- SR a Overview of Ptolemy I,
.~ WRYES7\ with focus on Discrete
—vent and QSS

Michael Wetter and

- Thierry S. Nouidui

TR = T,
R 8{Eit iy o |
A ; BUCRSRE ' ||
"7”","3"“.',‘;_ - Hia

o~ e, 'J‘""ny-
. A N. 4"'.-’ . .

-,

) T e
b’:"‘?!‘ (} 4 . 14 g9t
h,w‘” T)

Al -

e Simulation Research Group

A
|||‘

rererrenr

BERKELEY LAB

Lawrence Berkeley National Laboratory

Overview

The purpose is to understand
1. the structure of Ptolemy I
2. discrete event simulation

3. QSS methods

Introduction to Ptolemy |

Acknowledgement: Much of the content is based on lecture notes of Prof. Edward Lee

Visual rendering of actor model

Actor Model

Director

lcons represent software components. Actor B
The Director orchestrates the interaction of actors. - porty|

Actors implement the model equations. ik
Actor A Actor C

b port . port.
Relation

Model: CompositeActor

Actors can contain other actors ——
. . . B: AtomicActor
with or without a director -
A: CompositeActor C: CompositeActor
Relation
Director | e Attribute: value‘

q: Port
D: AtomicActor
p: Port »_‘_'[
| : ' Relation
Relation

E: AtomicActor

Opaque CompositeActor Transparent CompositeActor

Models of Computations (MoCs) determine how system
evolves

The director specifies the
model of computation

Timed

Rendezvous Process Networks ./ (Synchronous Reactive

Dynamic Dataflow) {(Synchronous Dataflow Discrete Events

CEq uational)

Ptolemy components are actors and objects

The established: Object-oriented:

r

call

class name

data

methods

oy

return

The alternative: Actor oriented:

)

Input data

actor name

data (state)

parameters

ports

)

Output data

What flows through
an object is
sequential control

Things happen to objects

Actors make things happen

What flows through
an object is
evolving data

Ptolemy has a library with pre-defined actors, mostly in Java,
but can be in C, Python, Cal and MATLAB

DiscreteClock Ramp Display ArrayPlotter

N D’ Const ooo
(G > I =] AN ai

g g

Scale

BTooIeanSeIect BoolsanSwitch Equals Accumulator AddSubtract
>— > of + D

> D— B == b - B

F
Integrator VariableDelay TimeDelay Pre lterateOverArray ArrayToElements

> delay of initialValue
.LL: ;H‘ Hr " o PP b '[><1>

Most actors are written In Java

e

= file:/C:/ptll/ptolemy/actor/lib/Gaussian. java E]@

£ file:/C:/ptll/ptolemy/data/type/demo/Router/Router.xml

File Help
File View Edit Graph Debug Help public class Gaussian extends RandomSource { a
.) /%% Construct an actor with the given container and name.
: @ @ g @ ’ II ’. ‘ ‘ - * $ m ‘ * [@param container The container.
. _ * [@parsam name The name of this actor.
| Utilities A 1 * [@exception IllegallctionException If the actor cannot be contained
. — DE Director This model . b .
Directors v the proposed container.
*J Record Asg * [@exception NameDuplicationException If the container already has an
" arecord to * actor with this nane.
=)~ 4 Sources xy
Ej_] Genericsources haS rando public Gaussian(CompositeEntity container, 3tring nawme)
Ej J TimedSources Order. The throws NawmeDuplicationException, IllegallctionException {
N B S Clock from the se super (container, name);
o CurrentTime received (p
C FE . output.setTypeEquals (BaseType.DOUELE) ;
- PoissonClock Sequencer
""" TimedSinewave dernonstra mean = new PortParameter (this, "mean"”, new DoubleToken(0.0)):
~K¥ TriggeredClock mean.setTypeEquals (BaseType . DOUBLE) ;
- - i . . H
. and deco
- Y VariableClock
Ej_l SequenceSources Master Clock String Sequence standardDev%at,%on = new Port,lf’aramet,er(thls, standardDeviation®);
_ . Sinks standardDeviation.setExpression("1.0");
Li" —I L —_ standardDeviation.setTypeEquals (BaseType.DOUBLE) ;
+- | Array > i »)
i+~) Conversions
E}.."_'Iﬂowcontro] Sequence Count FEEEFEETEEEETIPIdidiiiiiiilidiidiidiididtidlidiidiidiiiiiiiids
EJ_I HigherOrderActors L I i/ ports and parawmeters Fiid
lfj—l 2 . > /** The mean of the random nunber.
+/-__| Logic 3 Gaussian —— + mui- nas type double, initially with value 0.
et S SO o S Y " Customize » B
REOONT AMAENShot BN CONGCARA B WV W M Mg PR
oeder. The Pocond Disssortior soor sopansion e mig
S g weosenon rervter Tha s vgn em clagiewd o
P el ey s Appearance P landard deviation of the random nunber.
v e b e w3 ® A e vy e X X . X
—— ’W::w-- - l | Save Actor In Library 1as double, initially with wvalue 1.
i » [py— .
B € e Listen to Actor t eter standardDeviation;
— j‘ = I Set Breakpoint
J— - | el breakpoincs
S 1o FEEEEEETEET I8 P80 F 0070008 ii7 78l iiliiliiliiiiilsd
el L 1 + Convert to Class public methods Fii
e . e
v oo Authors: Edward AT v
; Open Instance []

