Introduction to Modelica

Michael Wetter and Thierry S. Nouidui
Simulation Research Group

June 23, 2015

N

- A
(rereee mI

HIAN. M Lawrence Berkeley National Laboratory

Purpose and approach

The purpose is to have basic understanding of Modelica and be able to develop simple
models.

The slides follow largely, and use many examples from, the online book from Michael Tiller:
http://book.xogeny.com

Other references (and Buildings library user guide):
http://simulationresearch.lbl.gov/modelica/userGuide/gettingStarted.html

Modelica reference: http://modref.xogeny.com/

Interactive tour: http://tour.xogeny.com

http://book.xogeny.com
http://simulationresearch.lbl.gov/modelica/userGuide/gettingStarted.html
http://modref.xogeny.com/
http://tour.xogeny.com

BasiC syntax

Basic equations

Consider
r=1—zx
Initial conditions

model FirstOrderInitial "First order equation with initial value"
Real x "State variable";
initial equation
To = 2 x = 2 "Used before simulation to compute initial values";
equation
der(x) = 1-x "Drives value of x toward 1.0";
end FirstOrderInitial;

model FirstOrderSteady
"First order equation with steady state initial condition”
Real x "State variable";

initial equation

o =0 der(x) = @ "Initialize the system in steady state";

equation
der(x) = 1-x "Drives value of x toward 1.0";

end FirstOrderSteady;

Adding units

dT
””%EE::hACBM“_T)

model NewtonCoolingWithUnits "Cooling example with physical units”
parameter Real T_inf(unit="K")=298.15 "Ambient temperature";
parameter Real TOCunit="K")=363.15 "Initial temperature”;
parameter Real h(unit="W/(m2.K)")=0.7 "Convective cooling coefficient";
parameter Real ACunit="m2")=1.0 "Surface area";
parameter Real m(unit="kg")=0.1 "Mass of thermal capacitance";
parameter Real c_p(unit="1/(K.kg)")=1.2 "Specific heat";
Real TCunit="K") "Temperature";

1nitial equation
T = TO "Specify initial value for T";

equation
m*c_p*der(T) = h*A*(T_inf-T) "Newton's law of cooling";

end NewtonCoolingWithUnits;

To avoid this verbosity, Modelica.SIunits declares types such as
type Temperature=Real(unit="K", min=0);

Now, we can write
parameter Modelica.SIunits.Temperature T_inf=298.15 "Ambient temperature";

records are convenient to collect data that belong together

Declare the class Vector

record Vector "A vector in 3D space"
Real X;
Real y;
Real z;

end Vector;

Declare an instance
parameter Vector v(x=1.0, y=2.0, z=0.0);

Use it in the code

equation
volume = V.XkV.y*V.Z;

See for example Buildings.Fluid.Chillers,.Data and the various other Data
packages in the Buildings library.

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Chillers_Data_ElectricEIR.html#Buildings.Fluid.Chillers.Data.ElectricEIR

Discrete behavior

I f—then to model time events

model NewtonCoolingDynamic
"Cooling example with fluctuating ambient conditions™

initial equation
T = T0 "Specify initial value for T";
equation
if time<=0.5 then
T_inf = 298.15 "Constant temperature when time<=0.5";
else
T_inf = 298.15-20%(time-0.5) "Otherwise, increasing";
end 1f;
mxc_pkder(T) = hxAx(T_inf-T) "Newton's law of cooling";
end NewtonCoolingDynamic;

Note: time is a built-in variable.

An alternative formulation is
T inf = 298.15 - (if time<0.5 then 0 else 20%«(time-0.5));

when construct

model BouncingBall "“"The 'classic' bouncing ball model"
type Height=Real(unit="m");
type Velocity=Real(unit="m/s");
parameter Real e=0.8 "Coefficient of restitution";
parameter Height h0=1.0 "Initial height";
Height h;
Velocity v;

initial equation

h = ho;
equation
v = der(h);
der(v) = -9.81;
when h<@ then-< Becomes active when the
Reinitializes the —> reinit(v, —expre(v)); condition becomes true
state variable end when; ‘\\\\\
end BouncingBall; Use the value that v had

prior to this section

State event handling

model Decay
Real Xx;
initial equation
X = 1;
equation
// wrong: der(x) -sqrt(x);
// wrong: der(x) 1f x>=0 then -sqrt(x) else 0,
der(x) = 1f noEvent(x>=0) then -sqrt(x) else 0;
end Decay;

