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Overview

The purpose is to understand 

1. the structure of Ptolemy II 

2. discrete event simulation 

3. QSS methods
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Introduction to Ptolemy II

3
Acknowledgement: Much of the content is based on lecture notes of Prof. Edward Lee



Visual rendering of actor model
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Actors can contain other actors 
with or without a director

Icons represent software components.  
The Director orchestrates the interaction of actors. 
Actors implement the model equations.



Models of Computations (MoCs) determine how system 
evolves

5

The director specifies the 
model of computation



Ptolemy components are actors and objects
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Ptolemy Components are Actors and Objects 

 

The alternative: Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

   Output data 

What flows through 
an object is 

evolving data 

class name 

data 

methods 

call return 

What flows through 
an object is 

sequential control 

The established: Object-oriented: 

Things happen to objects 

Actors make things happen 



Ptolemy has a library with pre-defined actors, mostly in Java, 
but can be in C, Python, Cal and MATLAB
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Actors  

•  Ptolemy has a library of predefined actors 
•  Java classes that implement the �executable� interface 



Most actors are written in Java
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Most Actors are Written in Java 



Simple String manipulation actor
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public class Ptolemnizer extends TypedAtomicActor { 

    public Ptolemnizer(CompositeEntity container, String name) 
            throws IllegalActionException, NameDuplicationException { 
        super(container, name); 

        input = new TypedIOPort(this, "input"); 
        input.setTypeEquals(BaseType.STRING); 
        input.setInput(true); 

        output = new TypedIOPort(this, "output"); 
        output.setTypeEquals(BaseType.STRING); 
        output.setOutput(true); 
    } 
     
    public TypedIOPort input; 
    public TypedIOPort output; 
     
    public void fire() throws IllegalActionException { 
        if (input.hasToken(0)) { 
            Token token = input.get(0); 
            String result = ((StringToken)token).stringValue(); 
            result = result.replaceAll("t", "pt"); 
            output.send(0, new StringToken(result)); 
} } }  



Object model for executable components
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Object Model for 
Executable Components 

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director



The main methods are prefire, fire and poster
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Definition of the Register Actor (Sketch) 

class Register extends TypedAtomicActor { 
  private Object state; 
  boolean prefire() { 
    if (trigger is known) { return true; } 
  } 
  void fire() { 
    if (trigger is present) { 
      send state to output; 
    } else { 
      assert output is absent; 
    } 
  } 
  void postfire() { 
    if (trigger is present) { 
      state = value read from data input; 
    } 
  } 

Can the 
actor fire? 

React to 
trigger 
input. 

Read the 
data input 
and update 
the state. 

trigger 
input 
port 

data input port 



Abstract semantics

12
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Abstract semantics 

Views every actor as an Abstract State Machine: 

 Actor = Inputs + Outputs + States + Initial state + Fire + 

Postfire 

Fire = output function: produces outputs given current 

inputs + state 

Postfire = transition function: updates state given current 

inputs + state 

Why separate fire and postfire? 
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Behaviors 

Set of traces: 

such that for all i : 

Source: http://chess.eecs.berkeley.edu/pubs/712.html 

http://chess.eecs.berkeley.edu/pubs/712.html


Behaviors
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Object-oriented approach to behavioral polymorphism
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Object-Oriented Approach to Achieving  
Behavioral Polymorphism 

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods 
implement the communication 
semantics of a domain in Ptolemy 
II. The receiver instance used in 
communication is supplied by the 
director, not by the component. 

producer
actor

consumer
actor

IOPort

Receiver

Director

Behavioral polymorphism is 
the idea that components can 
be defined to operate with 
multiple MoCs. 



Extensible software architecture
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Ptolemy II Software Architecture 
Built for Extensibility 

Ptolemy II packages 
have carefully 
constructed 
dependencies and 
interfaces 

PN 

Rendezvous 

Continuous Kernel 

Data 

Actor Math 

Graph 



In SOEP, we will use Discrete Event and Synchronous Data 
Flow

Discrete event for QSS solver. 

Synchronous Data Flow is for models that allow static scheduling.
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Discrete event simulation
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Further details: Chapter 7 in the System Design, Modeling, and Simulation using Ptolemy II of 
Claudius Ptolemaeus.

http://ptolemy.eecs.berkeley.edu/books/Systems/


Continuous domain simulation
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Continuous domain Discrete event

Time Continuum, in tools like 
EnergyPlus or TRNSYS, typically 
one state at each instant.

In general, need not be timed.  
For our applications, a signal is 
defined at certain time instants.

Time data type In most continuous time 
simulator, a real number

Superdense time: 
Real number and integer

Signal Exists for all time instant Exists only at discrete time 
instants, and is absent otherwise



In DE, actors send time-stamped events to each other, and 
events are processed in chronological order
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Time in Ptolemy II

Time is a tuple: 

Two events (t1, n1) and (t2, n2) are 
weakly simultaneous if t1 = t2,  
and strongly simultaneous if in addition 
n1=n2. 

