
1

Overview of Ptolemy II,  
with focus on Discrete
Event and QSS

Michael Wetter and 
Thierry S. Nouidui 
 
Simulation Research Group

June 19, 2015

Overview

The purpose is to understand

1. the structure of Ptolemy II

2. discrete event simulation

3. QSS methods

2

Introduction to Ptolemy II

3
Acknowledgement: Much of the content is based on lecture notes of Prof. Edward Lee

Visual rendering of actor model

4

Actors can contain other actors
with or without a director

Icons represent software components.  
The Director orchestrates the interaction of actors.
Actors implement the model equations.

Models of Computations (MoCs) determine how system
evolves

5

The director specifies the
model of computation

Ptolemy components are actors and objects

6
 5 Lee, Berkeley

Ptolemy Components are Actors and Objects

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through
an object is

evolving data

class name

data

methods

call return

What flows through
an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Ptolemy has a library with pre-defined actors, mostly in Java,
but can be in C, Python, Cal and MATLAB

7

 6 Lee, Berkeley

Actors

•  Ptolemy has a library of predefined actors
•  Java classes that implement the �executable� interface

Most actors are written in Java

8
 9 Lee, Berkeley

Most Actors are Written in Java

Simple String manipulation actor

9

public class Ptolemnizer extends TypedAtomicActor {

 public Ptolemnizer(CompositeEntity container, String name)
 throws IllegalActionException, NameDuplicationException {
 super(container, name);

 input = new TypedIOPort(this, "input");
 input.setTypeEquals(BaseType.STRING);
 input.setInput(true);

 output = new TypedIOPort(this, "output");
 output.setTypeEquals(BaseType.STRING);
 output.setOutput(true);
 }

 public TypedIOPort input;
 public TypedIOPort output;

 public void fire() throws IllegalActionException {
 if (input.hasToken(0)) {
 Token token = input.get(0);
 String result = ((StringToken)token).stringValue();
 result = result.replaceAll("t", "pt");
 output.send(0, new StringToken(result));
} } }

Object model for executable components

10 11 Lee, Berkeley

Object Model for
Executable Components

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

The main methods are prefire, fire and poster

11

 12 Lee, Berkeley

Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor {
 private Object state;
 boolean prefire() {
 if (trigger is known) { return true; }
 }
 void fire() {
 if (trigger is present) {
 send state to output;
 } else {
 assert output is absent;
 }
 }
 void postfire() {
 if (trigger is present) {
 state = value read from data input;
 }
 }

Can the
actor fire?

React to
trigger
input.

Read the
data input
and update
the state.

trigger
input
port

data input port

Abstract semantics

12

��5

9

Abstract semantics

Views every actor as an Abstract State Machine:

 Actor = Inputs + Outputs + States + Initial state + Fire +

Postfire

Fire = output function: produces outputs given current

inputs + state

Postfire = transition function: updates state given current

inputs + state

Why separate fire and postfire?

10

Behaviors

Set of traces:

such that for all i :

Source: http://chess.eecs.berkeley.edu/pubs/712.html

http://chess.eecs.berkeley.edu/pubs/712.html

Behaviors

13

��5

9

Abstract semantics

Views every actor as an Abstract State Machine:

 Actor = Inputs + Outputs + States + Initial state + Fire +

Postfire

Fire = output function: produces outputs given current

inputs + state

Postfire = transition function: updates state given current

inputs + state

Why separate fire and postfire?

10

Behaviors

Set of traces:

such that for all i :

Source: http://chess.eecs.berkeley.edu/pubs/712.html

http://chess.eecs.berkeley.edu/pubs/712.html

Object-oriented approach to behavioral polymorphism

14

 16 Lee, Berkeley

Object-Oriented Approach to Achieving
Behavioral Polymorphism

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

Behavioral polymorphism is
the idea that components can
be defined to operate with
multiple MoCs.

Extensible software architecture

15

 26 Lee, Berkeley

Ptolemy II Software Architecture
Built for Extensibility

Ptolemy II packages
have carefully
constructed
dependencies and
interfaces

PN

Rendezvous

Continuous Kernel

Data

Actor Math

Graph

In SOEP, we will use Discrete Event and Synchronous Data
Flow

Discrete event for QSS solver.

