
!1

Tutorial

Modelica Buildings Library
and

Best Practices for Modeling of Thermofluid Flow Systems

Michael Wetter 
Simulation Research Group

February 13, 2019

Overview  
of 

Modelica Buildings Library

!2

Intended use of Buildings library

Users
• Engine for “Spawn of EnergyPlus” HVAC and controls
• Equipment manufacturers, design firms, academia.
• Model-based design process.
• FDD algorithms.

License
• All development is open-source under BSD.

 3

Scope of the Modelica Buildings Library

 4

Air-based HVAC Hydronic heating Chiller plants

Natural ventilation,
multizone air exchange,
contaminant transport

Room heat transfer,
incl. window (TARCOG)

Solar collectors

Embedded Python

Electrical systems

Room air flow

FLEXLAB

Michael Wetter, Wangda Zuo, Thierry S. Nouidui and Xiufeng Pang. Modelica Buildings library. Journal of Building Performance Simulation, 7(4):253-270, 2014.

simulationresearch.lbl.gov/modelica

Current developments
Make it the core of the Spawn of EnergyPlus.

Use for real-time building control (OpenBuildingControl)

Emulators for testing and comparison of advanced building
control sequences, including MPC (BOPTEST)

Co-develop with IBPSA Modelica library, including district
heating and cooling systems

District heating
and cooling systems

Control design & deployment,
including ASHRAE G36

http://dx.doi.org/10.1080/19401493.2013.765506
http://simulationresearch.lbl.gov/modelica

Separation between library developer, component developer
and end user

 5

4 IMPLEMENTATION 10

we implemented

Dh , Q̇ f(ṁd, ṁ), (2)

with

f(d, x) ,

8
<

:
p(d, x), for x 2 [�d, d],

1/x, otherwise,
(3)

where f : R ⇥ R ! R is a twice continuously differentiable function
that is bounded on compact sets. We constructed the function p : R ⇥
R ! R in such a way that it satisfies

p(d, x) = �p(d, �x), (4a)

p(d, d) = 1/d, (4b)

p0(d, d) = �1/d2, (4c)

p0(d, 0) 6= 0, (4d)

p00(d, d) = �2/d3, (4e)

where p0(·, ·) and p00(·, ·) denote the first and second order par-
tial derivatives with respect to the second argument. The condition
p0(d, 0) 6= 0 has been selected to avoid that the first derivative van-
ishes at the origin, because a Newton solver that solves p(d, x) = 0
for x may compute the sequence xn+1 = xn � p(d, xn)/p0(d, xn).

�1 0 1

�1

0

1 d/x

d/x

d p(d, x)

x/d

d
f
(d

,x
)

Figure 1: Plot of d f(d, x).

The function that we selected and that satisfies (4) is

p(d, x) , x
d2 + x

����
2
d3 x � 3

d5 x3 +
1
d7 x5

���� . (5)

Figure 1 shows the graph of this function. The term x/d2 is used to
ensure that the first derivative is non-zero around a neighborhood of
x = 0, and therefore by the Implicit Function Theorem, there exists
in a neighborhood of the origin an inverse function p�1(d, ·) that is
differentiable.41 41 Polak, E. (1997). Optimization, Algo-

rithms and Consistent Approximations,
Volume 124 of Applied Mathematical
Sciences. Springer Verlag

Note that in (2), for ṁ(t) 2 (�ṁd, ṁd) \ {0}, energy is not con-
served. Therefore, ṁd should be chosen small. However, ṁd should
not be too small compared to the design mass flow rate, as this will
cause f(ṁd, ṁ) to be large in magnitude near ṁ ⇡ ±ṁd, which may
lead to problems for numerical solvers. The default setting in the
Buildings library is ṁd = 10�7 ṁ0, where ṁ0 is the design mass flow
rate. At this low mass flow rate, the impact on the energy consump-
tion is negligible.