Simple String manipulation actor

public class Ptolemnizer extends TypedAtomicActor {

public Ptolemnizer(CompositeEntity container, String name)
throws IllegalActionException, NameDuplicationException {
super(container, name);

input = new TypedIOPort(this, "input");
input.setTypeEquals(BaseType.STRING) ;
input.setInput(true);

output = new TypedIOPort(this, "output");
output.setTypeEquals(BaseType.STRING) ;
output.setOutput(true);

}

public TypedIOPort input;
public TypedIOPort output;

public void fire() throws IllegalActionException {
1f (input.hasToken(0)) {
Token token = input.get(0);
String result = ((StringToken)token).stringValue();
result = result.replaceAll("t", "pt");
output.send(0, new StringToken(result));

P}

Object model for executable components

«Interface»
Executable

] Actor

+fire()

+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

«Interface»

+getDirector() : Director

+getExecutiveDirector() : Director
+getManager() : Manager

+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

I T

Director AtomicActor

e
ComponentEntity |
CompositeEntity
0..1
CompositeActor
<

The main methods are prefire, fire and poster

class Regilister extends TypedAtomicActor {
private Object state;

/

Con 1 boolean prefire () {
antg if (trigger 1is known) { return true; }
actor fire? \
[volid fire () { Register
1if (trigger 1s present) { 5
React to send state to output; //// .
tri < } else { - ;
rigger | . data input port trigger
input. assert output 1s absent; input
} port
.
(void postfire () {
Read the if (trigger 1is present) {
data input y state = value read from data input;
and update }
the state. \

Abstract semantics

Views every actor as an Abstract State Machine:

Actor = Inputs + Outputs + States + Initial state + Fire +
Postfire

Fire = output function: produces outputs given current
inputs + state F:-Sx]— 0O

Postfire = transition function: updates state given current
inputs + state P:-Sx]— S

Why separate fire and postfire?

Source: http://chess.eecs.berkeley.edu/pubs/712.html

http://chess.eecs.berkeley.edu/pubs/712.html

Behaviors

Set of traces:

X0V

) ...

X]
S0)

such that for all i :

Vi =F(Si9xi)
Si+1 =P(Si9xi)

Source: http://chess.eecs.berkeley.edu/pubs/712.html

http://chess.eecs.berkeley.edu/pubs/712.html

Object-oriented approach to behavioral polymorphism

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

Behavioral polymorphism is
the idea that components can
be defined to operate with
multiple MoCs.

These polymorphic methods
Implement the communication
semantics of a domain in Ptolemy
Il. The receiver instance used in
communication is supplied by the
director, not by the component.

IOPort

producer C‘f/) consumer

actor J actor

Receiver

—xtensible software architecture

Ptolemy |l packages
have carefully
constructed
dependencies and
interfaces

In SOEP, we will use Discrete Event and Synchronous Data
Flow

Discrete event for QSS solver.

Synchronous Data Flow is for models that allow static scheduling.