Synchronous Data Flow is for models that allow static scheduling.

16

Discrete event simulation

17
Further details: Chapter 7 in the System Design, Modeling, and Simulation using Ptolemy II of
Claudius Ptolemaeus.

http://ptolemy.eecs.berkeley.edu/books/Systems/

Continuous domain simulation

18

Continuous domain Discrete event

Time Continuum, in tools like
EnergyPlus or TRNSYS, typically
one state at each instant.

In general, need not be timed.  
For our applications, a signal is
defined at certain time instants.

Time data type In most continuous time
simulator, a real number

Superdense time: 
Real number and integer

Signal Exists for all time instant Exists only at discrete time
instants, and is absent otherwise

In DE, actors send time-stamped events to each other, and
events are processed in chronological order

19

Time in Ptolemy II

Time is a tuple:

Two events (t1, n1) and (t2, n2) are
weakly simultaneous if t1 = t2,  
and strongly simultaneous if in addition
n1=n2.

A signal can have two distinct values
at (t, n1) and (t, n2).

Every feedback loop must have at
least one actor that introduces a time
delay.

The order in which actors are fired is
governed by a topological sort.

20

(t, n) 2 (R,N)

But how can time be compared?

In Ptolemy, model time t is t = m r.
• m arbitrarily large integer
• r time resolution (by default, 10-10 seconds).

Example: m=1011 represent 10 seconds.

Addition and subtraction is implemented so it does not suffer quantization errors.
Hence, t1 + t2 + t3 = t1 + (t2 + t3)

21

A simple DE example

22

Produces a token every 1 second

Produces a token every 2 second
Ramp1
Ramp2

AddSubtract

0

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TimedPlotter

What output of AddSubtract would you
have expected in a similar model in E+?

In SOEP, we may also use the Synchronous Data Flow (SDF)
director

23

��12

23

Synchronous/Reactive (SR)

•� Operation proceeds in global “clock ticks” (synchronous rounds).

•� At each tick, every signal has a value or is absent:

•� SR Director fires actors in topological order

•� Well-defined when delays (“latches”) break cyclic dependencies

•� In case of causality cycles, fixpoint computation starting from

unknown values for all signals (“constructive semantics”):

•� Iterate fire of all actors until fixpoint is reached; then postfire

each actor just once.

��"������� ������ ���������������	 ��������������&�

��������������������

�������������"��"����

���������$!���%�

c.f. separation of fire and postfire

24

Synchronous Data Flow (SDF)

In each firing, actors consume a fixed

number of tokens from the input

streams, and produce a fixed number

of tokens on the output streams.

���������$� ����%�

A B
1 3 2 1

�	���
�������������#���

This is what most models in the BCVTB use.

SDF allows static scheduling for when actors will be fired.

Behavioral polymorphism

24

public Token get(){
 return (Token)_tokens.removeFirst();
}

public Token get(){
 return _token;
}

In discrete event domain In continuous time domain

 16 Lee, Berkeley

Object-Oriented Approach to Achieving
Behavioral Polymorphism

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

Behavioral polymorphism is
the idea that components can
be defined to operate with
multiple MoCs.

Note: Exception handling removed for clarity.

The token is no longer there after it is received.

QSS

Background
Applications

25

QSS history

26

• Basic idea: Zeigler and Lee (1998)
• QSS1: Kofman and Junco (2001)
• QSS2: Kofman (2002)
• QSS3: Kofman (2006)  

PowerDEVS implementation: Floros et al. (2010)
• Extended to handle stiff systems: Migoni et al.
• (2013)
• Hybrid systems: Bliudze and Furic (2014)

The main goal is to get a discrete-event style of execution, avoiding iterative solving and
backtracking, and good interfaces to discrete systems.

Simple first order system

27

Simple First-Order System

Consider a first-order system with state x and input
u given by

ẋ(t) = u(t)� x(t).