Why are the other two formulations wrong”

Avoid chattering by using hysteresis

What will go wrong with this code”
model ChatteringControl "A control strategy that will ‘chatter'"

type HeatCapacitance=Real(unit="J/K");

type Temperature=Real(unit="K");

type Heat=Real(unit="W");

type Mass=Real(unit="kqg");

type HeatTransferCoefficient=Real(unit="W/K");

parameter HeatCapacitance C=1.0; > >

parameter HeatTransferCoefficient h=2.0; 293 15 L5 °
parameter Heat Qcapacity=25.0; |_
parameter Temperature Tamb=285; —
parameter Temperature Tbar=295; sinSpeDX1

Boolean heat "Indicates whether heater 1is on";
Temperature T;
Heat Q;
initial equation
T = Tbhar+5;
equation
heat = T<Tbar;
Q = if heat then Qcapacity else 0;
Ckder(T) = Q-hx(T-Tamb);
end ChatteringControl;

Such a problem was indeed reported by a user

Correct configuration

hysteresis

Ny

on
L - PE

'—
sinSpeDX

Avoid this configuration

—">C>—

293.15

on
| . pE

|—
sinSpeDX1

This can work In fixed time step simulators,

but it won’t in variable time step simulators
that handle events.

We need to add a hysteresis when switching the value of heat

model HysteresisControl "A control strategy that doesn't chatter"

Boolean heat(start=false) "Indicates whether heater 1is on";
parameter Temperature Tbar=295;
Temperature T;

Heat Q;

initial equation L D Y —
T = Tbar+5; on PE
heat = false; .

equation "-"’—
Q = if heat then Qcapacity else 0; —
Ckder(T) = Q-h*(T-Tamb); — RE—

when {T>Tbar+l, T<Tbar-1} then
heat = T<Tbar;

end when; Active when any element
end HysteresisControl; is true

Events

This can trigger events

Boolean late;
equation
late = time>=5.0 "This will generate an event";

It is hard for a code translator to understand that this expression is differentiable
X = 1f (x<0) then 0 else x"3;

Use the smooth () operator

X smooth(if (x<@) then 0 else x"3, 2):

Expression is 2 times
continuously differentiable

Events can also be generated by certain functions,
see http://book.xogeny.com/behavior/discrete/events/

http://book.xogeny.com/behavior/discrete/events/

1T expressions

if condl then
// Statements used if condl==true
elseif cond2 then
// Statements used if condl==false and cond?==true

[/ &us

elseif condn then
// Statements used if all previous conditions are false
// and condn==true

else
// Statements used otherwise

end if;

Each branch must have the same number of equations because of the single assignment rule.

In Modelica, there must be exactly one equation used to determine the value of each variable.

1T versus when

1T branches are always evaluated if the condition is true.
when statements become active only for an instant when the condition becomes true.

Use when for example to reinitialize states.

Arrays

Arrays are fixed at compile time. They can be declared as

parameter Integer n = 3;

Real x[nl];

Real y[size(x,1), 2];

Real z[:] = {2.0x1i for i in 1:n}; // {2, 4, 6}
Real fives[:] = f1lL(5.0, n); // {5, 5, 5}

Many functions take arrays as arguments, see http://book.xogeny.com/behavior/arrays/
functions/.

3
For example, s =) 2

1=1

s = sum(z);

http://book.xogeny.com/behavior/arrays/functions/

Looping

parameter Integer n
Real x[n];
equation
for 1 in 1:n loop
x[1] = 1i;
end for;

3;

Functions

Functions have imperative programming assignments

within Buildings.Fluid.HeatExchangers.BaseClasses;

function lmtd "Log-mean temperature difference"
input Modelica.SIunits.Temperature T_al "Temperature at port al';
input Modelica.SIunits.Temperature T_bl “Temperature at port bl";
input Modelica.SIunits.Temperature T_a2 "Temperature at port a2";
input Modelica.SIunits.Temperature T_b2 "Temperature at port b2";
output Modelica.SIunits.TemperatureDifference lmtd
"Log—mean temperature difference";

protected
Modelica.SIunits.TemperatureDifference dT1
"Temperature difference side 1";
Modelica.SIunits.TemperatureDifference dT2
"Temperature difference side 2";

algorithm
dT1 =T al - T b2;
dT2 =T bl - T a2;
lmtd := (dT2 - dT1)/Modelica.Math.log(dT2/dT1);

annotation (..):
end Umtd;

algorithm sections can also be used in a mode l or block if needed,
but functions must use an algorithm section. 0