Discrete event simulation

Further details: Chapter 7 in the System Design, Modeling, and Simulation using Ptolemy |l of
Claudius Ptolemaeus.

http://ptolemy.eecs.berkeley.edu/books/Systems/

Continuous domain simulation

Continuous domain Discrete event

Continuum, in tools like In general, need not be timed.
EnergyPlus or TRNSYS, typically For our applications, a signal is

one state at each instant. defined at certain time instants.
Time data type In most continuous time Superdense time:

simulator, a real number Real number and integer

Exists for all time instant Exists only at discrete time

instants, and is absent otherwise

In DE, actors send time-stamped events to each other, and
events are processed in chronological order

DE Director Constl

- CurrentTlmel ‘time 1 =
AddSubtract
trigger

Display
DiscreteClock Const2 File Help
‘”?“”@ y 'time 2 = time 1 = 0.0
eriody Vi Merge time 2 = 0.0
icrostepDelay ? CurrentTimes Addsubtraft2 time 2 = 0.0
5 8 S trier [+ time 1 = 1.0
: i ;F time 2 = 1.0
time 2 = 1.0
time 1 =2.0
time 2 = 2.0
time 2 = 2.0
time 1 =3.0
time 2 = 3.0

time 2 = 3.0

Time in Ptolemy |l

Timeis atuple: (¢,n) € (R, N)

Two events (t1, n1) and (tz, no) are
weakly simultaneous Iif t; = to,

and strongly simultaneous if in addition
Nn1=npo.

A signal can have two distinct values
at (t, n7) and (t, no).

Every feedback loop must have at
least one actor that introduces a time
delay.

The order in which actors are fired is
governed by a topological sort.

DE Director

o o N o

N W A

DiscreteClock

trigger
trigger |
period

uels

doys

Ramp

el

Merge

Const

AddSubtract

Const2

"‘gﬂ@_p.

TimeDelay

Feedback with Zero Delay

Av4

TimedPlotter
[s]=]s]

N

BooleanSwitch

delay of
0.0

\

model time

20

But how can time be compared”

In Ptolemy, model time tist=mr.
e m arbitrarily large integer

e rtime resolution (by default, 10-'° seconds).
Example: m=10"" represent 10 seconds.

Addition and subtraction is implemented so it does not suffer quantization errors.

Hence, t1 + to + t3 =t1 + (t2 + t3)

2

A simple DE example

DE Director

DiscreteClock_Period 1

trigger N Ramp 1
trigger,\
period > SL:gE: ‘ > . =
DiscreteClock_Period?2

triggerp agers Ramp2
period N sltr;.gE ‘ F_’
AddSubtn

uels
doas

1e1s
dois

A Ct

\ L=|>._|_ ‘
> —

Produces a token every 2 second

What output of AddSubtract would you
have expected in a similar model in E+7?

Produces a token every 1 second

TimedPlotter
ooo

E

TimedPlotter

—_
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ramp1 e
Ramp2 e
AddSubtract e

22

In SOEP, we may also use the Synchronous Data Flow (SDF)
director

In each firing, actors consume a fixed
1 2 3 1 number of tokens from the input
» A) » B) streams, and produce a fixed number
1 of tokens on the output streams.

signal = “buffer”

SDF allows static scheduling for when actors will be fired.

This is what most models in the BCVITB use.

23

Behavioral polymorphism

«Interface» These polymorphic methods
Receiver implement the communication
semantics of a domain in Ptolemy

+get() - Token Il. The re_cei_/er i.nstance. used in
+getContainer() : IOPort communication is supplied by the
+thasRoom() : boolean director, not by the component.

+hasToken() : boolean

+put(t : Token)
+setContainer(port : IOPort) -
IOPort

Behavioral polymorphism is

the idea that components can producer consumer
be defined to operate with actor ¢ ? actor
multiple MoCs.

Receiver

In discrete event domain In continuous time domain
public Token get(){ public Token get(){
return (Token)_tokens.removeFirst(); return _token;

} }

The token is no longer there after it is received.

Note: Exception handling removed for clarity.

QSS

Background
Applications

QSS history

Basic idea: Zeigler and Lee (1998)

QSS1: Kofman and Junco (2001)

QSS2: Kofman (2002)

QSS3: Kofman (2006)

PowerDEVS implementation: Floros et al. (2010)
Extended to handle stiff systems: Migoni et al.

e (2013)

e Hybrid systems: Bliudze and Furic (2014)

The main goal is to get a discrete-event style of execution, avoiding iterative solving and
backtracking, and good interfaces to discrete systems.