To assist component model developers in the regularization of
these functions, the package Buildings.Utilities.Math provides
differentiable approximating functions for many formulations.42 42 Note that Modelica simulation en-

vironments can in general properly
handle non-differentiabilities. How-
ever, a numerically sound treatment
requires an event iteration that is com-
putationally costly. When formulating
equations for physical phenomena, we
therefore replaced non-differentiable
equations with approximations that are
continuously differentiable.

Legend:
Library developer
Component developer
End user

Main modeling assumptions

Media 
 
HVAC equipment  
 
 
 
 
Flow resistances  
 
 
Room model 
 
 
 
Electrical systems  
 

 6

Can track moisture (X) and contaminants (C).  
 
Most equipment based on performance curve, or based on
nominal conditions and similarity laws. 
Refrigerant is not modeled. 
Most equipment optional steady-state or 1st order transient.  
 
Based on m_flow_nominal and dp_nominal plus similarity law.  
Optional flag to linearize or to set dp=0. 
 
Any number of constructions are possible.  
Layer-by-layer window model (similar to Window 6). 
Optional flag to linearize radiation and/or convection.  
 
DC. 
AC 1-phase and 3-phase (dq, dq0).  
Quasi-stationary or dynamic phase angle (but not frequency).

Special modeling approach

All equations of physical systems are once
continuously differentiable.  
 
 
 
Special treatments to avoid numerical problems if
m_flow is in neighborhood around 0.  
 
 
 
 
 
 
Fan/pump model for which we can prove existence of
unique solution. 
See paper at Building Simulation 2013.

 7

4 IMPLEMENTATION 10

we implemented

Dh , Q̇ f(ṁd, ṁ), (2)

with

f(d, x) ,

8
<

:
p(d, x), for x 2 [�d, d],

1/x, otherwise,
(3)

where f : R ⇥ R ! R is a twice continuously differentiable function
that is bounded on compact sets. We constructed the function p : R ⇥
R ! R in such a way that it satisfies

p(d, x) = �p(d, �x), (4a)

p(d, d) = 1/d, (4b)

p0(d, d) = �1/d2, (4c)

p0(d, 0) 6= 0, (4d)

p00(d, d) = �2/d3, (4e)

where p0(·, ·) and p00(·, ·) denote the first and second order par-
tial derivatives with respect to the second argument. The condition
p0(d, 0) 6= 0 has been selected to avoid that the first derivative van-
ishes at the origin, because a Newton solver that solves p(d, x) = 0
for x may compute the sequence xn+1 = xn � p(d, xn)/p0(d, xn).

�1 0 1

�1

0

1 d/x

d/x

d p(d, x)

x/d

d
f
(d

,x
)

Figure 1: Plot of d f(d, x).

The function that we selected and that satisfies (4) is

p(d, x) , x
d2 + x

����
2
d3 x � 3

d5 x3 +
1
d7 x5

���� . (5)

Figure 1 shows the graph of this function. The term x/d2 is used to
ensure that the first derivative is non-zero around a neighborhood of
x = 0, and therefore by the Implicit Function Theorem, there exists
in a neighborhood of the origin an inverse function p�1(d, ·) that is
differentiable.41 41 Polak, E. (1997). Optimization, Algo-

rithms and Consistent Approximations,
Volume 124 of Applied Mathematical
Sciences. Springer Verlag

Note that in (2), for ṁ(t) 2 (�ṁd, ṁd) \ {0}, energy is not con-
served. Therefore, ṁd should be chosen small. However, ṁd should
not be too small compared to the design mass flow rate, as this will
cause f(ṁd, ṁ) to be large in magnitude near ṁ ⇡ ±ṁd, which may
lead to problems for numerical solvers. The default setting in the
Buildings library is ṁd = 10�7 ṁ0, where ṁ0 is the design mass flow
rate. At this low mass flow rate, the impact on the energy consump-
tion is negligible.