Annotations are used to tell a tool properties of the function,
such as how often it can be differentiated

function enthalpyOfLiquid "Return the specific enthalpy of liquid"
extends Modelica.Icons.Function;
input Modelica.SIunits.Temperature T "Temperature";
output Modelica.SIunits.SpecificEnthalpy h "Specific enthalpy";
algorithm
h := cp_const*(T-reference_T);
annotation (
smoothOrder=5,
Inline=true,
Documentation(info="..", revisions=“.."));
end enthalpyOfLiquid;

2

Annotations are used to tell a tool properties of the function,
such as how often it can be differentiated

By default, functions are pure, i.e., they have no side effect.
Functions can call C, Fortran 77, and dynamic and static linked libraries.

Functions can have memory.

e See http://book.xogeny.com/behavior/functions/interpolation/

e Used for example by borehole

(Buildings.Fluid.HeatExchangers.Boreholes.BaseClasses.ExtendableArray)
and by Buildings.Rooms.BaseClasses.CFDExchange

See http://book.xogeny.com/behavior/functions/func_annos/ for other function annotations

22

http://book.xogeny.com/behavior/functions/interpolation/
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Rooms_BaseClasses.html#Buildings.Rooms.BaseClasses.CFDExchange
http://book.xogeny.com/behavior/functions/func_annos/

1nverse allows inverting functions without iteration

function Quadratic "A quadratic function"

input Real a "2nd order coefficient";

input Real b "1st order coefficient";

input Real c¢ "constant term";

input Real x "independent variable";

output Real y "dependent variable";
algorithm

y = akxkx + bxx + C;

annotation(inverse(x = InverseQuadratic(a,b,c,y)));
end Quadratic;

function InverseQuadratic
"The positive root of a quadratic function"
input Real a;
input Real b;
input Real c;
input Real y;
output Real Xx;
algorithm
X := sqrt(bxb - 4%ax(c - y))/(2*a);
end InverseQuadratic;

Can compute without iteration: 5=Quadratic(a=2, b=3, c=1, X=X);

23

An example of an 1mpure function implemented in C

impure function computeHeat '"Modelica wrapper for an embedded C controller"

input Real T;

input Real Tbhar;

input Real Q;

output Real heat;

external "C" annotation (Include="#include \"ComputeHeat.c\"",

IncludeDirectory="modelica://ModelicaByExample.Functions.ImpureFunctions/source");

end computeHeat;

#ifndef _COMPUTE_HEAT_C_
#define _COMPUTE_HEAT_C_

#define UNINITIALIZED -1 This function can return a

#define ON 1 : : :

#define OFF 0 different result if called with

Joubl the same arguments. A

ou e .

computeHeat (double T, double Thar, double Q) { translator must know this.
static int state = UNINITIALIZED; <« static variable

if (state==UNINITIALIZED) {
if (T>Tbar) state = OFF;

else state = ON; impure functions can only be
} .
if (state==0FF && T<Tbar-2) state = ON; Ca”eq from other lmpure
if (state==0ON && T>Tbar+2) state = OFF; functions, from a when-
if (state==0N) return Q; equation or a when-
else return 0; statement.
}
24

#endif

Object-oriented modeling

Object-oriented modeling

" connector HeatPort_a "Thermal port for 1-dim. heat
o transfer”
| | Modelica.SIunits.Temperature T "Port temperature";
o flow Modelica.SIunits.HeatFlowRate Q_ flow
"Heat flow rate (positive if flowing from
. outside into the component)";
~end HeatPort_a;

“model HeatCapacitor "Lumped thermal element storing heat"

parameter Modelica.SIunits.HeatCapacity C "Heat
capacity';

Modelica.SIunits.Temperature T "Temperature of element";

Interfaces.HeatPort_a port;

equation
T = port.T;
.. Ckder(T) = port.Q_flow;
“end HeatCapacitor;
a b

_a.port.T = b.port.T;
O = a.port.Q_flow + b.port.Q_flow;