26

Simple first order system

Consider a first-order system with state x and input

u given by X J’ I
x(t) = u(t) — x(t). | | ,

Let
u(t):{o t <1 u u- X

10 t>1

A variable-step-size RK 2-3 solver quantizes time according to an error
estimate and produces:

Simple Continuous
10 [I I I I I I 1 1 1 | ‘ |

Al

[« 2N \V] L » o
I

Simple first order system

Quantize the state as follows

x(t) = u(t) — q(t)

*— =

where
q(t) = [x(t)].
Let
0 t<«<1
— u
u(t) { 10 t>1
— | | | Quantizclad Stat? | | | -

How does this behave if u is piece-wise constant?

But this implementation can cause chattering

But it doesn’t quite work. Suppose the input is instead

() — 0 t<l1
W= 95 t>1

Then we get this:

10F

10.0
9.8
9.6
9.4r1

9.2

9.0

1 1 1 1
5.260 5.265 5.270 5.275 5.280 5.285 5.290 5.295

"*>~.__ Quantized State
T T S| T

ﬂ»

=

L

‘u—q*q

29

Need to have hysteresis to avoid chattering

Change the output of the quantizer only if its input
differs more than a quantum from the current level,

rather than when it crosses a quantum.

@ level: 10
set: level = 0

guard: x <= level - 1
set: level = level - 1

guard: x >=level + 1
set: level = level + 1

guard: x <= level - 1
set: level = level - 1

guard: x >=level + 1
set: level = level + 1

Quantized State with Hysteresis
| |

O X
N

10

We just constructed a QSS1 method.

30

It is more convenient to package the quantizer in the integrator
QSSDirector

@ stepTime: 1.0 QSSIntegrator TimedPlotter
@ stepValue: 9.5 X J' =[ale]

5 b\

SingleEvent

10 2 Py . T g e
n| * o U x

i ! - xdot O
I.'.Il:I °

6 o ¢ -

4F oﬁ -
® I:II:I

2r ? 1] -

OL = ! p i]

| | | | I L O | | | N I'_I'I

Various QSS variants

LIQSS{1, 2, 3}

Signal Piece-wise Piece-wise linear Piece-wise As for QSSx
constant quadratic

Stiff not suited not suited not suited suited if stiffness

Sys’[ems appears on
diagonal of
Jacobian

How do you represent these signals?

Backward QSS is another variant.

32

Need a “smooth token” that carries time stamp, value and

derivative(s)

DE Director

(t,z,x) = (0,0,2)

SingleEventl
TimedPlotter

1 » r—— \D./\'/"

% (t,CIJ,Zb)l — (0,0,2)

SingleEvent2 AddSubthact (ta L, jj)2 — (17 3, 2)

—T—’TL"HM» \

B> —
How is this produced?

TimedPlotter
]]]

30F | | | | | | | ¢ - SingleEvent! e
SingleEvent2 e
AddSubtract e

25

20T ®

1.5

1.0 0 -

0.5

0.0 o
|

! ! ! ! ! ! ! ! ! !
o0 01 02 03 04 05 06 07 08 09 10

33

State events do not require iterations

Suppose
z(0) =0

/

1, ifx(t) <1,

0, otherwise

-

T(t) = <

\

Compute x(t) =0+ 1t

Solve for t*>0 that satisfies x(t*) = 1
Schedule an event at t*

Reevaluate the differential equation at t*
toyieldxt)=7+0t

0 " 5. Schedule an event at t=infinity

> W=

In comparison, standard differential equation solvers would integrate until they
achieve x(t) > 1, then iterate to find t*, and then restart the integration from t*.

34

Oscillations around steady-state

QSSDirector

@ stepTime: 1.0 QSSIntegrator TimedPlotter
e stepValue: 9.5 X =[al=]
—

30 on mam— AV

SingleEvent
I Uy 00 ‘ u-d fﬂ—

If the input is piecewise constant, but doesn't match the quantum,
the system may oscillate around the steady state.