Let

u(t) =

⇢
0 t < 1
10 t � 1

A variable-step-size RK 2-3 solver quantizes time according to an error
estimate and produces:

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Simple Continuous

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 3 / 23

Simple first order system

28

Simple Quantized-State System

Quantize the state as follows

ẋ(t) = u(t)� q(t)

where
q(t) = bx(t)c.

Let

u(t) =

⇢
0 t < 1
10 t � 1

x
q

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State

time

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 4 / 23

How does this behave if u is piece-wise constant?

But this implementation can cause chattering

29

Chattering

But it doesn’t quite work. Suppose the input is instead

u(t) =

⇢
0 t < 1
9.5 t � 1

Then we get this:

x
q

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State

time

9.0
9.2

9.4

9.6

9.8

10.0

5.260 5.265 5.270 5.275 5.280 5.285 5.290 5.295

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 5 / 23

Need to have hysteresis to avoid chattering

30

Hysteresis

x
q

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State with Hysteresis

time

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 7 / 23

Change the output of the quantizer only if its input
differs more than a quantum from the current level,
rather than when it crosses a quantum.

We just constructed a QSS1 method.

It is more convenient to package the quantizer in the integrator

31

QSS Semantics vs. DE Execution

What really happens:

q
u

xdot

0
2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State Events

time

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 12 / 23

Various QSS variants

32

QSS1 QSS2 QSS3 LIQSS{1, 2, 3}

Signal Piece-wise
constant

Piece-wise linear Piece-wise
quadratic

As for QSSx

Stiff
systems

not suited not suited not suited suited if stiffness
appears on
diagonal of
Jacobian

Backward QSS is another variant.

How do you represent these signals?

Need a “smooth token” that carries time stamp, value and
derivative(s)

33

SingleEvent1
SingleEvent2
AddSubtract

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TimedPlotter

(t, x, ẋ) = (0, 0, 2)

(t, x) = (1, 1)

(t, x, ẋ)1 = (0, 0, 2)

(t, x, ẋ)2 = (1, 3, 2)

How is this produced?

State events do not require iterations

34

1. Compute x(t) = 0 + 1 t
2. Solve for t*>0 that satisfies x(t*) = 1
3. Schedule an event at t*
4. Reevaluate the differential equation at t*

to yield x(t) = 1 + 0 t
5. Schedule an event at t=infinity

x(0) = 0

ẋ(t) =

(
1, if x(t) < 1,

0, otherwise

t

x

1

1

In comparison, standard differential equation solvers would integrate until they
achieve x(t) > 1, then iterate to find t*, and then restart the integration from t*.

0
0

Suppose

Oscillations around steady-state

35

Oscillation about the Steady State

If the input is piecewise constant, but doesn’t match the quantum,
the system may oscillate around the steady state.

q
u

xdot
true

0
2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State Events

time

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 19 / 23Optimizing QSS for such situations may be an important research topic.

A simple heat transfer problem with feedback control

36

C I
dT (t)

dt
=

0

@
�2 1 0
1 �2 1
0 �2 �2

1

A UA T (t) +

0

@
UA Tamb + Q̇ y(t)

0
0

1

A

4x10

yI
T1
T2
T3

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Controller samples: 181.
In comparison, RK requires 362 state updates.

I: 43 updates

T3: 6 updates

T2: 6 updates

T1: 26 updates

Bouncing ball simulated with one integration step per impact,
and exact computation of impacts without any iteration

37

-6
-4

-2

0

2

4

6

8

10

0 5 10 15 20 25

Actual Points Computed

time

po
si
tio
n

-6
-4

-2

0

2

4

6

8

10

0 5 10 15 20 25

Interpolated Values

time

po
si
tio
n

QSS: 46 points
RK23: 14,072 points (not counting rejected steps)
QSS was about 38 times faster.

Modeling and Simulating Cyber-Physical Systems using CyPhySim
Lee, Ninami, Nouidui, Wetter, in review.

Numerical benchmarks versus EnergyPlus 8.2 and Dymola
2015 FD01

A cell contains a room, the slab with pipes and a controller.