Packages

models are organized Iin

In Modelica, everything is part of a package hierarchical packages

within Buildings.Fluid.HeatExchangers.BaseClasses;
function lmtd "Log-mean temperature difference"
input Modelica.SIupits.Temperature T_al "Temperature at port al";

Type definitions are part
of packages

Packages can contain They cannot contain
e other packages, ® parameters,
e constants, e variable declaration,
e functions, e cquation or algorithm sections
® models,
® blocks,

* types

Packages

Basic syntax

package OuterPackage "A package that wraps a nested package"

// Anything contained in OuterPackage

package NestedPackage "A nested package"
// Things defined inside NestedPackage

end NestedPackage;
end OuterPackage;

Storing in the file system

/RootPackage
package.mo
package.order
NestedPackageAsFile.mo
/NestedPackageAsDir
package.mo
package.order

HHFHRHFHHIFHR

Referencing resources with a URL
modelica://RootPackage/Resources/logo. jpg

Top-level package stored as a directory
Indicates this directory is a package
Specifies an ordering for this package
Definitions stored in one file

Nested package stored as a directory
Indicates this directory 1s a package
Specifies an ordering for this package

A convention of the Annexc0

and Buildings library is that

each package must be in a
separate directory, and each

class in a separate file.

Reason: easier merging and
version control. 28

Acausal connectors are used to enable assembling models
schematically

20°C

P

DY

Block Diagram Modeling Acausal Modeling

BCTemp weightResSur

/\/ ’>— TS1ur‘face sine BCTemp TSet Kp
— % feedback
e 001 9) ;gu}—‘ % _ \

:

N +1 % _ ‘

freqHz={1/3600} k={293.15} k={100}

P

={10/(10 + 5)}

conductore
) .
conGail he
g QGain2 T2 - sensor
+1
/ g
k=103 D: -1
— ey conductor2 conductor1 K
conductor conGai T % Z// //
e Y Chwection G=10 =10 10 source
)
e _ mass2 mass 1
k={10} QGain1 T
TSet eedbark Kp +1
eedbac
— e 1
__Ht_.>_.>ﬂ® A What does it
k={1/10}
k={293.15} T k={100} meaﬂ tO

connect three
ports?

Physical connectors and balanced models

Domsn _poenial Fow _Sieen

Heat flow Q_flow
Acausal connectors
e input/output determined _ h_outflow
at compilation time Fluid flow o X_outflow m_flow
C_outflow
e can connect none or
multiple components Electrical V I
to a port ,
, Translational X F
e A connector should contain all
iInformation required to < >
uniquely define the boundary Automatically summed
condition up at connections to
satisfy conservation
equation.

connector Pin "Pin of an electrical component”
SIunits.Voltage v "Potential at the pin";
flow STunits.Current 1 "Current flowing into the pin";
end Pin;

Requirement of locally balanced
models

e # Of equations = # of variables,
at each level of model

, model Ground "Ground node"
hierarchy.

Modelica.Electrical .Analog.Interfaces.Pin p;
equation

p.v = 0;
end Ground;

Connectors declare the interfaces, or ports, of models.

No equations are allowed.

Connectors for most physical ports exists in the MSL.

connector Thermal
Modelica.SIunits.Temperature T;
flow Modelica.SIunits.HeatFlowRate Q_flow;
end Thermal;

connector FluidPort
replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;

flow Medium.MassFlowRate m_flow;

Medium.AbsolutePressure p;

stream Medium.SpecificEnthalpy h_outf low;

stream Medium.MassFraction Xi_outflow[Medium.nX1i];

stream Medium.ExtraProperty C_outflow[Medium.nC];
end FluidPort;

31

Components

A simple heat storage element

within Modelica.Thermal.HeatTransfer:
package Interfaces "Connectors and partial models"”

partial connector HeatPort "Thermal port for 1-dim. heat transfer"
Modelica.SIunits.Temperature T "Port temperature';
flow Modelica.SIunits.HeatFlowRate Q flow
"Heat flow rate (positive if flowing from outside into the
component)";
end HeatPort;

connector HeatPort_a
"Thermal port for 1-dim. heat transfer (filled rectangular icon)"
extends HeatPort;

annotation(.. .,
Icon(coordinateSystem(preserveAspectRatio=true,
extent={{-100,-100}, {100,100}}),
graphics={Rectangle(
extent={{-100,100},{100,-100}},
lineColor={191,0,0},
fillColor={191,0,0},
fillPattern=FillPattern.Solid)}));
end HeatPort_a;

end Interfaces;