To assist component model developers in the regularization of
these functions, the package Buildings.Utilities.Math provides
differentiable approximating functions for many formulations.42 42 Note that Modelica simulation en-

vironments can in general properly
handle non-differentiabilities. How-
ever, a numerically sound treatment
requires an event iteration that is com-
putationally costly. When formulating
equations for physical phenomena, we
therefore replaced non-differentiable
equations with approximations that are
continuously differentiable.

�h =
Q̇

ṁ
⇡ Q̇�(ṁ�, ṁ)

max(r(t), 0.001/N0). However, this introduces
a non-differentiability at r(t) = 0.001/N0. Moreover,
it causes �p(r(t), V̇ (t)) to be non-zero even if
V̇ (t) = 0 and r(t) = 0. Hence, the fan cannot be
switched off completely, and volume flow occurs even
if the HVAC system is off. This may introduce outside
air when heaters are off, thereby causing subfreezing
temperatures in heat exchangers which in turn can
cause the simulation to stop. The third point has
been shown to cause two solutions to exist for certain
configurations of flow networks and fan curves. This
caused non-physical results and divergence of the
solver.

Implementation in Buildings Library 0.12
We will now explain how the first two problems were
avoided in the Buildings library version 0.12. We will
then explain why the new implementation was also
not robust. Finally, after this section, we will explain
how we reimplemented the fan model to circumvent
all three problems.

In the Buildings library version 0.12, the first two
problems are avoided by reformulating (3) as

�p(r(t), V̇ (t)) = c1 r(t)
2 + c2 r(t) V̇ (t), (4a)

�p(r(t), V̇ (t)) = c1 r(t)
2 + c2 r(t) V̇ (t)

+c3 V̇
2(t), (4b)

�p(r(t), V̇ (t)) =
nX

i=1

ci r(t)
n�i V̇ i�1(t),

for n � 4. (4c)

This implementation has shown to be numerically
problematic in a large system model in which the fan
curve was modeled as a linear function.2 The reason
was that Dymola selected V̇ (t) as an iteration vari-
able, and computing r(t) and �p(r(t), V̇ (t)) required
an iterative solution, i.e., they were approximated us-
ing some r⇤(✏, t) and some �p⇤(✏, t). The governing
equation was

V̇ ⇤(✏, t) =
�p⇤(✏, r⇤(✏, t), V̇ ⇤(✏, t)) � r⇤(✏, t)2 c1

r⇤(✏, t) c2

⇡ �p⇤(✏, r⇤(✏, t), V̇ ⇤(✏, t))

r⇤(✏, t) c2
. (5)

Thus, computing V̇ ⇤(✏, t) required dividing numerical
noise by numerical noise.
Moreover, since, in the system model, the fans were
connected as shown in Figure 2, the fluid volumes
of two fan models were coupled. Due to the model
parameterization, multiple volumes were connected
without a flow resistance in between, forming a se-
quence of connected volumes. Within this sequence,
the mass flow rate became oscillatory and unstable, as

2This problem was observed in https://corbu.lbl.
gov/svn/bie/branches/mwetter/dev-zeroFlow/
bie/modelica/Buildings, revision 2721.

600 1,000 1,600

�1
�0.5

0
0.5
1

time in seconds

ṁ
(t
)/
ṁ

0

Figure 3: Instability of ṁ(t)/ṁ0 for the fan inlet mass
flow rate at location (a) in Figure 2.

shown in Figure 3, because at r = 0 (and �p = 0),
any value of V̇ (t) satisfied the governing equation (4a)
for the fan in the lower flow path. That is, there were
an infinite number of solutions to (4a)! Not surpris-
ingly, this eventually led, for the fan configuration
shown in Figure 2, to the oscillatory behavior shown
in Figure 3. Consequently, the solver stalled as it was
required to make very small time steps to control the
integration error of the conservation equations of the
volumes that participated in the mass exchange shown
in Figure 3.