Quantized State Events

10 UMY Err ey [[ed 3 :
8K s -1 xdot ®
true ®
61 i
4+ i
2r i
Ol gt | | | -
1 1 1 1 1) " 1 1 '_?
0 1 2 3 4 5 6 7 8 9 10
time

Optimizing QSS for such situations may be an important research topic.

35

A simple heat transter problem with feedlback control

-2 1 0 UA Tomp + Qy(1)
drT'(t
C1I d—i) — 1 -2 1 UA T(t) + 0
0 -2 =2 0

Plant model with PI controller and discrete time sampling of its input and output.

The plant has a thermal mass, approximated using finite differences

with three states. It has heat loss to T_amb and a heat gain.

The heat gain is controlled by the Pl controller.

eKp: 2.0 e T _amb: 20.0 After the sampler, the derivatives of the tokens are discharged by converting the
token to a double, as samplers only output values and not derivatives.

CyPhy Direct
yPhy Director o stopTime: 63600 o UA: 5.0

@ samplePeriod: 120.0 e C: 150000.0

o KI: 0.0005 ® Q_heat;: 200.0
This model illustrates how QSS methods decouple state variables. The dots on the plot
Author: Michael Wetter show that the slow varying states are updated much less frequent than the control signal.

|
init:
J- 0.0

3
S
|
I3
o

SmoothToDouble

Plotter
¢t

Samplerl

toDoublel oo AddSubtract Sampler2 toDouble2 Limiter
(J— (i @jv—' 'Dﬂ "io.o ’J
controller
- T1_dt SmoothTolj¢uble2
T1: 26 updates d(y*(theat+UA*(T_amb+T2—2*T1))/C
l l l l l l l l l l l l yl @
25T _|_2 6 d t B $; : ‘L 4, dT2_dt SmoothTolouble3
i Up ales T3 @ [‘—’EEUA*(T1+T3—2*T2)/CH
! 1 o
15 F T3 6 updates] LA - SmoothToPouble4
.
’ plotting
10 .y
oL . 43 updates | Controller samples: 181.
In comparison, RK requires 362 state updates.
oL 4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
x10*

Bouncing ball simulated with one integration step per impact,
and exact computation of impacts without any iteration

CyPhy Director

er: 0.9 Coefficient of restitution , , Interpolated Values
101
ei: 10.0 |[nitial height 81
Sampler
ok
| i.l
% of
SingleEvent QSSIntegrator QSSIntegrator?2 SmoothZeroCrossingDetector j °f
init: init: 2r
I j 0.0 j i a4k
TimedDisphy 5
'y Y — — : : : :
3 3 i b|— 0 5 10 15 20 25
2 2 TimedPlotter — time
o ® [S[s[a]
—]
PeriodicSampler TimedPlotter2 Actual Points Computed
[Ta[s] I |. T T T T
- L
ol
TImeDeIay Expression SmOOthTODOUb|e S 4r
delay of: - y 3 Ll
0.0 -(1+r)*v g
. or L L L { J { J { J o0 0 0 0 0 0000000
A
2F
L] ! -4 i
QSS: 46 points .

RK23: 14,072 points (not counting rejected steps) O
QSS was about 38 times faster.

Modeling and Simulating Cyber-Physical Systems using CyPhySim 17
Lee, Ninami, Nouidui, Wetter, in review.

Numerical benchmarks versus EnergyPlus 8.2 and Dymola

2015 FDO1

A cell contains a room, the slab with pipes and a controller.
Climate: Chicago, IL
Simulation time: One year

Simulation environments

e EnergyPlus with Conduction Finite Difference and time step of
which is the largest time step that gives stable results.

e Dymola with dassl and models from the Modelica Buildings libr.

e Ptolemy Il with QSS2 and tolerance of 1E-3.
FMUs generated from models from the Buildings library.