A simple heat storage element

within ModelicaByExample.Components.HeatTransfer;
model ThermalCapacitance "A model of thermal capacitance"
parameter Modelica.SIunits.HeatCapacity C "Thermal capacitance";
parameter Modelica.SIunits.Temperature T@ "Initial temperature;
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a port
annotation (Placement(transformation(extent={{-10,-10},{10,10}})));
initial equation

port.T = T0O;
equation IT |
Cxder(port.T) = port.Q_flow; «——(C — = ()
end ThermalCapacitance; dt

within ModelicaByExample.Components.HeatTransfer.Examples;
model Adiabatic "A model without any heat transfer"
ThermalCapacitance cap(C=0.12, TO(displayUnit="K") = 363.15)
"Thermal capacitance component"

annotation (Placement(transformation(extent={{-30,-10},{-10,10}})));

end Adiabatic;

C=0.12

cap

34

Add convection to ambient

within ModelicaByExample.Components.HeatTransfer;
model ConvectionToAmbient "An overly specialized model of convection"
parameter Modelica.SIunits.CoefficientOfHeatTransfer h;
parameter Modelica.SIunits.Area A;
parameter Modelica.SIunits.Temperature T_amb "Ambient temperature";
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a port_a
annotation (Placement(transformation(extent={{-110,-10},{-90,10}})));
equation

port_a.Q_flow = h*¥Ax(port_a.T-T_amb) "Heat transfer equation';
end ConvectionToAmbient;

35

Add convection to ambient

within ModelicaByExample.Components.HeatTransfer.Examples;

model CoolingToAmbient "A model using convection to an ambient condition"

ThermalCapacitance cap(C=0.12, T@(displayUnit="K") = 363.15)
"Thermal capacitance component"
annotation (Placement(transformation(extent={{-30,-10},{-10,10}})));

ConvectionToAmbient conv(h=0.7, A=1.0, T amb=298.15)
"Convection to an ambient temprature"
annotation (Placement(transformation(extent={{20,-10},{40,10}})));

equation

connect(cap.port, conv.port_a)
annotation (
Line(points={{-20,0},{20,0}},

color={191,0,0}, cap.port.T = conv.port_a.T;

smooth=Smooth.None)); .
end CoolingToAmbient; cap.port.Q_flow + conv.port_a.Q flow = 0;

C=0.12 0=0.7
O | T amb=298.15
cap

conv

36

Composabillity

Connectors

e Designed for physical compatibility, not causal
compatibility

e No a-priori knowledge is needed to connect
components

Multi-physics

e Components can have a heat port and a fluid port
(and a control input signal, ...)

Multi-domain

e Can combine schematic diagrams, block diagrams
(and state machines, ...)

Reusability

e Change the system architecture by deleting and
dragging components from a library (in block
diagrams, profound changes would be required)

sine BCTemp

%
% >

Z.
freqHz={1/3600}

hCon

k={5}

Convection

BCTemp weightRessur

freqHz={1/3600} k={5/(10 + 5)}
weightRessol

ﬁ
k={10/(10 + 5)}

N

conductor?

TSet

k={293.15}

feedback

Kp

‘\

P

k={100

P

/

—

conductor1

mass?2

TSurface
+1

]

+1

mass1

sensor

conductorZ
+1

—

conGail

QGain2

—

k={10} —

+1

O F

T2

kel

conductor
ﬁ@—

TSet

feedback

k={293.15} T

_.>.L

—»—(t(—b

conGai

k={10}

QGain1

T1

Kp

RS

+1

+1

/_

k={100}

k=(1710}

K

source

37

Acausal components leads to much higher readabllity and
reusabllity

BCTemp

weight Fes Sur
/\‘/ > TSurface
+1
freqHz={1 3600} k={5i10 + 53 ::@7
weight ResSaol
+1
K={10/(10 + 53
conductorz
ol +1
- 1+ conGail
g QFain? T2
+1
ﬁ@g :////’
k={10} i
L=r1/10)
conductor] conGai
nl +1
>
+ ij::;»_
>
k={10} GiGEain T
T3et Kp +1
feedback.