We note that this oscillatory behavior is avoided in
CONTAM 3.0 by replacing the fan model with an ori-
fice model if the control signal satisfies r(t) � for
some 0 < � < 1. We did not use this approach as
it would yield a hybrid model. Switching from one
model to another leads to a state event that can increase
the simulation time. Furthermore, if r(t) is the output
of a controller whose input depends on the fan volume
flow rate, then the following problems can occur: For
an algebraic hybrid model, there may not be a solution.
For a dynamic hybrid model, the dynamics can intro-
duce oscillatory behavior (chattering) which in turn
can cause very slow progress of the time integration.
As an example, consider the contaminant problem be-
low that describes a volume with fresh air supply, con-
stant contaminant source and feedback control on the
fresh air supply flow rate. Let

V
dC(t)

dt
=

(
Ċs, if u(t) < 0.2,

Ċs � V̇ C(t)u(t), otherwise,
(6a)

C(0) = 0, (6b)
u(t) = Kp C(t), (6c)

where V = 1m3 is the control volume, C(·)
is the contaminant concentration in kg/m3, Ċs =
0.999 kg/s is a contaminant source, Kp = 0.2m3/kg
is a control gain, V̇ = 5m3/s is the fan volume flow
rate and u(·) is the fan control input. By (6a), the
fan only operates if the control input signal satisfies
u(t) � 0.2. The control law has no hysteresis.
When simulated in Dymola 2013 FD01, which has
event detection, and the DASSL solver is used, which
is an adaptive time step solver, C(t) increases to
1 kg/m3 at t = 1 s, and then the control u(t) chatters,
causing the simulation to make very slow progress.

http://simulationresearch.lbl.gov/wetter/download/2013-IBPSA-Wetter.pdf

Documentation and distribution

Documentation
• General user guide (getting started, best practice, 

developer instructions, ...).
• 18 user guides for individual packages.
• 2 tutorials with step-by-step instructions.
• All models contain “info” section.
• Small test models for all classes,  

large test cases for “smoke tests,” 
and various validation cases.

Distribution
• Main site 

http://simulationresearch.lbl.gov/modelica
• Development site with version control, wiki and issue tracker:  

https://github.com/lbl-srg/modelica-buildings

 8

http://simulationresearch.lbl.gov/modelica/userGuide/
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide.html#Buildings.UsersGuide
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Examples_Tutorial.html
http://simulationresearch.lbl.gov/modelica
https://github.com/lbl-srg/modelica-buildings

Best practice and modeling
hints

!9

Building large system models

How do you build and debug a large system model?

1. Split the model into smaller models.

2. Test the smaller models for well known conditions.

3. Add smaller models to unit tests.

For example, see Chiller Plant

Each small models contains a simple unit test.

 10

http://simulationresearch.lbl.gov/modelica/releases/v5.1.0/help/Buildings_Examples_ChillerPlant_BaseClasses_Controls.html#Buildings.Examples.ChillerPlant.BaseClasses.Controls

Use small unit tests, as in

 11

Chiller plant
base classes

Pumps

http://simulationresearch.lbl.gov/modelica/releases/v5.1.0/help/Buildings_Examples_ChillerPlant_BaseClasses_Controls_Examples.html#Buildings.Examples.ChillerPlant.BaseClasses.Controls.Examples
http://simulationresearch.lbl.gov/modelica/releases/v5.1.0/help/Buildings_Examples_ChillerPlant_BaseClasses_Controls_Examples.html#Buildings.Examples.ChillerPlant.BaseClasses.Controls.Examples
http://simulationresearch.lbl.gov/modelica/releases/v5.1.0/help/Buildings_Fluid_Movers_Validation.html#Buildings.Fluid.Movers.Validation.FlowControlled_dp

Propagate common parameters

 12

Pump pum(m_flow_nominal=0.1) "Pump";
TemperatureSensor sen(m_flow_nominal=0.1) "Sensor";

Modelica.SIunits.MassFlowRate m_flow_nominal = 0.1
 "Nominal mass flow rate";
Pump pum(final m_flow_nominal=m_flow_nominal) "Pump";
TemperatureSensor sen(final m_flow_nominal=m_flow_nominal) "Sensor";

Modelica.SIunits.HeatFlowRate QHea_nominal = 3000
 "Nominal heating power";
Modelica.SIunits.TemperatureDifference dT = 10
 "Nominal temperature difference";
Modelica.SIunits.MassFlowRate m_flow_nominal = QHea_nominal/dT/4200
 "Nominal mass flow rate";
...

