attributes

Component Icon

Name TRooAirSet

Comment |Setpoint for room air temperature CombiTime...

Model E

Path Modelica.Blocks.Sources.CombiTimeTable
Comment Table look-up with respect to time and linear/periodic extrapolation methods (data from matrix/file)

Table data definition -
tableOnFile - |» = true, if table is defined on file or in function usertab
table b Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 41}
tableName imqEdit| Table name on file or in function usertab (see docu)
fileName — File where matrix is stored

verboseRead » = true, if info message that file is loading is to be printed

Table data interpretation

columns » Columns of table to be interpolated ‘y‘ .

time | v[1] | ¥[2]
smoothness cks.Types.Smoothness.ConstantSegments | = |» Smoothness of table interpolation
extrapolation 1.Blocks. Types.Extrapolation.HoldLastPoint| = |» Extrapolation of data outside the definition range
timeScale > s Time scale of first table column
offset » Offsets of output signals
startTime b s Output = offset for time < startTime

columns

shiftTime [Shift time of first table column offset =

Info Cancel

image50.png
Edit Array for table

table

Rows |1 = Columns | 2 =
1 2

1 0.0/273.15+22

oK Cancel Copy Matrix | | Paste Matrix | | Import... Export... Plot

image51.png
smoothness
extrapolation

timeScale

T

|cks.Types.Smoothness.ConstantSegments | = |» Smoothness of table interpolation

Table points are linearly |nterpolated tion of data outside the definition range

- e of first table column

terpolated (b...e first derivativ
Table points are interpolated (b...e first derivative is continuous

T TR ey ey T P

image52.png
Extrapolation of data outside the definition range

extrapolation ||.BIocks,Types.Extrapolaﬁon.HoIdLaEtPointl - »

timeScale Hold the fir: b t ou e of first table column
Extrapolate by using the deriva ..|nt5 outslde of Ihe table scope
Repeat the table scope periodically vt sigmiais

offset Extrapolation triggers an error

image53.png
cop in System

General | Add modifiers | Attributes

Component Icon
Name cop
Comment |Implements COP of cooling system Gain
Model ’D’
k=
Path Modelica.Blocks.Math.Gain

Comment Output the product of a gain value with the input signal

Parameters

k -13 Gain value multiplied with input signal

Info Cancel

image54.png
PCoo in System

General | Add modifiers | Attributes

Component Icon

Name |PCoo |

Comment |Cooling power consumption |

Model

Path Modelica.Blocks.Interfaces.RealOutput
Comment 'output Real' as connector

| Info | Cancel |[ok

image55.png
PCoo in System

General | Add modifiers | Attributes

Add new modifiers here, e.g., vistart=1).
Note that this is an advanced feature, and you should use the normal parameter fields if possible.

unit="w"

Info Cancel

image56.png
TRooAir in System

General | Add modifiers = Attributes
Component Icon

Name TRooAir

Comment |Room air temperature measurement

Model

Path Modelica.Blocks.Interfaces.RealOutput
Comment 'output Real' as connector

Info Cancel

image57.png
TRooAir in System

General | Add modifiers | Attributes

Add new modifiers here, e.g., vistart=1).
Note that this is an advanced feature, and you should use the normal parameter fields if possible.

unit="K"

Info Cancel

image58.png
124 Systan) o Systanl ;. Flot (1) oo
“ Graphics Documentation Text _ Simulation Tools | ot Options. @ windows <[- 0 X

O [coea B & HRggleGid > rlay +
o8 85 Bl B Kul 0 O 2 L BT T
Plot ~ Tble Diagram~ Al 5 E ¢ Content £ syncpanzoom " Vanabie " -
ariabl srowser 28
st oA — TR
arisbe e Uk
o
0]
w
X
s 120 pa 2 P 2 s
et
J—
H
1000
- r = B B B
fier varabies ore >> Wodel view (#15]x]| B

® 1oy 110 of progean -/aymosin
B | (qenoracea: soc wax 37 1241145 2021

image59.png
Plot Setup

Variables | Titles | Legend Range | Options
Select a variable, then edit its properties below:
weaDat.weaBus. TDryBu
TROOAIr
Output temperature
Legend
|weaDat.weaBus.TDryBul | |Reset|
Appearance
Color | W Red - | | Custom...
Line style | — Solid ~|
Marker style | None - |
Thickness | — Single - |
Vertical axis | Left - |
Other properties =
Unit: K Display unit: E
Minimum Maximum
Vertical 4.96826 30.9279
Horizontal 120 125
File: System.mat
Number of data points: 7216
| Apply || cancel [[oK

image60.png
Edit Array for table

table
Rows |3 = Columns | 2 =
1 2
1 0.0 273.15 + 22
123*24+%3600 + 13*3600 27315+ 25
3 123*24*3600 + 16*3600 273.15 + 22

oK Cancel Copy Matrix | | Paste Matrix | | Import... Export... Plot

image61.png
aE 0.0
Graphics Documentation Text | Simulation | Tools | Piot Options.

QB &
Nn Wen Comtants | Turlta Sinte
sline st < : mabes

Ag: Dasst

Varable Browser e

Variable Valve

—— weaBus TDYBU —— TRooAr

unit__Dese|

CANCEX) Eswmmm N =

bty
setup.

Continue ~
Uinearize:
Save in Model

fiw

i

2

3
e
e

New
Animation

%
o

 Simalation Analysis:
® Visualize
A show Log

>ray <« I Tme

Py windows ~ B - 0

i

121

o]

12

x

—poo

2000

20

v | o> (@ vesetvien @IEIE),

2

Tine)

8 [iog-cite of progean /aymosin

et Loading (aymontn inpue £41e)
. Naxnina: You ara uaina a £low o pressue controlied BEver with the.

& Sinan | & wandiaton | Smuiton | Version

Logs | Commands

image62.png
Plot Setup

Variables | Titles | Legend | Range | Options
Vertical range
Min |-500
Max |3500

Logarithmic scale

Horizontal range

Min (123

Max [124

Logarithmic scale

Scaling

Same horizontal and vertical axis increment

[ZFit Plotted Data

sovly || conel

image63.png
Graphics

Documentation Text Simulation Tools Plot Options

=

= B

Close all B B x

New New New
Diagram~ All

Plot ~ Table
Variable Browser

Reset Layout <] @

B [E

Rescale Rescale Erase Delete

Content

B windows ~FH — 0 x

FH Toggle Grid P Play

Il Pause

&MP&I’U’ZODH‘I I_I|:~

|E Measurement

O & W\

Independent Setup

Variable -

Expression Text

B ®

—— weaBus.TDryBul /¥ 2 —— TRooAir / 2 —— TRooAiIr /1

Value Unit Desc a0

1

28

26

["cl

244
Cooli

==

20 T T
123.0 1231

123.2

123.3

1234

123.5
Time [d]

123.6

123.7

123.8

123.9

124.0

— PCoo

3000+

Cooli B

==

2000

1000+

123.0 12341

I3

filter variables

More ==

Model view [#][3][x]

123.2

123.3

1234

123.5
Time [d]

123.6

123.7

123.8

123.9

124.0

[E5]

w

g

Log-file of program ./dymosim
{generated: Sat Mar 27 12:44:40 2021)

dymosim started
+.. "dain.txt" loading (dymosim input file)
Warning: The following was detected at time: 10368000

*** Warning: You are using a flow or pressure controlled mover with the

Syntax | I\ Translation | Simulation | Version

| Logs | Commands |

=g HEZ