k={293

15} f

—D—(tf—b

k={100}

_—

v

/_

k={1710}

BCTerng

weightFiesSur

aY

freqHz={1/23600}

»
>

coni3ail
1 QGainZ
+1
+

aul
+1 auwe TSur
k={5}
weightRes Sol :jE") o
+1 =+
> i
k={1i(10+ 5%
k={10}
conductor
O
v TZ

k={10}

o

v

/_

k={1 110}

conductar

TSet

;+1
=+
1

k={293.15} T

feedback. [

coni3ai

k={10}
4

k={100}

Tl

v

k={1 110}

-]

sine

&Y

freqHz={1r3600}

BCTemp

7

hZon
s v conductor?
——
K
Conwvection
sine BCTemp

freqHz={1/3600}

7

hCon

k={3}

A 4

-

b
Conwection

conductors

T3Set

k={293.15}

T=et

conductor

K
feedback

k={1 00}

feedback

k={293.15}

sSource

kp

k={100}

conductor

masse

massi

ource

38

Arrays of components

HTC.HeatCapacitor capacitance[n](

each final C=C/n,

each T(start=T0, fixed=true));
HTC.ThermalConductor wall[n](each final G=G_wall/n);
HTC.ThermalConductor rod _conduction[n-1](each final G=G_rod);

Array length must be known at translation time.

See Buildings.HeatTransfer.Conduction which extensively uses arrays.

39

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_HeatTransfer_Conduction.html#Buildings.HeatTransfer.Conduction

Propagation of parameters and the medium package

Users should only have to assign parameters and the medium at the top-level model.

within Buildings.Fluid.HeatExchangers;
model HeaterCooler T
"Ideal heater or cooler with a prescribed outlet temperature"
extends Interfaces.PartialTwoPortInterface;
extends Interfaces.TwoPortFlowResistanceParameters(
final computeFlowResistance=
(abs(dp_nominal) > Modelica.Constants.eps));

parameter Modelica.SIunits.Pressure dp_nominal
"Pressure difference at nominal mass flow rate";

Buildings.Fluid.FixedResistances.FixedResistanceDpM preDro(
redeclare final package Medium = Medium,
final m_flow_nominal=m_flow_nominal,
) 'Pressure drop model";

The final keyword prevents users from changing the assignment.

Default values for parameters should only be used when those defaults are reasonable for
the vast majority of cases.

Architecture

Object-oriented component development

These valves differ only in the opening function [eETgiXINTNWEVAZZIEYY,

d(y) = k[((i)

where y is the control input and k is the flow rate
divided by the square root of the pressure drop.

TwoWayExponential

TwoWayLinear

TwoWayQuickOpening

TwoWayTable

Store all commonality in a common base class:

within Buildings.Fluid.Actuators.BaseClasses;

partial model PartialTwoWayValveKv
"Partial model for a two way valve using a Kv characteristic”
extends Buildings.Fluid.Actuators.BaseClasses.PartialTwoWayValve;

equation
K = phixKv_SI;
m_f low=BaseClasses.FlowModels.basicFlowFunction_dp(dp=dp, k=k,
m_flow_turbulent=m_flow _turbulent);

42

Object-oriented component development

Provide implementations that assign

P(y) = k[(é)

and that introduce the valve-specific parameters.

model TwoWayEqualPercentage
"Two way valve with equal-percentage flow characteristics"

extends BaseClasses.PartialTwoWayValveKv (
phi=BaseClasses.equalPercentage(y_actual, R, 1, delta@));

parameter Real R=50 "Rangeability, R=50...100 typically";

end TwoWayEqualPercentage;

within Buildings.Fluid.Actuators.Valves;

model TwoWaylLinear
"Two way valve with linear flow characteristics”

extends BaseClasses.PartialTwoWayValveKv (
phi=l + y_actualx(l - 1));

end TwoWaylLinear;

43

Architecture-driven modeling

Make valve replaceable, and constrain it as desired: TSet
S ﬂ._
replaceable TwoWayLinear valve feet=0 y
constrainedby BaseClasses.PartialTwoWayValveKv (sou 1

redeclare package Medium = Medium,
from_dp=true,
CvData=Buildings.Fluid.Types.CvTypes.Kv,
Kv=0.65,

m_flow_nominal=0.04)