A signal can have two distinct values 
at (t, n1) and (t, n2). 

Every feedback loop must have at 
least one actor that introduces a time 
delay. 

The order in which actors are fired is 
governed by a topological sort.
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(t, n) 2 (R,N)



But how can time be compared?

In Ptolemy, model time t is t = m r. 
• m arbitrarily large integer 
• r time resolution (by default, 10-10 seconds). 

Example: m=1011 represent 10 seconds. 

Addition and subtraction is implemented so it does not suffer quantization errors. 
Hence, t1 + t2 + t3 = t1 + (t2 + t3)
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A simple DE example
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Produces a token every 1 second

Produces a token every 2 second
Ramp1
Ramp2

AddSubtract

0

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TimedPlotter

What output of AddSubtract would you 
have expected in a similar model in E+?



In SOEP, we may also use the Synchronous Data Flow (SDF) 
director
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Synchronous/Reactive (SR) 

•� Operation proceeds in global “clock ticks” (synchronous rounds). 

•� At each tick, every signal has a value or is absent: 

•� SR Director fires actors in topological order 

•� Well-defined when delays (“latches”) break cyclic dependencies 

•� In case of causality cycles, fixpoint computation starting from 

unknown values for all signals (“constructive semantics”): 

•� Iterate fire of all actors until fixpoint is reached; then postfire 

each actor just once. 

��"������� ������ ���������������	 ��������������&�
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c.f. separation of fire and postfire 
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Synchronous Data Flow (SDF) 

In each firing, actors consume a fixed 

number of tokens from the input 

streams, and produce a fixed number 

of tokens on the output streams. 

���������$� ����%�

A B 
1 3 2 1 

�	���
�������������#���

This is what most models in the BCVTB use.

SDF allows static scheduling for when actors will be fired.



Behavioral polymorphism
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public Token get(){ 
  return (Token)_tokens.removeFirst(); 
}

public Token get(){ 
  return _token; 
}

In discrete event domain In continuous time domain
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Object-Oriented Approach to Achieving  
Behavioral Polymorphism 

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods 
implement the communication 
semantics of a domain in Ptolemy 
II. The receiver instance used in 
communication is supplied by the 
director, not by the component. 

producer
actor

consumer
actor

IOPort

Receiver

Director

Behavioral polymorphism is 
the idea that components can 
be defined to operate with 
multiple MoCs. 

Note: Exception handling removed for clarity.

The token is no longer there after it is received.



QSS 

Background 
Applications
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QSS history
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• Basic idea: Zeigler and Lee (1998) 
• QSS1: Kofman and Junco (2001) 
• QSS2: Kofman (2002) 
• QSS3: Kofman (2006)  

PowerDEVS implementation: Floros et al. (2010) 
• Extended to handle stiff systems: Migoni et al. 
• (2013) 
• Hybrid systems: Bliudze and Furic (2014)  

The main goal is to get a discrete-event style of execution, avoiding iterative solving and 
backtracking, and good interfaces to discrete systems.  



Simple first order system
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Simple First-Order System

Consider a first-order system with state x and input
u given by

ẋ(t) = u(t)� x(t).

Let

u(t) =

⇢
0 t < 1
10 t � 1

A variable-step-size RK 2-3 solver quantizes time according to an error
estimate and produces:

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Simple Continuous

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 3 / 23



Simple first order system
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Simple Quantized-State System

Quantize the state as follows

ẋ(t) = u(t)� q(t)

where
q(t) = bx(t)c.

Let

u(t) =

⇢
0 t < 1
10 t � 1

x
q

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State

time

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 4 / 23

How does this behave if u is piece-wise constant?



But this implementation can cause chattering
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Chattering

But it doesn’t quite work. Suppose the input is instead

u(t) =

⇢
0 t < 1
9.5 t � 1

Then we get this:

x
q

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State

time

9.0
9.2

9.4

9.6

9.8

10.0

5.260 5.265 5.270 5.275 5.280 5.285 5.290 5.295

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 5 / 23



Need to have hysteresis to avoid chattering
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Hysteresis

x
q

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State with Hysteresis

time

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 7 / 23

Change the output of the quantizer only if its input 
differs more than a quantum from the current level, 
rather than when it crosses a quantum.

We just constructed a QSS1 method.



It is more convenient to package the quantizer in the integrator
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QSS Semantics vs. DE Execution

What really happens:

q
u

xdot

0
2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State Events

time

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 12 / 23



Various QSS variants
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QSS1 QSS2 QSS3 LIQSS{1, 2, 3}

Signal Piece-wise 
constant

Piece-wise linear Piece-wise 
quadratic

As for QSSx

Stiff 
systems

not suited not suited not suited suited if stiffness 
appears on 
diagonal of 
Jacobian

Backward QSS is another variant.