I —
0.5m 1.0m \\,,/‘J

1 cell experiments
using 5 FMUs,

9 cell experiments
using 45 FMUs

38

Results and execution times

1 cell (5 FMUSs)

T
1 — E+
— Dymola
A0 i — QSS2
— 35F il R PRTTI T TN AIl
O
»
g
2 30L& B R0 B W CRCONTY R R
o
]
Q
£
[}
A YN | CRAE PR I AR RIS IR
20 b
15 j j j j j j j j
0 1000 2000 3000 4000 5000 6000 7000 8000

J J
1 — E+
| | | | ‘ | — Dymola
40F e j | — ass2 |
Cssboooo o g R
) : :
‘»
g : : : : ‘ f
2 30F] A St N BN L ELARRERER e N (NI A Sy
© : : : : :
5] : : : :
[oR
£ \ : : : :
1} : : : :
= 25 - A AU B D SERRERREEEN [RERER
o e R S OO O SN S it
15

1 | | 1 | | 1 |
0 1000 2000 3000 4000 5000 6000 7000 8000
time [h]

9 cells (45 FMUSs)

time [h]

Execution time [s]

Execution time [s]

70

53

35

18

500

375

250

125

E+ Dymola QSS2
E+ Dymola QSs2

For high
performance, need
QSS implemented in
Modelica to C
compller.

QSS2

@ Time spent in FMU (+ NI to C)
Time Spent in Ptolemy

39

Properties of QSS

Favoring QSS:

State events are predictable. No iteration is
required to find them.

Step sizes are predictable. No need to reject
step sizes and backtrack.

For some models, QSS is computationally
exact.

There is no numerical approximation due to
integration.

States are integrated asynchronously.

Computing time grows linear in the number
of state variables.

Global error bound can be computed
explicitly for asymptotically stable linear
time-invariant systems.

e | |QSS accounts for stiffness that appears

on the diagonal of the Jacobian.

e Algebraic loops are solved locally, only when

they are triggered by a state transition or an
input function (Cellier & Kofman, p. 582)

Favoring classical ODE solvers:
¢ |nputs may not be quantized.

e Feedback systems may oscillate around a

steady state.

e (Certain stiff systems.

QSS are rather new methods and we need to have a larger set of test cases to evaluate them
rigorously.

Implementing QSS into the Modelica compiler is likely leading
to higher performance

Fernandez and Kofman (2014) report an order of magnitude faster simulation by using special
QSS simulator rather than PowerDEVS.

(And two orders faster than OpenModelica.)

Integrators Event detection
QSS library

|

Modelica — Compiler — Executable

This should be a (longer term) activity.

41

http://sim.sagepub.com/content/90/7/782

To get started

Download Ptolemy

Start \‘9’\’

. “o3
e cyphysim [model.xml]

e vergil [model.xml], or

e ptexecute model.xml

(Subset of Ptolemy Il which we use for SOEP)
(Ptolemy Il with GUI)

(Ptolemy |l as a console application)

42

References

Free Ptolemy Il book: http://ptolemy.eecs.berkeley.edu/lbooks/Systems/

David Broman, Lev Greenberg, Edward A. Lee, Michael Massin,
Stavros Tripakis and Michael Wetter.

Requirements for Hybrid Cosimulation Standards.

18th International Conference on Hybrid Systems: Computation
and Control (HSCC 2015), Seattle, WA, April 2015.

Christopher Brooks, Edward A. Lee, David Lorenzetti, Thierry S.
Nouidui and Michael Wetter.

Demo: CyPhySim - A Cyber-Physical Systems Simulator.

18th International Conference on Hybrid Systems: Computation and
Control (HSCC 2015), Seattle, WA, April 2015.

David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee,
Michael Masin, Stavros Tripakis, and Michael Wetter.

Determinate Composition of FMUs for Co-Simulation.

Proc. of the International Conference on Embedded Software
(EMSOFT 2013), p. 1--12, Montreal, Canada, 2013.

43

http://ptolemy.eecs.berkeley.edu/books/Systems/
http://simulationresearch.lbl.gov/wetter/download/2015-BromanEtAl_HybridCosimulation_HSCC.pdf
http://simulationresearch.lbl.gov/wetter/download/2015-BrooksEtAl_CyPhySimDemo.pdf
http://dx.doi.org/10.1109/EMSOFT.2013.6658580

Summary

Ptolemy ||
e Actors communicate with each other by sending tokens to ports.

e A director synchronizes the execution.

DE

e Signals are only defined at certain (superdense) time instants

QSS
e [he state is discretized, not time.
¢ | cads to a discrete event simulation.

e | inear scaling in problem size and explicit event handling.

44