"Replaceable valve model”;

hex

- @
1)

res 2 temSen

Make a new model that uses a different valve

TSet con

within Buildings.Fluid.HeatExchangers.Examples; —
model EqualPercentageValve offset=0
"Model with equal percentage valve" sou_1
extends DryCoilCounterFlowPControl(
redeclare Actuators.Valves.TwoWayEqualPercentage
valve);
end EqualPercentageValve;

rjid

res 2 temSen

See DataCenterDiscrete TimeControl for a model that uses this construct to change the controls,
or http://book.xogeny.com/components/architectures/thermal control/ for simple application. 44

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Examples_ChillerPlant.html#Buildings.Examples.ChillerPlant.DataCenterDiscreteTimeControl
http://book.xogeny.com/components/architectures/thermal_control/

Thermofluid flow modeling

Stream of fluids

For electrical systems, we have a potential (voltage) that drives a flow (current).

For fluids, we have a potential (pressure) that drives a flow (mass flow rate) which carries
properties (temperatures, mass concentration).

Conservation of mass

Zn) houtflow,a houtflow,b
=1

Conservation of energy

- P if m; >0
1=1 h

out flow,i, otherwise.

If mass flow rates are computed based on (nonlinear) pressure drops, this cannot be solved
reliably as the residual equation depends on a boolean variable.

46

For reliable solution of fluid flow network, stream variables have
been introduced

Connector variables have the f Llow and stream attribute:

connector FluidPort
replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;

flow Medium.MassFlowRate m_f low;

Medium.AbsolutePressure p;

stream Medium.SpecificEnthalpy h_outf low;

stream Medium.MassFraction Xi_outflow[Medium.nX1i];

stream Medium.ExtraProperty C_outflow[Medium.nC];
end FluidPort;

Thermofluid components have one balance equation for each outflowing stream:

port_a.m_flow * (inStream(port_a.h_outflow) - port_b.h_outflow)
port_a.m_flow * (inStream(port_b.h_outflow) - port_a.h_outflow)

-Q_flow;
+Q_flow;

R. Franke, F. Casella, M. Otter, M. Sielemann, H. EImqvist, S. E. Mattsson, and H. Olsson.

Stream connectors — an extension of modelica for device-oriented modeling of convective transport
phenomena.

In F. Casella, editor, Proc. of the 7-th International Modelica Conference, Como, ltaly, Sept. 2009.

47

https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0078/0078.pdf

Fluid junction

Require inStream operator to be
continuously differentiable h,, -

0 =m +m,+m,

m = f (pmix — P15 Pab > Piba>Thab s Thipa)
m, =f, (pmix — P25 P2ab> Pava>Thab > Thia)
1ty = f3(Poie = P3> Psats PavasToas> Maba)
Pras = P(Pix>Tia_iniow»IMStream(Xi, ,))
T =T (Pp-inStream(h,,),inStream(X, ,)) inStream(n?3)

pipe1
Suggested regularization of

a _inflow

h,, -max(—m,, &)+ h, - max(—m,, &)

inStream(/,) = : .
max(—m,, &) + max(—m;, &)

lterate on pmix and two mass flow rates.

The number of iteration variables for the above mixing problems
was reduced from 22 to 3, and residual functions changed from
discontinuous to continuous.

R. Franke, F. Casella, M. Otter, M. Sielemann, H. Elmqvist, S. E. Mattsson, and H. Olsson.
Stream connectors — an extension of modelica for device-oriented modeling of convective transport phenomena. 48

Proc. of the 7-th International Modelica Conference, Como, ltaly, Sept. 2009,

https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0078/0078.pdf

Numerics

Initial value ordinary differential equations

Consider initial value problem

dr(t)
D jaw). telon
x(0) = xg

A unique solution exists if f(-) and df(-)/0t are Lipschitz continuous.

If your model does not satisfy these properties, what can you do if a solver does not
converge, or gives unexpected results? Is it a problem of the model or the solver?

50

A model that we often see implemented but can cause Newton

to fall

Consider the mass flow relation V= sign(Ap) k/|Ap|

Suppose this expression is part of an algebraic loop that is solved for the pressure p using a

Newton algorithm.