Don't assign values to the same parameters

Instead, propagate parameters

Assignments can include computations, such as

Always define the media at the top-level

 13

Top-level system-model

Propagate medium to instance of model

Note: For arrays of parameters, use the each keyword, as in

replaceable package Medium = Buildings.Media.Air
 "Medium model";

TemperatureSensor sen(
 redeclare final package Medium = Medium,
 final m_flow_nominal=m_flow_nominal) "Sensor";

TemperatureSensor sen[2](
 each final m_flow_nominal=m_flow_nominal)
"Sensor";

Setting a reference pressure

 14

Underdetermined model as no pressure is assigned

Well defined model, but additional state for pressure as
reservoir p/p0=V0/p

Most efficient model as reservoir p is constant

Modeling of fluid junctions

 15

In the model on the right, mixing
takes place in the fluid port B
because the boiler, port A and
port C all connect to port B.

Avoid oscillations of sensor signal

 16

Correct use because

Incorrect, as sensor output oscillates if
mass flow rate changes sign.
This happens for example if the mass
flow rate is near zero and approximated
by a solver.

See also User Guide.

⌧
dT

dt
=

|ṁ|
ṁ0

(✓ � T)

http://simulationresearch.lbl.gov/modelica/userGuide/bestPractice.html#use-of-sensors-in-fluid-flow-systems

Avoid events

 17

This triggers events:

T_in = if port_a.m_flow > 0 then port_a.T else port_b.T;

Avoid events using regularization:
T = Modelica.Fluid.Utilities.regStep(
 x = port_a.m_flow,  
 y1 = T_a_inflow,  
 y2 = T_b_inflow,
 x_small = m_flow_nominal*1E-4);

See also User Guide.

http://simulationresearch.lbl.gov/modelica/userGuide/bestPractice.html#avoiding-events

Beware of oscillating control

 18

If the control input oscillates around
zero, then this model stalls

What happens if this model is
simulated with an adaptive time
step?

model Test
 Real x(start=0.1);
equation
 der(x) = if x > 0 then -1 else 1;
end Test;

Setting of nominal values is important for scaling of residuals

If pressure is around 1E5 Pa, set p(nominal=1E5).

Nominal values are used to scale residuals, such as in Dymola’s dsmodel.c:

In Dymola, the local integration error is

ϵ ≤ trel |xi| + tabs

where the absolute tolerance is scaled with the nominal value as

tabs = trel |xnomi|.

 19

{ /* Non-linear system of equations to solve. */
 ...
const char*const varnames_[]={"floMac1.VMachine_flow",
 "floMac2.VMachine_flow"};
const double nominal_[]={0.001, 0.001};
...

Exercise: Modeling of a simple thermofluid flow system

How do you implement a source and boundary condition with a tank in between to create the
model below:

 20

Exercise: Modeling of a simple thermofluid flow system

1. Make instances using models from Buildings.Fluid.Sources and
Buildings.Fluid.MixingVolumes.

2. Assign the parameters.

3. Check and simulate the model.

 21

Further resources

Tutorials
• Buildings.Examples.Tutorial

User guides
• User guides for specific packages of models.
• User guide with general information.

 22

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Examples_Tutorial.html#Buildings.Examples.Tutorial
http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_UsersGuide.html#Buildings.UsersGuide
http://simulationresearch.lbl.gov/modelica/userGuide/

Developer Guide

!23

Overview

Main topics

• Coding style and conventions

• Requirements

• Organization of the library

• Adding a new model

• Adding regression tests

Further literature

• User Guide -> Development

• Style guide

• Coding convention

 24

http://simulationresearch.lbl.gov/modelica/userGuide/development.html
https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide
http://www.apple.com

Coding style and conventions

Based on Modelica Standard Library.