How do you represent these signals?



Need a “smooth token” that carries time stamp, value and 
derivative(s)
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SingleEvent1
SingleEvent2
AddSubtract

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TimedPlotter

(t, x, ẋ) = (0, 0, 2)

(t, x) = (1, 1)

(t, x, ẋ)1 = (0, 0, 2)

(t, x, ẋ)2 = (1, 3, 2)

How is this produced?



State events do not require iterations
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1. Compute x(t) = 0 + 1 t 
2. Solve for t*>0 that satisfies x(t*) = 1 
3. Schedule an event at t* 
4. Reevaluate the differential equation at t* 

to yield x(t) = 1 + 0 t 
5. Schedule an event at t=infinity

x(0) = 0

ẋ(t) =

(
1, if x(t) < 1,

0, otherwise

t

x

1

1

In comparison, standard differential equation solvers would integrate until they 
achieve x(t) > 1, then iterate to find t*, and then restart the integration from t*.

0
0

Suppose



Oscillations around steady-state
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Oscillation about the Steady State

If the input is piecewise constant, but doesn’t match the quantum,
the system may oscillate around the steady state.

q
u

xdot
true

0
2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Quantized State Events

time

Edward A. Lee (UC Berkeley) Quantized-State Systems Spring 2015 19 / 23Optimizing QSS for such situations may be an important research topic.



A simple heat transfer problem with feedback control
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C I
dT (t)

dt
=

0

@
�2 1 0
1 �2 1
0 �2 �2

1

A UA T (t) +

0

@
UA Tamb + Q̇ y(t)

0
0

1

A

4x10

yI
T1
T2
T3

0
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20

25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Controller samples: 181. 
In comparison, RK requires 362 state updates.

I: 43 updates

T3: 6 updates

T2: 6 updates

T1: 26 updates



Bouncing ball simulated with one integration step per impact, 
and exact computation of impacts without any iteration
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QSS: 46 points 
RK23: 14,072 points (not counting rejected steps) 
QSS was about 38 times faster. 

Modeling and Simulating Cyber-Physical Systems using CyPhySim  
Lee, Ninami, Nouidui, Wetter, in review.



Numerical benchmarks versus EnergyPlus 8.2 and Dymola 
2015 FD01

A cell contains a room, the slab with pipes and a controller.  

Climate: Chicago, IL 

Simulation time: One year 

Simulation environments 
• EnergyPlus with Conduction Finite Difference and time step of 3 minutes, 

which is the largest time step that gives stable results. 
• Dymola with dassl and models from the Modelica Buildings library. 
• Ptolemy II with QSS2 and tolerance of 1E-3. 

FMUs generated from models from the Buildings library.
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1 cell experiments 
using 5 FMUs, 

9 cell experiments 
using 45 FMUs



Results and execution times
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QSS2

33%
67%

Time spent in FMU (+ JNI to C)
Time Spent in Ptolemy II

For high 
performance, need 
QSS implemented in 
Modelica to C 
compiler.



Properties of QSS

Favoring QSS:  
• State events are predictable. No iteration is 

required to find them. 
• Step sizes are predictable. No need to reject 

step sizes and backtrack.  
• For some models, QSS is computationally 

exact. 
There is no numerical approximation due to 
integration.  

• States are integrated asynchronously. 
• Computing time grows linear in the number 

of state variables. 
• Global error bound can be computed 

explicitly for asymptotically stable linear 
time-invariant systems. 

• LIQSS accounts for stiffness that appears 
on the diagonal of the Jacobian. 

• Algebraic loops are solved locally, only when 
they are triggered by a state transition or an 
input function (Cellier & Kofman, p. 582) 

Favoring classical ODE solvers:  
• Inputs may not be quantized. 
• Feedback systems may oscillate around a 

steady state.  
• Certain stiff systems. 
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QSS are rather new methods and we need to have a larger set of test cases to evaluate them 
rigorously.



Implementing QSS into the Modelica compiler is likely leading 
to higher performance
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Modelica Compiler

QSS library

Executable

Integrators Event detection

Fernandez and Kofman (2014) report an order of magnitude faster simulation by using special 
QSS simulator rather than PowerDEVS. 

(And two orders faster than OpenModelica.)

This should be a (longer term) activity.

http://sim.sagepub.com/content/90/7/782


To get started

Download Ptolemy 

Start 
• cyphysim [model.xml]         (Subset of Ptolemy II which we use for SOEP) 
• vergil [model.xml], or          (Ptolemy II with GUI) 
• ptexecute model.xml          (Ptolemy II as a console application)
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Summary

Ptolemy II 
• Actors communicate with each other by sending tokens to ports. 
• A director synchronizes the execution. 

DE 
• Signals are only defined at certain (superdense) time instants 

QSS 
• The state is discretized, not time. 
• Leads to a discrete event simulation. 
• Linear scaling in problem size and explicit event handling.
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