Let g(p) =0 be the residual function.

Newton will iterate using

Pk+1 = Pk — 9(pk)
9g(pr)/0p

until a convergence criteria on pk is met.

The denominator tends to
Infinity, and hence the
Newton step becomes
arbitrarily small.

JA
11
1
1\

2

51

Translation process (figure from OpenModelica)

Modelica
source
code |L

Parsing and

|
|
|
|
I
I
I
I
I
| Semantic
I
|
I
|
|
I
I
I
|

Analysis

A

Flatt

source
code

. S S S — —

Figure from Bunus and Fritzson (2004)

:
Modelica I—l's
v

Partial instantiation of

the modeling code.

Translation into a flat

model.

ModSimPack — The symbolic and

numerical optimizer module.

Translates the flattened modeling
source code into an efficient C code

by performing several stages of
symbolic optimizations and

decomposition.

| Parse Flat C
Code

—

Symbolic |

Engine

BLT Form Symbolic
> l::> Engine

=

Code
Generator

52

Simplifying the equations through block lower triangularization

and tearing:

() Block lower triangularization

I
,_H

0=1-T1,
0

I

1:
2:
3 N=T+1T,

N\

f

Application to an
electric circuit model

Incidence matrix

| 172] Q

After BLIT transformation

— —
» o o o
" T ee

20(
25

e o
30 o o

35

40(.

20 25 30 35 40

Bunus and Fritzson (2004)

0 5 10 15

53

(i) Tearing

Suppose we have an equation
0= f(x), xENR", n>1,

that can be written in the form

A\

1) Lx'=f'(x?),
@ 0=f(x'x%)

where L is a lower triangular matrix with constant non-zero diagonals.
How do you solve this efficiently?

Pick a guess value for x2, solve (1) for x!, and compute a new value for x2 from (2).
lterate until x? converges to a solution.

54

Symbolic manipulations significantly reduce problem size

~e. | Incidence matrix of the
A | original problem (1200x1200)

E A . Incidence matrix after elimination

Ao
$
g

N S g 5 = of alias variables (330x330)
e S T S S

- H . ‘% . P
150 ., [T i
'. " '\‘ v r)
~ ol L -
oo o b 0
. M X ."
2009 -~ e o]

N ™ After simplifications
NS e ' and BLT (250x250)

300

I
300

o

o
> ST
- o

o
o
& o~

Note: Many numerical ' =
algorithms are O(n°) \ %
nnnnn wg % T,

£

Tearing reduces ;*
nonlinear 12 to 2,
inear 11 to 2 and =, _

linear 57 10 5. |

Figures from Dymola 2016 user manual for
mechanical model with kinematic loop.
For description of method, see Cellier and

LI

‘- ‘- :g&

OO
Nowge

Kofman, Continuous System Simulation,
Springer, 2006.

55

http://www.springer.com/us/book/9780387261027

Exercise

Exercise: Heat conduction with feedback control loop

Set point

T, 20°C Controller
Output limitation between 0 and 1
Convective
heat transfer Pl
h=5W/K \ T
0=y §
Prescribed Thermal capacitor Heat
C =150 000 J/K for each cat source
temperature T(0)=20°C P = 100 W maximum
T () = 20°C + 5°C sin(2 3.145 t / 3600)
Thermal
conductor

UA =5 W/K for each
layer

Consider the system shown in Figure 1 that consists of a heat
conductor in which one temperature is controlled by injecting heat.
This model corresponds to a 1m? area of a brick wall that is 0.2m
thick and has the same boundary condition on both sides. Heat is
injected in the middle of the construction. Because of symmetry, only
half of the construction needs to be modeled.

Open Loop Response

The first assignment is to create a model of the open loop system and
simulate the open loop response in a Modelica environment.”

Add Feedback Control

The control objective is the keep the temperature in the core of the
heat conductor above 20°C. Use a PI controller with output limita-
tion between 0 and 1 and anti-windup from the Modelica Standard
Library. You will need to simulate the model for more than one day.
Explain why one day is not sufficient even though the disturbance
has a periodicity of one day.

Figure 1: Schematics of the heat con-
duction problem.

* Hint: This model can be assembled
graphically in OpenModelica using
models from the Modelica Standard
Library.

57

Questions