Most variables are 3 letter camel case to avoid too long names.

Code duplication avoided where practical.

Additional information at 
https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide and  
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide.html

 25

https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide.html

Requirements

Physical requirements

Mathematical requirements

 26

https://github.com/lbl-srg/modelica-buildings/wiki/Functional-Requirements#physical-resolution
https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide#equations-and-algorithms

Organization of individual packages

Packages are typically structured as shown on
the right.

To add a new class, look first at Interfaces
and BaseClasses.

You probably will never implement a component
without extending a base class, such as from
Buildings.Fluid.Interfaces

 27

Tutorial
UsersGuide

Any other classes (models,
functions etc.)

Data
Types
Examples
Validation
Benchmarks
Experimental
Interfaces
BaseClasses
Internal
Obsolete

Implementing new thermofluid flow devices

 28

Buildings.Fluid.Interface provides base classes.

Buildings.Fluid.Interface.UsersGuide describes these classes.

Alternatively, simple models such as the models below may be used as a
starting point for implementing new models for thermofluid flow devices:

Buildings.Fluid.HeatExchangers.HeaterCooler_u
 For a device that adds heat to a fluid stream.

Buildings.Fluid.MassExchangers.Humidifier_u
 For a device that adds humidity to a fluid stream.

Buildings.Fluid.Chillers.Carnot
 For a device that exchanges heat between two fluid streams.

Buildings.Fluid.MassExchangers.ConstantEffectiveness
 For a device that exchanges heat and humidity between two fluid streams.

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Interfaces.html
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Interfaces_UsersGuide.html
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_HeatExchangers.html#Buildings.Fluid.HeatExchangers.HeaterCooler_u
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Humidifiers.html#Buildings.Fluid.Humidifiers
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Chillers.html#Buildings.Fluid.Chillers.Carnot
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_MassExchangers.html#Buildings.Fluid.MassExchangers.ConstantEffectiveness

Adding a heat exchanger

 29

See HeaterCooler_u

within Buildings.Fluid.HeatExchangers;

model HeaterCooler_u "Heater or cooler with prescribed heat flow rate"
 extends Buildings.Fluid.Interfaces.TwoPortHeatMassExchanger(
 redeclare final Buildings.Fluid.MixingVolumes.MixingVolume vol(
 prescribedHeatFlowRate=true));

 parameter Modelica.SIunits.HeatFlowRate Q_flow_nominal
 "Heat flow rate at u=1, positive for heating”;

 Modelica.Blocks.Interfaces.RealInput u "Control input";
 Modelica.Blocks.Interfaces.RealOutput Q_flow(unit="W")
 "Heat added to the fluid”;

protected
 Buildings.HeatTransfer.Sources.PrescribedHeatFlow preHea
 "Prescribed heat flow";
 Modelica.Blocks.Math.Gain gai(k=Q_flow_nominal) "Gain";

equation
 connect(u, gai.u); ... // other connect statements
 annotation (...); // documentation
end HeaterCooler_u;

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_HeatExchangers.html#Buildings.Fluid.HeatExchangers.HeaterCooler_u

Add examples and validations to unit testing framework

 30

1. Add validation and stress tests for different model
configurations.

 
 

2. Validate results and add main outputs to plot script.
These variables become part of the regression tests.  

3. Run 
 modelica-buildings/bin/
runUnitTests.py 

4. Update Buildings/package.mo release notes. 

5. Issue pull request on https://github.com/lbl-srg/
modelica-buildings. 

See Unit Test documentation.

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide_ReleaseNotes.html
https://github.com/lbl-srg/modelica-buildings
https://github.com/lbl-srg/modelica-buildings
https://github.com/lbl-srg/modelica-buildings/wiki/Unit-Tests

?

!31