Climate: Chicago, IL

Simulation time: One year

Simulation environments
• EnergyPlus with Conduction Finite Difference and time step of 3 minutes, 

which is the largest time step that gives stable results.
• Dymola with dassl and models from the Modelica Buildings library.
• Ptolemy II with QSS2 and tolerance of 1E-3. 

FMUs generated from models from the Buildings library.

38

1 cell experiments 
using 5 FMUs,

9 cell experiments 
using 45 FMUs

Results and execution times

39

Ex
ec
u&

on
	 &
m
e	
[s
]

0

125

250

375

500

E+ Dymola QSS2

Ex
ec
u&

on
	 &
m
e	
[s
]

0

18

35

53

70

E+ Dymola QSS2

1 cell (5 FMUs)

9 cells (45 FMUs)

QSS2

33%
67%

Time spent in FMU (+ JNI to C)
Time Spent in Ptolemy II

For high
performance, need
QSS implemented in
Modelica to C
compiler.

Properties of QSS

Favoring QSS:
• State events are predictable. No iteration is

required to find them.
• Step sizes are predictable. No need to reject

step sizes and backtrack.
• For some models, QSS is computationally

exact. 
There is no numerical approximation due to
integration.

• States are integrated asynchronously.
• Computing time grows linear in the number

of state variables.
• Global error bound can be computed

explicitly for asymptotically stable linear
time-invariant systems.

• LIQSS accounts for stiffness that appears
on the diagonal of the Jacobian.

• Algebraic loops are solved locally, only when
they are triggered by a state transition or an
input function (Cellier & Kofman, p. 582)

Favoring classical ODE solvers:
• Inputs may not be quantized.
• Feedback systems may oscillate around a

steady state.
• Certain stiff systems.

40

QSS are rather new methods and we need to have a larger set of test cases to evaluate them
rigorously.

Implementing QSS into the Modelica compiler is likely leading
to higher performance

41

Modelica Compiler

QSS library

Executable

Integrators Event detection

Fernandez and Kofman (2014) report an order of magnitude faster simulation by using special
QSS simulator rather than PowerDEVS.

(And two orders faster than OpenModelica.)

This should be a (longer term) activity.

http://sim.sagepub.com/content/90/7/782

To get started

Download Ptolemy

Start
• cyphysim [model.xml] (Subset of Ptolemy II which we use for SOEP)
• vergil [model.xml], or (Ptolemy II with GUI)
• ptexecute model.xml (Ptolemy II as a console application)

42

References

43

Free Ptolemy II book: http://ptolemy.eecs.berkeley.edu/books/Systems/

David Broman, Lev Greenberg, Edward A. Lee, Michael Massin,
Stavros Tripakis and Michael Wetter.
Requirements for Hybrid Cosimulation Standards.
18th International Conference on Hybrid Systems: Computation
and Control (HSCC 2015), Seattle, WA, April 2015.

Christopher Brooks, Edward A. Lee, David Lorenzetti, Thierry S.
Nouidui and Michael Wetter.
Demo: CyPhySim - A Cyber-Physical Systems Simulator.
18th International Conference on Hybrid Systems: Computation and
Control (HSCC 2015), Seattle, WA, April 2015.

David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee,
Michael Masin, Stavros Tripakis, and Michael Wetter.
Determinate Composition of FMUs for Co-Simulation.
Proc. of the International Conference on Embedded Software
(EMSOFT 2013), p. 1--12, Montreal, Canada, 2013.

http://ptolemy.eecs.berkeley.edu/books/Systems/
http://simulationresearch.lbl.gov/wetter/download/2015-BromanEtAl_HybridCosimulation_HSCC.pdf
http://simulationresearch.lbl.gov/wetter/download/2015-BrooksEtAl_CyPhySimDemo.pdf
http://dx.doi.org/10.1109/EMSOFT.2013.6658580

Summary

Ptolemy II
• Actors communicate with each other by sending tokens to ports.
• A director synchronizes the execution.

DE
• Signals are only defined at certain (superdense) time instants

QSS
• The state is discretized, not time.
• Leads to a discrete event simulation.
• Linear scaling in problem size and explicit event handling.

44

?

45

